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STABILIZABILITY OF LINEAR SYSTEMS OVER A COMMUTATIVE
NORMED ALGEBRA WITH APPLICATIONS TO SPATIALLY-
DISTRIBUTED AND PARAMETER-DEPENDENT SYSTEMS*

WILLIAM L. GREENt aAND EDWARD W. KAMEN#

Abstract. The problem of achieving stabilization by using state feedback is considered for linear systems
given by a pair of matrices whose entries belong to a real or complex commutative normed algebra. This
framework is applicable to various types of linear systems, including spatially-distributed systems, systems
depending on parameters, and infinite-dimensional systems. Necessary and sufficient conditions for stabiliza-
bility are derived in terms of solutions to an associated Riccati equation defined in the Gelfand-transform
domain. Necessary and sufficient conditions for stabilizability are also given in terms of a local rank criterion

involving the Gelfand transform of the system coefficients. The results are applied to the problem of
positioning a long seismic cable.

Key words. linear systems, linear control, spatially-distributed systems, systems with unknown para-
meters, feedback control, systems over a normed ring, Riccati equations

1. Introduction. In this paper we study the problem of stabilization for linear
systems whose coefficients belong to a commutative normed algebra. This framework
arises in the study of spatially-distributed systems, systems whose coefficients depend
on parameters, and infinite-dimensional systems. We begin by describing these applica-
tions in some detail, and then we consider the problem of stabilization.

With Z equal to the set of integers and R equal to the field of real numbers, let
1'(Z,R) denote the commutative convolution algebra of absolutely summable real-
valued functions defined on Z. We may regard a matrix over /'(Z, R) as an absolutely
summable bi-infinite sequence of matrices over R. A pair (F, G) consisting of a nXn
matrix F over I'(Z,R) and a n X m matrix G over ['(Z, R) then defines a type of linear
spatially-distributed continuous-time system given by the state equation

BN _ § Fo-prsp+ 3 Gu-pult)),  teR, rez.

(1.1 dr RN o
In (1.1), x(¢, r) e R" is the state at time ¢ and spatial point r€ Z, and u(¢, r) e R™ is the
input or control at time ¢ and spatial point r. Representations of the form (1.1) arise
in the study of long strings of coupled systems, such as strings of vehicles (see Melzer
and Kuo [26] and Chu [6]). They also result from the discretization (with respect to
the spatial coordinate) of partial differential equations. An example of such a discretiz-
ation is the representation for a long seismic cable used in offshore oil exploration
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(El-Sayed and Krishnaprasad [7]) given by
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In (1.2), q(¢,r) is the position of the rth cable segment relative to some reference,
u(t, r) is the control applied to the rth cable segment, and k, ¢, M are positive constants.
As in [7], we omit the boundary conditions, on the grounds that each cable segment
is very short when compared with the total length of the cable. Clearly, (1.2) can be
written in the form (1.1) by defining

_ 0 1 _ _ 0 0 _ -
G(0)=[1/(;\/I]’ G(r)=0, |r|=1.

The spatially-distributed representation (1.2) for the seismic cable is useful in problems
involving the control of the cable since the control mechanism would be discrete in
the spatial coordinate.

A pair (F, G) of matrices over ['(Z,R) also defines a linear spatially-distributed
discrete-time system given by

(13)  x(k+1,n= ¥ Fr—jxki+ ¥ Ger—julkj), kreZ.

j=—00 j=—00

Equation (1.3) could be the representation for a long string of coupled discrete-time
systems. Systems of the form (1.3) may arise by discretizing in time a spatially-
distributed continuous-time system given by (1.1). For example, consider the state
equation (1.2) for the seismic cable. We can write the solution to (1.2) in the form

x(t,r)=e"OUMx(A, r)

(14 + J" e"OUIF()x(r, r—1)+ F(—=1)x(7, r+ 1)+ G(0)u(r, r)]d7, t>2,
where
_ dq(t,r) |’
x(tr)= [Q(t, N ]

(prime denotes the transpose operation). Now given a fixed real number T >0, we
can discretize (1.4) in the usual manner, which yields the following discrete-time
approximation of the cable:

(1.5) x(kT+T,r)=e"OTx(kT, r)+ Cox(kT, r—1)+ Crx(kT, r+ 1)+ Dyu(kT, r),
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where
T

T
(1.6) Cr= J e"@7F(1) dr, DT=J. e" "G (0) dr.

0 0

Clearly, (1.5) can be written in the form (1.3) with the entries of F and G belonging
to the algebra ['(Z,R). This representation can be utilized to generate control laws
that are discrete in both the time variable and the spatial variable. In § 5, we use the
representation (1.5) in the study of a cable positioning problem.

In the application to spatially-distributed systems, the variable k in (1.3) is the
discrete time variable and the variable r is the discrete spatial variable. If both k and
r are interpreted to be spatial variables, (1.3) could be the state representation for a
two-dimensional digital filter or “array processor’, that is, a system which processes
arrays of data (see Kamen [18], [19] and Kamen and Green [20], [21]).

Now let €(Q,R) denote the commutative algebra consisting of all real-valued
continuous functions defined on a compact subset  of R™, where N is a fixed positive
integer. As in the work of Byrnes [3], [4], [5], a pair (F, G) of matrices over €(Q,R)
defines a linear continuous-time system whose coefficients depend continuously on N
parameters. This system is given by the collection of differential equations

dx(t, o)

(1.7) dr

=F(w)x(t,w)+G(w)u(t, ), wel).

Systems specified by (1.7) appear in applications where one or more of the system
coefficients are sensitive to operating conditions such as temperature. Representations
of the form (1.7) also result from the linearization of nonlinear systems with respect
to nominal operating points specified in terms of a set of parameters. An example is
the satellite problem (see Brockett [2, pp. 14-15]) which is linearized with respect to
a nominal radius and nominal angular velocity.

A pair (F, G) of matrices over €((2, R) also defines a parameter-dependent linear
discrete-time system, given by the collection of difference equations

(1.8) x(k+1, w)=F(w)x(k, o)+ G(w)u(k, o), we().

Again, (1.8) may result by discretizing in time a continuous-time parameter-dependent
system given by (1.7).

A common feature of the spatially-distributed systems and the parameter-depen-
dent systems defined above is that they are specified in terms of a pair of matrices
with entries in a commutative algebra (I'(Z, R) in the former case and 4(Q, R) in the
latter case). It is well known that I'(Z, R) is a commutative Banach algebra with the
usual /' norm and that €(Q,R) is also a commutative Banach algebra with the usual
sup norm. Both of these algebras have identities, so each class of systems defined
above is given in terms of matrices defined over a commutative Banach algebra with
identity.

It is thus natural for us to consider a pair (F, G) of matrices defined over an
arbitrary commutative normed algebra B, with identity, and this brings us to our third
class of systems. We claim that whenever Bj is infinite-dimensional as a linear space,
we may interpret such a pair (F, G) as a linear infinite-dimensional discrete-time
system. To see this, first note that there exists a Banach space Y such that B, can be
viewed as a subalgebra of the Banach algebra B(Y) of all bounded linear maps on Y
(e.g., we can take Y to be the completion of B,). Then the pair (F, G) defines a system
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via the first-order difference equation
(19) xk+1=ka+Guk, kez.

In (1.9), the state x, at time k is an element of Y", the Banach space of n-element
column vectors over Y, and the input or control &, at time k is an element of Y.
The terms Fx;, and Gu, in (1.9) are computed via the usual action of a matrix on a
column vector. Linear infinite-dimensional discrete-time systems defined by a difference
equation in a Hilbert or Banach space have been studied by Lee, Chow, and Barr
[25], Zabczyk [32], [33], Helton [15], [16], [17], Fuhrmann [9], [10], [11], Przyluski
[27], [28], [29], [30], and others. In contrast to this past work, by exploiting the fact
that By is a commutative algebra we will be able to utilize Gelfand-transform techniques
in the study of system behavior and in the study of control.

The primary purpose of the present paper is to study the problem of feedback
stabilization for linear systems given by a pair (F, G) of matrices with entries in a
commutative normed algebra B, with identity 1. Our specific objective is to derive
necessary and sufficient conditions for the existence of a m X n feedback matrix L over
B, such that the closed-loop system (F — GL, G) is stable. When (F, G) is interpreted
to be a continuous-time system (e.g., given by the state equation (1.1) or (1.7)),
stability of the closed-loop system (F — GL, G) means that

(1.10) |eFCPY >0 ast->o0.

When (F, G) is interpreted to be a discrete-time system (e.g., given by the state equation
(1.3) or (1.8)), stability of (F— GL, G) means that

(1.11) I(F-GL)*|>0 ask->o (k=0,1,2,--").

The norms in (1.10) and (1.11) are the induced matrix norms (defined later).

The solution to the above-defined stabilization problem can be directly applied
to the stabilization of spatially-distributed systems and systems whose coefficients are
functions of parameters. The application of this algebra framework to the stabilization
of systems with parameters was first considered by Byrnes [3], [4], [S]- To make this
precise, suppose that By= €(Q,R) and we interpret a system (F, G) over B, as a
parameter-dependent discrete-time system given by the state equation (1.8). If we can
find a matrix L over B, such that F— GL is stable in the sense defined above, then
with state feedback u(k, w)=—L(w)x(k, w), the closed-loop system

x(k+1, w)=(F(0)— G(w)L(w))x(k, ®), we(),

will be asymptotically stable for every w € Q). Hence, via this approach we can consider
designing stabilizing compensators without knowing a priori (before the system is in
operation) the specific values of the parameters. This control structure can be imple-
mented by estimating the system parameters on-line.

In the application to spatially-distributed systems with B, =["(Z, R), the existence

of a feedback matrix L over By such that (F—GL, G) is stable implies that with
distributed state feedback

u(t,try=— 3 L(r—jx(,j), teRorteZ,
j=—o0
the resulting closed-loop system is stable uniformly across the distributed structure;
that is, for any initial state x(0, r) such that sup, ||x(0, r)|| <o, the free (unforced)

response x(t, r) of the closed-loop system converges to zero uniformly in the spatial
variable r.
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The property of stabilizability is of fundamental importance in a wide range of
control problems. In fact, certain types of regulation problems, such as tracking and
disturbance rejection, can be reduced to the problem of stabilizing an augmented
system, a technique that is often employed in the control of finite-dimensional systems.
This point is illustrated in § 5 where we apply our stabilizability results to a seismic-cable
positioning problem.

In the special case when By is equal to the reals R, so that F and G are matrices
over R, it is well known that necessary and sufficient conditions for stabilizability can
be expressed in terms of the solution sequence to an associated Riccati difference
equation or in terms of a solution to an associated algebraic Riccati equation (see the
textbook by Kwakernaak and Sivan [24]). The Riccati-equation approach to stabiliza-
bility has been extended by Zabczyk [32] to linear infinite-dimensional discrete-time
systems given by bounded linear operators on Hilbert spaces. In the first part of this
paper, we apply the Riccati-operator approach to the problem of stabilizing a discrete-
time system (F, G) defined over an arbitrary commutative normed algebra B,. Initial
results on this problem were obtained by Kamen [19] and Green and Kamen [12], [13].
Byrnes [3], [4], [5] has developed a Riccati-operator approach to the stabilizability of
linear continuous-time systems defined over a Banach or Fréchet algebra. One of the
key results in the work of Byrnes is the conclusion that ‘““locally’” controllable systems
are “globally” stabilizable. There remains the important question of when local
stabilizability (which is much weaker than local controllability) is equivalent to global
stabilizability. We answer this question below for discrete-time systems, leaving the
continuous-time case for future work.

Thus the plan for this paper is as follows. Section 2 consists of preliminaries. In
§ 3, we associate to each system (F, G) over B, a transformed system (E, G); here B
denotes the Gelfand transform, which generalizes to arbitrary B, the familiar Fourier
transform. Using Zabczyk’s results, we give necessary and sufficient conditions for
stabilizability of (F, G) in terms of the stabilizability of (£, G). Indeed, we show that
if the image of the completion of B, under the Gelfand transform is closed under
complex conjugation, then (F, G) is stabilizable with respect to By if and only if (ﬁ, G)
is stabilizable with respect to €(X), where X is the Gelfand carrier space of B,. In
§ 4, we study the notion of local stabilizability, which is characterized by a local rank
criterion. It is shown that local stabilizability is always equivalent to (global) stabilizabil-
ity of the Gelfand-transformed system. An example is given to illustrate how the local
rank criterion for stabilizability can be used as a test in the case of linear systems
whose coefficients depend on parameters. Section 5 completes our discussion of the
seismic cable, and § 6 consists of concluding remarks.

We shall find it desirable to consider complex algebras as well as real algebras,
both as a technical convenience and for the sake of wider applicability. To avoid
repetition, we shall whenever possible assume that B, is an algebra over K, where K
denotes either the field R of real numbers or the field C of complex numbers.

2. Preliminaries. Given a positive integer n and a normed K-algebra A with
norm|| - ||, we shall let A" denote the normed IK-linear space consisting of all n-element
column vectors with entries in A and with the norm

n 1/p
uxu,,=[ 3 ||x.~||p] ,

where x; is the ith component of the vector x€ A™ and p is a fixed real number with
1=p<oco. We shall let M,(A) denote the normed K-algebra consisting of all nXn
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matrices over A with the norm
(2.1) 1Pl =sup {|| Px| ,: xe A", ||x||, =1},

where Px is the usual action of a matrix on a column vector. It is not difficult to check
that a sequence {P,} in M, (A) converges to P€ M, (A) if and only if for each i and
each j, the (i, j)th entry of P, converges to the (i, j)th entry of P.

Now as in the Introduction, let B, denote a fixed commutative normed K-algebra
with identity 1. The completion of B, will be denoted by B. If K =C, we put B =B.
If K =R, we let B¢ denote any complexification of B (asin[1]or [31]). Up to renorming
with an equivalent norm (which has no effect on stabilizability), we may identify any
two complexifications of B. In particular, we may identify M, (B¢) and (M, (B))¢.

Let X denote the carrier space of Bg; that is, X is the set of all nonzero algebra
homomorphisms from B¢ into C with the weak™® topology. As is well known [31, pp.
110-114], X is a compact Hausdorff space. Let €(X) denote the commutative
C*-algebra consisting of all continuous complex-valued functions defined on X. The
involution f > f* on €(X) is defined by f*(x) = f(x), where ‘‘bar’’ denotes the complex
conjugate. The Gelfand transform of an element be B (or be Be) is the element b of
€(X) defined by E(x) x(b), x € X. The Gelfand transformation from B¢ into 6(X)
is the norm decreasing (and hence continuous) algebra homomorphism defined by b - b.

The Gelfand transform T of a nXm matrix T= (#;) with entries ;€ B (or Be)
is defined componentwise; i.e., T= (t,,) For each x € X, we shall let T(x) denote the
nX m matrix over C given by T(x)= (f;(x)). Given a nxn matrix T € M,(B), the
spectrum Sp T of T is defined by

Sp T={A € C:AI— T isnotinvertible in M, (Bc)}.

Letting /\,~(7A'(x)), i=1,2,---,n, denote the eigenvalues of f'(x), x € X, by [20, Prop.
1, p. 589] we have the following characterization of Sp T

(2.2) Sp T={A(T(x)):i=1,2,---,nxeX].

The spectral radius p(T) of T € M,(B) is defined by p(T)=sup{|A|: A€ Sp T}.

As defined in the Introduction, a system over the K-algebra B, is a pair (F, G)
consisting of a n X n matrix F over B, and a n X m matrix G over By. The Gelfand
transform of the system (F, G) is defined to be the system (F, G), where F (resp. G)
is the Gelfand transform of the matrix F (resp. G). By definition, the Gelfand transform
(F G) is a system over the commutative C*-algebra 6(X).

We now define a notion of stability which was studied in [20], [21]. The system
(F, G), or the matrix F, is said to be uniformly asymptottcally stable (u.as.) if F*>0
in M, (B) as k » c0. The system (F G), or the matrix F, is u.a.s. if (F)*>0in M, (€(X))
as k > 00. Here the term “uniform” refers to the fact that we are considering asymptotic
stability with a uniformity condition on the initial state. More precisely, u.a.s. of (F, G)
is equivalent to

(2.3) sup  ||F*x||,»>0 as k- .
llxll,=1,xeB"
Viewing FeM,(B) as a bounded linear operator on B", we can show (see [20,
p. 587]) that u.a.s. is equivalent to asymptotic stability defined by || F*x||, > 0 for every
x in B". However, for arbitrary bounded linear operators on B", it is not true in
general that u.a.s. and asymptotic stability are equivalent. For a counterexample, see
[20, p. 600], where a sequence {F;} satisfies F,.x—> 0 for all x, yet || F, | # 0.
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As shown in [20, Thms. 1 & 2, pp. 588-589], u.a.s. of (F, G) is equivalent to
each of the following conditions:

(24) (a) p(F)<1,
(2.5) (b) there is a positive integer g such that ||F?|| <1,

26  © I IFf<w,

2.7) @ |Fx)<1, i=1,2,---,n, allxeX

Using the equivalence between u.a.s. and condition (2.7), we get the following
result.

ProposITION 1. The system (F, G) is u.a.s. if and only if the Gelfand transform
(E, G) is n.a.s.

It should be mentioned that u.a.s. of (F, G) is equivalent to other notions of
stability which have been studied in the literature. One such notion is [”-stability
(Przyluski [30]) defined by

o 1/p
(2.8) [ Y ||F"x||§] <o  forall xe B".
k=0

The equivalence between the condition p(F) <1 and (2.8) follows directly from the
work of Zabczyk [32, § 5, pp. 727-728]. (Zabczyk considers stability of a bounded
linear operator on an abstract Banach space.) Another notion of stability which is
equivalent to u.a.s. is power stability as defined in the work of Przyluski [30].

Now let A be a commutative normed K-algebra containing the K-algebra B.
The system (F, G) defined over By is said to be stabilizable with respect to A if there
exists a m X n matrix L over A such that the closed -loop system (F— GL, G) is u.a.s.
as a system over A. Since (F—GL) Y o 6L, Proposmon 1 implies that (F, G) 1s
stabilizable with respect to A if and only if (F, G) is stabilizable with respect to A,
where A is the image of A under the Gelfand transformation. Although we are
interested in stabilizability of (F, G) with respect to By, we will see that it can be
helpful to consider first stabilizability of (F, G) with respect to an algebra A containing
By,. An example of an algebra A for which stabilizability with respect to A implies
stabilizability with respect to By is given in the following result.

PROPOSITION 2. Suppose that B, is a dense subalgebra of A. Then a system (F, G)
over By is stabilizable with respect to By, if and only if it is stabilizable with respect to A.

Proof. Suppose there exists an L over A such that F— GL is u.a.s. Then by (2.5),
there exists an integer g such that |[(F—GL)?|| <1, and since B, is dense in A, we
can find a matrix I over By such that |(F— GL)?|| <1. Again by (2.5), p(F—GL)<1,
and thus (F, G) is stabilizable with respect to B,. (The proposition also follows from
the continuity properties of the spectrum.)

3. Stabilizability and the Riccati operator. In this section we shall study the
stabilizability of a system (F, G) over By in terms of the Riccati operator. We begin
by considering commutative *-algebras and the notion of positivity.

Let A be a fixed commutative Banach K-algebra with a continuous involution
a - a™* and with identity 1. We also require that the involution be hermitian; that is,
every hermitian element (a =a™*) in A has a real spectrum. (See [31, p. 184].) For
example, A could be the C*-algebra €(X), where X is a compact Hausdorff space.
The involution on A can be extended to the algebra M,(A) of n X n matrices over A
by defining P* = (p;)* = (p¥). With this involution and the matrix norm (2.1), M, (A)
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is a Banach*-algebra (over [K) whose involution is continuous and hermitian. In-
addition, if A is a C*-algebra, then M,(A) is a C*-algebra under a norm which is
equivalent to the matrix norm (2.1).

A hermitian element Pe M, (A) is said to be positive semidefinite, denoted by
P=0, if A=0 for every AeSp P. If Pe M, (A) is hermitian and if A >0 for every
A€Sp P, P is said to be positive definite, and we write P>0. Note that by (2.2), a
hermitian element Pe M, (A) is positive semidefinite (resp. definite) if and only if

(3.1) ML(P(x))=0 (resp. \i(P(x))>0), i=1,2,---,n, all xeX,

where X is the carrier space of A¢ and P is the Gelfand transform of P. If P> 0, P
has a positive definite inverse P~' belonging to M, (A). Using (3.1), one can show
that if P=0 and R >0, then T*PT+ R >0 for any T € M, (A).

Let V denote the subset of M, (A) consisting of all hermitian positive semidefinite
elements of M, (A). Given hermitian positive definite matrices Q € M,,(A) and Re
M,,(A) and a pair (D, E) of nXn, n X m matrices over A, the Riccati operator on V
associated with (Q, R) and (D, E) is defined by

R(P)= Q+D*PD—- D*PE(E*PE +R) 'E*PD, PeV,

where D* = (d;)* = (d%). Since P=0 and R>0, E¥XPE+R >0, and thus E¥*PE+R
has a positive definite inverse in M, (A). Hence ®(P) is an element of M,(A) for
every Pe V. Now if we define

L=(E*PE+R) 'E*PD,
it is easily checked that
(3.2) R(P)=Q+L*RL+(D—EL)*P(D—EL).

Since Q> 0, it follows from (3.2) that R(P) is a hermitian positive definite element
of M, (A) for every Pe V. In fact, #(P) = Q; that is, B(P)— Q=0.
Using a matrix-inversion identity, we can also rewrite &(P) in the form

3.3) R(P)=Q+D*P[I+E(R )E*P]'D.
The expression (3.3) for the Riccati operator is the one utilized by Zabczyk in his
work [32].
The Riccati difference equation (RDE) associated with (Q, R) and (D, E) is defined
by
I’j+1=%(13j)a j=0’172"",
P, (\ 0.

Note that since %2(P)>0 for all Pe V, the solution sequence {P;} to the RDE is a
sequence of positive definite matrices belonging to M, (A).

The algebraic Riccati equation (ARE) associated with (Q, R) and (D, E) is defined
by

P=R(P).

Now given a system (F, G) over B, as defined previously, we shall first consider
stabilizability of the Gelfand transform (E, G) defined over the commutative C*-
algebra 6(X). As in the previous section, X is the carrier space of Bc, where B is
the completion of B,. Choose Qe M, (B) and Re M, (B) so that Q is a hermitian
positive definite element of M, (%(X)) and R is a hermitian positive definite element



LINEAR SYSTEMS OVER A COMMUTATIVE NORMED ALGEBRA 9

of M,,(6(X)) (for example, we could take Q and R to be the identity matrlces) Let
,ﬂ—%(S i) and S =%(S) denote the RDE and ARE associated with (Q,R) and
(F G) We then have the following result which follows from the work of Zabczyk [32].
THEOREM 1. The following conditions are equivalent.
(a) The Gelfand transform (F, G) is stabilizable with respect to €(X).
(b) The ARE S=%R(S) has a hermitian positive semidefinite solution Se
M, (6(X)).
(c) The solution sequence {S;} to the RDE S;.,=R(S;) converges in norm in
M, (€(X)) to a hermitian positive semidefinite S, and S is a solution to the ARE.
Further, if either (a) or (b) holds, a stabilizing feedback over (X)) for (E,G) is

(3.4) L=(G*SG +R)'G*SF.

Proof. Since €(X) is a C*-algebra, by the Gelfand-Naimark theorem [1, Thm.
10, p. 209], there exists a complex Hilbert space H and an isometric *-isomorphism
of 6(X) onto a C*-subalgebra of the algebra B(H) of bounded linear operators from
H into H. If we take the space H" of n-element column vectors as the state space
and the space H ™ of m-element column vectors as the input space, the Gelfand
transform (F, G) defines a linear infinite-dimensional discrete-time system given by
Xi41 = Fx, + Gu,, where x, € H", u,€ H™, and where F (resp. G) is viewed as a
bounded linear operator from H" into H" (resp. from H™ into H"). By Theorem
6.2 in Zabcezyk [32, p. 729], there exists a bounded linear operator L: H" > H™ such
that p(F— GL) <1 if and only if the associated algebraic Riccati equation has a positive
semidefinite solution. Since F and G are over %(X), using norm convergence of the
solution sequence to the Riccati difference equation as given in [32], we have that the
existence of a positive semidefinite solution to the algebraic Riccati equation is
equivalent to the existence of a stabilizing operator over 4(X). So the proof of the
theorem follows by application of the results of Zabczyk.

COROLLARY. Let W be any real (or complex)®-subalgebra of €(X) such that
W contains the image B, of B, under the Gelfand transformation. Then the following
conditions are equivalent.

(a) (F, G) is stabilizable with respect to W.

(b) (F G) is stabilizable with respect to 6(X).

(c) (E,G) is stabilizable with respect to a C*-algebra containing 4(X) as a

C*-subalgebra (i.e. as a norm closed complex *-subalgebra).

Proof. The implications (a)=>(b)=>(c) are obvious, since every complex algebra
is also a real algebra. Suppose then that €(X) is a C*-subalgebra of a C*-algebra A
and that (F G) is stabilizable with respect to A The closure W of W i in 6(X)is a
closed real *-subalgebra of €(X) containing . B. (The Gelfand transform :B- ‘€(X )
is continuous, and B, is dense in B.) Since E G, R and O are matrices over B the
solution sequence {S;} to the RDE S;., = R(S)) is over W. Again by Zabczyk’s results
[32], {S;} must converge in norm in M,(A), and thus {S;} must converge in norm to
a positive semidefinite element S of M, (W). In partlcular, the stabilizing feedback
(3.4) has entries from W. By Proposition 2, (E, G) is stabilizable with respect to W,
and we have (¢)=(a).

Let us now consider stabilizability of (F, G) with respect to By. First, it follows
from Proposition 1 that stablhzablhty of (F, G) with respect to B, implies that the
Gelfand transform (F G) is stabilizable with respect to B. Hence the conditions in
Theorem 1 are necessary conditions for stabilizability of (F, G) with respect to By.
However, these conditions are not in general sufficient for stabilizability with respect
to B,y. A counterexample is given in the next section. For a large class of algebras, it



10 W. L. GREEN AND E. W. KAMEN

turns out that the conditions in Theorem 1 are necessary and sufficient for stabilizability.
In particular, we have the following result.

THEOREM 2. Let * denote the involution on €(X). Suppose that either B, or B
is a *-subalgebra of €(X). Then (F, G) is stabilizable with respect to B, if and only if
the (equivalent) conditions in Theorem 1 are satisfied.

Proof. Apply the corollary to Theorem 1 with W =B, or with W=B. In the
latter case, apply Proposition 2.

Now suppose that the completion B of By admits a hermitian involution. It follows
easily that a +ib > a™— ib* is a hermitian involution on Bg, and hence (see [1, p. 188])
that the restriction of the Gelfand transformation to B is a *-homomorphism from B
into €(X). Thus B is a *-subalgebra of 6(X). In particular, the hypothesis of Theorem
2 is satisfied, and we have the following result.

CoOROLLARY. If the completion B admits a hermitian involution, then (F, G) is
stabilizable with respect to By if and only if the conditions in Theorem 1 are satisfied.

Both of the examples By=B=1'(Z,R) and B,= B = %(Q,R) considered in the
Introduction have continuous hermitian involutions. In particular, for I'(Z, R) the
involution is given by a(k)*=a(—k), keZ, and for €(Q, R) the involution is the
identity map. So by the corollary to Theorem 2, stabilizability of a system over either
of these algebras is equivalent to the conditions in Theorem 1.

Let us now assume that the completion B admits a continuous hermitian involution
b- b*. Then we can consider the positivity of matrices over B, as we did in the first
part of this section. Given hermitian positive definite matrices Q€ M,(B) and Re
M, (B), let P, = &(P;) denote the RDE associated with (Q, R) and the system (F, G)
defined over B,. As noted previously, the solution sequence {P;} to the RDE is a
sequence of positive definite matrices belonging to M,(B). By the Corollary to
Theorem 2, the system (F, G) is stabilizable with respect to By if and only if the
Gelfand transform sequence {P} converges in norm in M,,(%6(X)) to some positive
semidefinite T € M, (‘@(X ). If {P} does converge to T in norm, the matrlx L=
(G*TG+R) IG*TF is a stablllzmg matrix for the Gelfand transform (F G) Using
the same type of argument as in the proof of Proposition 2, we can show that there
exists a positive integer g such that

L,=(G*B,G+R)C*BE

is also a stabilizing matrix for (F, G). Since *:B- B is hermitian, it 1s easy to check
that the Gelfand transform on M, (B) is a *~homomorphism. Thus L is the Gelfand
transform of L, =(G*P,G+R)'G*P,F, and thus by Proposition 1 the matrix L,
stabilizes (F, G) Hence it is possible to compute a stabilizing feedback over B w1thout
having to compute the limit of the sequence {P}

To illustrate some of the interesting aspects of the stability criteria given above,
let us consider the case n=m =1; that is F = fe B, and G = g € B,. We also assume
that B, = B and that B admits a continuous hermitian involution. Choosing Q=R =1,
the ARE associated with (Q, R) and (f, g) is given by

(3.5 p=R(p)=1+f*p(1+g(g*)p)"'f.
Rewriting (3.5) using commutativity of B, we have
(3.6) (88™)(p*)+(1—f*f)p—1=0.

Taking the Gelfand transform of both sides of (3.6), we have
(3.7) 18(x)Pp(x)*+(1-|f(0)P) p(x)—1=0, xeX
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Let K={xe X:g§(x)=0}={xe X: (gg*) A(x) =0}. If p € 6(X) is a nonnegative sol-
ution to (3.7), then we must have

_—(-[f P+ -[f P’ +4gx)P

3.8 p
( a) P(x) zig\(x)IZ
if x¢ K and
(3.8b) px)=1-[fx)P)"

if xe K. It follows immediately that (3.7) has a positive semidefinite solution p in
€(X) only if (f, g) satisfies

3.9 [f(x)]<1 for all xe X such that §(x)=0.

Conversely, suppose that (3.9) holds and put ¢ =1t(x) = 18(0)|(1=] F(x)|)! whenever
|f(x)|<1. Clearly (3.8a,b) gives an everywhere positive solution p to (3.7), and
moreover

.1 (144971
PPr—Tfoor ™ 272

on an open subset of X which contains K. Since #(x) >0 as x approaches the set K,
an application of L’Hospital’s rule shows that p is continuous on X. We have thus
shown that the ARE (3.7) has a positive semidefinite solution (given by (3.8a) and
(3.8b)) in 6(X) if and only if condition (3.9) is satisfied, in which case the solution is
unique and positive definite. By the Corollary to Theorem 2, condition (3.9) is also
equivalent to stabilizability of (f, g) with respect to B. Note that if (gg*) " is never
zero on X, then the element b= (1—f*f)*+4gg* of B can be shown to have a positive
definite square root 8 in B. Thus if § never vanishes on X, then condition (3.9) is
vacuously satisfied and the ARE (3.5) has the positive definite solution

p=(—1+f*f+p)(2gg™)™"

in B. Of course, (f,g) must then be stabilizable with respect to B, and indeed
L=g 'fe B is a stabilizing feedback.

It is worth noting that the arguments above go through even when m > 1, provided
that n=1 and that we replace |g(x)]> by (gg*) (x). In the case when n>1 and B
admits a hermitian involution, it is still true (by the Corollary to Theorem 2) that
stabilizability with respect to B is equivalent to the existence of a positive semidefinite
solution in M, (%6(X)) to the transformed ARE. However, even when GG* isinvertible,
it remains unclear whether this is also equivalent to the existence of a positive
semidefinite solution in M, (B) to the ARE (assuming that B is not a C*-algebra). It
is thus fortunate that stabilizability with respect to B can be reduced to stabilizability
with respect to €(X), especially since this latter type of stabilizability can be checked
pointwise on X. (See Theorem 4 in the next section.) The fact that one can more easily
demonstrate the existence of a solution to the ARE in the Gelfand transform domain
is of course a reflection of the very special tractability of €(X) (or more generally of
any C*-algebra) in comparison to the much broader class of Banach algebras with
continuous hermitian involutions.

4. Local stabilizability. The conditions for stabilizability derived in the previous
section are all expressed in terms of a solution to an associated Riccati equation, and
thus it is necessary to solve the Riccati equation in order to test for stabilizability. For
finite-dimensional systems given by a pair (F, G) of matrices over the reals R, it is
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well known that one can test for stabilizability without having to solve the associated
Riccati equation. In particular, there is the Hautus stabilizability criterion [14] given by

4.1) rank[zI-F G]=n, allzeC:|z|= 1.

In the first part of this section we show that stabilizability of the Gelfand transform
(F, G) of a system (F, G) over B, can be checked by applying the Hautus criterion
“point-by-point”’. We begin with the notion of local stabilizability. As in the previous
sections, By is a commutative normed K-algebra with identity. We do not require that
the completion B admit an involution until later.

DEFINITION. A system (F, G) over B is said to be locally stabilizable if for each
x € X, the system (F (x), G(x)) defined over C is stabilizable witt;\ respect to C; that
is, if for each x € X, there is a matrix L, over C such that F (x)— G(x)L, has spectral
radius strictly less than one.

It is clear that any system (F, G) that is stabilizable with respect to B, (or B) is
locally stabilizable. By applying point-by-point the Hautus criterion (4.1), generalized
to finite-dimensional systems over C, we have that local stability of (F, G) is equivalent
to

(4.2) rank [zI —F(x) G(x)]=n, all|z|=1andallxe X

It is interesting to note that when n=m =1, local stabilizability is equivalent to
requiring that Iﬁ' (x)] <1 for all x € X such that G(x) = (0, which is the same as condition
(3.9) derived from the Riccati-equation approach.

THeEOREM 3. The Gelfand transform (I:’, é) is stabilizable with respect to €(X)
if and only if (F, G) is locally stabilizable.

Proof. The only difficult part of the proof is showing that local stabilizability
implies that the Gelfand transform is stabilizable with respect to €(X). To prove this,
we will first show that local stabilizability implies that (F, G) is stabilizable with respect
to I”(X), where I°(X) is the commutative C*-algebra consisting of all bounded
functions from X into C with the sup norm. For each x € X, choose L,, a matrix over
C, such that p(ﬁ (x)— G(x)Lx) < 1. Choose a positive integer k, =1 such that

I(F(x)~ G(x)L)*| <1.
Let &, >0 be chosen so that
I(F(x)= G(x)L,)*|| <1-e.
Then {O,: x€ X}, where
O, ={ye X: |[(F(y) - G(y)L)*||<1-&,},

is an open cover for X. Since X is compact, there exist xy, x5, * -, x; such that
XC_ZU:=1 O,. Put k., =k, O, =0, and L, =L; where i=1,2, -, Define L as
follows:

L=L,on O,, L=L,on 0,\0;,, L=L;on O5\(0O,UO0,), etc.

Since each entry of L is piecewise constant on X, clearly each entry of L lies in I°(X).
It remains only to show that L is a stabilizing feedback for (F, G) with respect to
I°(X). To do this, it suffices to show that (F—GL)*>0 in M,(I°(X)). Let &=
min (&;, €5, * *, &), and let

S= sup {sup ||ﬁ‘(x)—é(x)Li||j}.
1=isl xeX
o=j=k;—1
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Since X is compact and x - || F(x) — G(x)L; ||/ is continuous for each fixed i, j, we have
S <00, Let xeX. Then for some i with 1=i=1, we have xe€ O; and L(x) =L, Thus
for all q and j=0, 1,2, -, k;—1, we have

[(F(x) = G(x)L(x)) || = ||(F(x)— G(x) L) ||| F(x) - G(x) L]’ = (1—¢)S.

It follows that sup,c x || (F(x) — G(x)L(x))¥|| > 0 as k - 0, since (1—¢)?S is independent
of x. ButAthiAs last supremum is the norm of (F- GL)" in the C*-algebra M, (I”(X)).
Hence (F, G) is stabilizable with respect to I°(X), and by the corollary to Theorem
1, (F, G) is stabilizable with respect to 6(X).

Combining Theorems 2 and 3, we get the following central result.

THEOREM 4. If By or B is a *-subalgebra of €(X) (e.g. the latter is true if B
admits a hermitian involution), then (F, G) is stabilizable with respect to B, if and only
if (F, G) is locally stabilizable.

The following example shows that if B is not *-closed, the equivalence stated in
Theorem 4 can fail.

Example 1. Let Bo= B, where B is the disc algebra; that is, B is the algebra of
all continuous complex-valued functions defined on the closed unit disc A in C which
are analytic on the open unit disc A. In this case, we may identify B with B, X with
A, and the Gelfand transform with the identity map. Now consider the system (f, g),
where f(x)=x and g(x) = x>, x € A. Since the only zero of z—f(x)=z—x is at z=1x,
and g(x) =0 if and only if x =0, the rank criterion (4.2) is satisfied, and thus (f, g) is
locally stabilizable. By Theorem 3, the Gelfand transform (f, g) is stabilizable with
respect to €(A). Now suppose that (f, g) is stabilizable with respect to B, so there
exists an L € B such that p(f—gL) <1. By the maximum-modulus theorem, we have
(letting T = unit circle in C)

1>sup |x = x*L(x)| =sup |x— x*L(x)| =sup |1 - xL(x)|
xeA xeT xeT

=sup |1 —xL(x)|=|1-(0)L(0)|=1.
xeA

We have a contradiction, and thus there is no stabilizing feedback belonging to B.

This last example shows that local stabilizability is not in general equivalent to
stabilizability with respect to B. It also shows that stabilizability of (F, G) with respect
to 4(X) is not in general equivalent to stabilizability of (F, G) with respect to B. Of
course, these equivalences fail in this example only because the disc algebra is not a
*_subalgebra of €(A). Indeed, if b(x) = x, then b lies in the disc algebra and b*(x) =
B(x) =% for xeA. Since b* is continuous but not analytic, B= B is not closed with
respect to the involution on %(X).

We shall conclude this section with an example illustrating the use of the local
rank criterion (4.2) as a stabilizability test for systems depending on parameters.

Example 2. Let By=B= %6(Q,R), where () is a compact subset of R2. In this
case, the complexification B¢ can be identified with the algebra €(Q, C) of complex-
valued continuous functions on (2, and the carrier space X of B¢ can be identified
with Q. Thus the Gelfand transformation is the identity map on €(€2, C). Now consider
the pair (F, G) over €(Q,R), where

wy 1 1
F(waz):[w: 1] and G(Wl,Wz)""[wz]-

As noted in the Introduction, the pair (F, G) can be interpreted as a linear discrete-time
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system with parameters given by the dynamical equation
(4.3) x(k+1)=F(wy, wy)x(k)+ G(wy, wy)u(k),
or in component form,
x,(k+1)=wyx,(k)+x5(k)+u(k),
X,(k+1) = wyx,(k) + x,(k) — wou(k).

Here w; and w, are parameters with (w;, w,) taking values from Q. We would like
to know if there is a stabilizing feedback L(w;, w,) over €(Q, R) for the system (4.3).
Since the identity map on 4(Q, R) is a continuous hermitian involution, by Theorem
4 such a feedback exists if and only if

(4.4) rank [ZI_F(Wl, WZ) G(Wl, Wz)]=2, |Z|gl, (Wl, Wz)GQ.
We have

[2I — F(wy, wy) G(wl,w2)1=[z‘w‘ ! 1]

_W2 Z—l _WZ )

The common zeros of the three 2 X2 minors of [z —F G] are z=1 when w,=0 and
z=w+1 when w, = w,=w. Thus the rank condition (4.4) is satisfied if and only if Q
does not intersect the set

(4.5) {(wy,0): w,eR}IU{(w, w): weR, |w+1|=1}.

Therefore the system (F, G) defined over €(Q, R) is stabilizable with respect to (£, R)
if and only if Q does not intersect the set given by (4.5).

5. Application to the positioning of a seismic cable. Let us again consider the
seismic cable which is given by the discrete-time approximation

(5.1a)  x(kT+T,r)=e"OTx(kT, r)+ Cyx(kT, r—1)+ Cyx(kT, r+1) + Dyu(kT, r),
(5.1b)  q(kT,r)=Hx(kT,r),

where H=[1 0], Cr and D are defined by (1.6), and as in the Introduction, q(kT, r)
is the position of the rth cable segment at time kT, ke Z.

Let I°(Z,R) denote the Banach space of bounded real-valued functions defined
on Z with the sup norm. We would like to know if there exists a feedback controller
which brings the cable to a specified position g, € I(Z,R), starting from any initial
position q(0, -) € I”(Z, R). In other words, we want

(5.2) q(kT,r)>qo(r) inl*(Z,R) ask->o

for any qo€ 1”(Z,R) and any q(0, )€ I*(Z,R). This problem can be reduced to the
stabilization of an augmented system defined as follows. First, let e(kT, r) denote the
error between the actual position x(kT, r) and the desired position go(r) of the cable;
ie.,

e(kT,r)=q(kT,r)—qo(r), reZ.
Consider the error-driven system given by the scalar state equation
(5.3) v(kT+ T, r)=v(kT,r)+e(kT,r) =v(kT, r)+ Hx(kT, r) —qo(r).

Now combine the cable system (5.1a) with the error-driven system (5.3), which yields
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the augmented system given by

x(KT+T,r) ror | O] [x(KT,r) c 10| | x(kT, r—1)
________ DS ] SRS ) S 11 |
v(kT+T,r) H :1 v(kT,r) 0 0:0 v(kT,r—1)

(5.4)
LO|| x(KT, r+1) 0
+ _f:_T_:_o_ ________ + 27_ u(kT,r)—|_ 0 _
0 0,0]|v(kT,r+1) 0 q4o(r)

Let F, and G, denote the coefficient matrices of the augmented system given by

eF(O)T: 0 C 0
FO=|"___10l, FRCD=FRMm=|_ T 0|, F((»=0, |z2,
H |1 0 0,0
D
G,(0)= |-, G.(n)=0, |r|z1.

0

Clearly, F, and G, are defined over [ Y(Z,R), so the augmented system is a discrete-time
system over By=1'(Z,R).

Now suppose that the augmented system is stabilizable; i.e., there exists a three-
element row vector L over I'(Z, R) such that F,— G,L is u.a.s. Partitioning L into the
form L=[L, L,], where L, is a two-element row vector vector over !'(Z,R) and
L,el(Z,R), consider the feedback control law

(5.5) ukT,n)=~ Y L(r-j)x(kTj)= T Lyr—j)u(kT, ).

j=— j=—c
We claim that our “‘tracking” objective (5.2) is satisfied with the feedback control law
(5.5). In other words, the feedback controller defined by (5.3) and (5.5) solves the
cable positioning problem posed above. This result is a generalization of the well-known
result in the finite-dimensional case that tracking of a step function can be achieved
with integral control. We omit the details.

By the above analysis, the existence of a solution to the cable positioning problem
reduces to determining whether or not the augmented system (F,, G,) is stabilizable.
Since !'(Z,R) is a hermitian algebra, we can test for this by using the local rank
criterion (4.2). In this application, the carrier space of the complexification of the
algebra I'(Z, R) can be identified with the interval [0, 27r] and the Gelfand transform
can be identified with the Fourier transform. Taking the Fourier transform of F, and
G,, we get

[

0
R F(O)T+ | n
Biw)=|* TR G = |21
H ' 0

Thus the augmented system (F,, G,) is stabilizable if and only if
(5.6) rank [zI;— E,(0) G (0)]=3, |z|]=1, we[0,2n],



16 W. L. GREEN AND E. W. KAMEN

where I is the 3 X3 identity matrix. It is easy to see that (5.6) is equivalent to
(5.7a) rank [zI,— eF@T—(2cos w)Cr D;]1=2, |z|21, wel0,2n]

and |

0 l
_ FO)T _ | |
(5.7b)  rank fj_f____(_2_'::’5_‘:’)_(?_:_0_113 Tl =3,  we[0,27]

The criterion (5.7a) is equivalent to stabilizability of the given cable system (5.1a),
while (5.7b) can be shown to be equivalent to the requirement that the transfer function
for the cable does not have any zeros at z=1. Hence, the cable positioning problem
has a solution if the cable system (5.1a) is stabilizable and if the rank condition (5.7b)
(which is a zero criterion) is satisfied.

As a particular example, if we take M =1, T=1, ¢=0.1, and k =0.2525, we have

z—.8802—-.0708 cosw —.9119 .2804]
.2303-.2421cosw  z—.7900 .9588 )

The determinant of the 2X2 matrix formed from the first and third columns of
[zI,— e T — (2 cos w)Cy Drlisequal to z—.9475. Since .9475 <1, (5.7a) is satisfied
and the cable is stabilizable. Now the matrix in (5.7b) is given by

.1198—.0708 cos @ —.9119 0 .2804

.2302—-.2421cosw  .2100 O .9588|,
-1 0 0 0

and this clearly has rank 3 for all w €[0, 2#]. Therefore, for the particular values of
the system parameters selected above, the cable positioning problem has a solution.
The stabilizing gain vector L=[L; L,]could be computed using the Riccati difference
equation as discussed in § 3. We shall not pursue this here.

[ZIZ—‘ eF(O)T - (2 Cos w)CT DT] = [

6. Discussion. We have seen that the use of the Gelfand transform, together
with a Riccati equation, yields a useful “local” criterion for stabilizability of a system
defined over By, and we applied this criterion explicitly to the stabilization of several
systems, including the long seismic cable. Some reflection on extensions of these
techniques, and on other recent approaches to similar problems, is in order. As we
saw in § 4, local stabilizability and stabilizability with respect to B, are not equivalent
in general unless the norm closure B of B, admits a hermitian involution. We also
saw that the existence of a positive semidefinite solution S € M, (€(X)) to the ‘“‘trans-
formed” Riccati equation is not in general equivalent to stabilizability with respect to
By unless B admits a hermitian involution. Thus it appears that hermitian *-algebras
are the most general framework (in the commutative case) in which the methods of
this paper can be expected to work without exception. We should note that after the
first version of this paper was written, further results on the stabilization of linear
systems over 6((2, K), where Q is an arbitrary subset of iK™, were obtained by Kamen
and Khargonekar [22].

At present, it is unclear whether topologies on commutative rings without an
involution can be used to study systematically stabilization by state feedback. However,
for linear systems over commutative rings without an involution, there is a theory of
stabilization by dynamic output feedback based on a polynomial-matrix representation
of the system. For results on this, see Emre [8], Khargonekar and Sontag [23] and
the references in these papers.
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It is possible to give a stabilization theory similar to that presented above for
systems (F, G) defined over a noncommutative C*-algebra B. In particular, for such
systems there is a natural notion of local stabilizability based on the primitive ideal
space of B. This notion of stabilizability can be shown to be equivalent to stabilizability
over B. Results on the noncommutative case will be available in a separate paper.
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MEAN SQUARE STABILITY FOR DISCRETE BOUNDED
LINEAR SYSTEMS IN HILBERT SPACE*

C. S. KUBRUSLYY

Abstract. The asymptotic behaviour for infinite-dimensional discrete linear systems driven by white
noise is considered in this paper. Both the evolution and convergence of the state correlation operators
sequence are analysed. Mean square stability conditions are investigated, including a comparison with the
deterministic stability problem. The particular case of compact operators is considered in some detail.

Key words. asymptotic stability, infinite-dimensional systems, linear dynamical systems, discrete-time
systems, stochastic systems

1. Introduction. Conditions for asymptotic stability of finite-dimensional discrete
linear system operating either in a deterministic or stochastic environment are by now
well established (cf. [10], [9]). On the other hand the same problem in an infinite-
dimensional setting, which is endowed with a much richer structure, still presents some
unsolved questions.

As far as the asymptotic stability problem for infinite-dimensional discrete linear
deterministic systems is concerned, there is available in the current literature a fairly
complete collection of results (cf. § 3). This does not seem to be the case for discrete
stochastic systems, although some few results have already been investigated by using
different approaches and under different motivations. For instance, the convergence
analysis of stochastic approximation algorithms in Hilbert space considered in [13]
and [8] actually gives asymptotic stability conditions for infinite-dimensional dynamical
systems. Questions related to optimal stochastic control problems have also motivated
some partial results in this direction (cf. [6], [16] and [17]).

In this paper we consider the mean square stability problem, by analysing both
the evolution and asymptotic behaviour of state correlation operators, for discrete
linear systems in Hilbert space. The paper is organized as follows. Notational pre-
liminaries and basic concepts, which will be needed along the text, are considered in
§ 2. These comprise bounded linear transformations, positive and nuclear operators,
correlation operators, and approximate controllability. A brief review on asymptotic
stability for deterministic discrete systems is presented in § 3, including the auxiliary
results which will be used in the sequel. The central theme of the paper appears in
§ 4. There it is analysed the evolution and convergence of the state correlation sequence
{Q;; i=0} for discrete linear systems driven by white noise. The main results (cf.
Lemma 2, Theorems 1, 2 and Corollary 1) deal with the relationship between conver-
gence of {Q;; i= 0} and the spectral radius r,(A) of the system operator A. It is shown
that r,(A) <1 (i.e. uniform asymptotic stability for the free system) is sufficient to
ensure uniform convergence of {Q;; i =0} to a correlation operator (i.e. mean square
stability for the disturbed system). Necessary and sufficient conditions for uniform
convergence of {Q;; i =0} to a positive correlation operator are also given, for the case
of a compact system operator A.
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2. Notational and conceptual preliminaries. In this section we pose the notation
and some basic concepts which will be used in the sequel. Throughout this paper we
assume that U and H are separable nontrivial Hilbert spaces.( ; Yand | | will stand
for inner product and norm, respectively.

Bounded linear transformations. Let X and Y be Banach spaces. B[X, Y] will
denote the Banach space of all bounded linear transformations of X into Y. For
notational simplicity we write B[X] for B[X, X]. ¥(T) and R(T) will stand for the
null space and range space of T e B[X, Y], respectively. The spectrum of T € B[X]
will be denoted by o(T). Po(T)< o(T) will denote the point spectrum (i.e. the set of
all eigenvalues) of Te B[X] r,(T)=sup{|A|: A€ a(T)} is the spectral radius of
Te B[X]. T*e B[H, Ulis the adjoint of T € B[ U, H). We shall write ;> " T, T, > * T,
or T; > " T if a sequence {T;; i =0} of operators in B[ H] converges weakly, strongly,
or uniformly to T € B[H] as i > 0, respectively.

Positive and nuclear operators. A self-adjoint operator T = T* € B[ H] will be called
nonnegative (T =0), positive (T>0), or strictly positive (T>0) according to the
following standard definitions:

T=z0 & (Tx;x)=0 VxeH,
T>0 & (Tx;x)>0 Vx#0cH,
T>0 & 3Jy>0suchthat(Tx;x)=y|x|> VxeH.

If T=0e B[H] (T>0, T>0), then there exists a unique T"/*=0e B[H] (T'/*>0,
T'?>0) such that (T"?)*=T. For T=0e B[H] we define the trace of T as usual:

def.

tr (T) =§<Tek; &) =X Ao

where {e,; k= 1} is any orthonormal basis for H, and {A,=0; k= 1} is the set of all
A € Po(T), each of them counted according to its multiplicity. T=0€ B[ H] is nuclear
(or trace-class) if tr (T) <co. Let %,[H] denote the class of all nuclear operators on
H, and recall that B,[H]< B [H]< B[H], where B.[X] denotes the class of all
compact linear operators on a Banach space X. The following well-known result will
be needed in the sequel.

Remark 1. If Te B[H] has a bounded inverse (in particular, is strictly positive)
and it is compact (in particular, nuclear), then H is necessarily finite-dimensional.

Correlation operators. For arbitrary x, y€ H define the operator xeye B[H] as
follows [3]: '

(xoy)z=x(z; ),

for every ze H. Now let u and v be H-valued second order random variables,' and
define the following sesquilinear form:

E{((uo0)x; 1)} = E{(x; o)u; 1))

TLet (Q, &, p) be a probability space where & is a o-algebra of subsets of a nonempty basic set (2,
and p is a probability measure defined on &. An H-valued second order random variable is a p-measurable
map u:{Q - H such that

E{||u||2}=J’ lu(w)||* dp <o
Q

(i.e. ue Ly(Q, p; H)). Here E denotes the expectation operator. An H-valued second order random sequence
{u;; i=0} is a family of H-valued second order random variables. For an introduction to the theory of
H-valued random variables see, for instance, [1].



DISCRETE BOUNDED SYSTEMS IN HILBERT SPACE 21

on H X H, which is bounded. The symbol E on the right hand side denotes expectation
in the usual way. Then (cf. [14, p. 120]) there exists a unique operator in B[H], say
E{ucv}, defined by

(E{ucv}x; y)= E{{(u°v)x; y)}

for every x, y € H. We call E{ucv}e B[ H] the correlation of u and v.
Remark 2. The following auxiliary results are readily verified.

E{ucv}= E{vou}*,
E{(u+v)e(u+v)}=E{ucu}+E{vev}+E{ucv}+E{vou},
E{Au-Bv}=A E{u-v}B* V A Be RB[H].
Moreover, the correlation of u is self-adjoint nonnegative and nuclear; that is
0=E{ucu}=E{ucu}*e B,[H],
since
(E{ucu}x; x)=E{|(x; u)|’} VxeH,
tr (E{ucu}) = E{|lul’.

H-valued second order random variables u and v are said to be uncorrelated if
E{uov}= E{u}e E{v}. An H-valued second order random sequence {u;; i =0} is wide
sense stationary if E{u;°u;} depends only on the difference i —j for all i, j=0. Itis a
white noise if E{u;ou;}=0 for all i #j.

Approximate controllability. A pair of operators Ac B[H] and Be B[U, H] is
approximate controllable [2], briefly (A, B) is A-C (also called weakly reachable [4]),
if

N(B*A*) ={0}.

iDs

j
We shall be particularly interested in the approximate controllability for the pair
(A, BR'?), for some R =R*=0e B[UYJ. Notice that

(A, BR?)isA-C = (A, B)isA-C,
since N'(B*A%)< N (R'?B*A%), and
R>0and (A, B)isA-C = (A, BR"?)is A-C,

since R>0=>N(R"?) = {0}=>WN(R"?B*A%) < N(B*A%). Also notice that the reverses
of the above statements are not generally true.

3. Deterministic asymptotic stability. Asymptotic stability for discrete determinis-
tic infinite-dimensional linear systems has been investigated by several authors (e.g.
see [5], [15], [7], [12]). In this section we present some basic concepts and auxiliary
results which will be used in § 4.

DeriNITION 1. Let X be a Banach space, Ae B[X], and define an X-valued
sequence {x;; i =0} as follows:

(1) X4 = AX, Xo€ X.

2If R is thought of as a correlation operator for an input disturbance sequence, then approximate
controllability for the pair (A, BR'/?) is sometimes termed stochastic approximate controllability.
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The free linear system given in (1) (or equivalently, the operator Ae B[X]) is:
(a) uniformly asymptotically stable if A' > " 0. That is,
|A']|>0 asi-oco.
(b) strongly asymptotically stable if A® -* 0. That is,
[A'x]|>0 asi»c VxelX.

Remark 3. By the Banach-Steinhaus theorem [14] it is immediate to verify that
sup [A'x||[<o VxeX = r,(A)=1,

since r,(A)’ =r,(A’) =||A’|| =sup; | A’|| <o, ¥j =0 (the reverse is clearly not true, for
take any operator A € B[R’] such that r,(A)=1 and ||A’|| > o as i ). Moreover it
is also readily verified by contradiction that

A" 50 = Po(A)c{reC:l<1}.

However even the combined reverse is not true, that is
r.,(A)=land Po(A)c{AeC:|A|<1} & A’ 30,

since by setting X =1, and letting Ae B[l,] be the right shift operator (i.e.

A(é, &, --)=(0, &, 6, ‘) forall x =(§,, &, - - -) € L), it follows [11] that r, (A) = 1,
Pa(A) =, but |A'x||=||x|| Vi=0, for an arbitrary x € l,.

On the other hand there are several equivalent ways of stating uniform asymptotic
stability.

LeEMMA 1. Let X be a complex® Banach space and A € B[ X ]. The following properties
are equivalent:

(a) ||A']|>0 asi-—oco.

d) r,(A)<1.

(c) There exist real constants y=1 and p € (0, 1), such that
|AT|=yp' Vizo.

(d) ||Ai°|| <1 for some i, =0.

(e) Z |AY||* < 0o for any k> 0.

3u

(f) Z |A||* < 0o for some ko> 0.

(g) ||Ax||’°<oo Vxe X, foranyk=1.

(h) ||Ax||"0<oo Ve X, for some ko= 1.

uMg IIM8 u

Proof. 1tis trivially verified that (c)=>(e)=>(f)=>(a). Since r,(A)' = r,(A) = ||A"[,
Vi=0, one gets (a)=(b). By the well-known Gelfand formula, ||A'|l|'/l ~>r1,(A) as
i > o0, and by the radical test for infinite series, it follows that (b) =||A’|| <p’, Vi= i,

3 For a real Banach space X the lemma still holds if r,(A) is changed to r,(A™), where A™e B[X "]
is defined by A*(x +v—1y) = Ax +v/~1Ay, for all x, y € X, with the complex Banach space X* denoting
the complexification of X (cf. [14]). Notice that ||A* || grx*1= | A'|l@x;, YiZ0.
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for some integer i,=0 and any pe(r,(A),1); which implies (c) with y=
max{||A’||: 0=j=ip}p °= 1. Since ||A'x||*=||A'||*|x||¥, for all x€ X, it is immediate
to verify that (e¢) = (g). That (g)=>(h) is trivial. It has been proved in [15] that (h)=>(b).
Finally it is clear that (c)=>(d), and (d)=>(a) since ||A’| =||A%|V,Vj=0. O

Remark 4. Obviously uniform asymptotic stability implies strong asymptotic sta-
bility. The fundamental difference between finite- and infinite-dimensional formulations
relies upon the reverse of the above statement, which is not generally true for infinite-
dimensional spaces. For instance, set X = I, and let A € B[] be the left shift operator
(ie. A(&, &, - )=(&,8, ) for all x=(&, &, -)el,). It is easy to show that
|A'x|| >0 as i>o for all xel, but |A'|=1 Viz0. However, if Ae B.[X] (in
particular, if dim(X') <0), then strong and uniform asymptotic stability are equivalent
concepts. Indeed, for Ae B,[X], o(A)—{0} = Po(A)—{0}. Hence, if Ac B[X] is
strongly asymptotically stable, then the compact set o(A) is contained in the unit open
ball, according to Remark 3, and so r,(A)<1.

4. State correlation evolution and mean square stability. Consider a discrete linear
dynamical system evolving in a stochastic environment, and modelled by the following
autonomous difference equation.

(2) Xi11 = Ax; + Bu; 4, Xo = Buy,

where Ae B[H]and Be B[U, H]. Here {x;; i =0} denotes an H-valued state sequence
such that x, is an ®#(B) < H-valued second order random variable. The input disturb-
ance sequence {u;;i=0} is assumed to be an U-valued second order wide sense
stationary white noise, with correlation operator

R=R*=E{uou}=0e B,[U] Viz0.

Now define the following self-adjoint nonnegative operator.
Qi=QFf=Y AQA¥=0¢e RB,[H], Qo= BRB¥,
j=0

for every i=0. Notice that Q; is actually nuclear since R is nuclear, A and B are
bounded, and B,[H] is a two-sided ideal of B[H] (cf. [14, p. 173]). On iterating (2)
from x, onwards, and using Remark 2, it is a simple matter to show that Q; is the state
correlation operator; that is,

Q,'=E{x,'°x,'} ViéO,

which has the following further properties.
PrROPOSITION 1.

(a) Q=A"Q_,A¥"'+Q, Vj>iz=0.
In particular,
Qi1 =AQA*+ Qo= A" QA +Q; Viz0.
Therefore, for every i =0,
() Q=Qin,
thus tr(Q;) =tr(Q;+) and | Qil| =||Qivi|. Moreover,
(c) Q>0 & n N(R'2B* A% ={0}.

j=0
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Proof. Let i, j be any integers such that j>i=0. Then

j—i—1

i j j V .
Qj = z A’QOA*I + Z AIQOA*I = Qi + z AI+1+IQOA*I+|+I’
1=0 =

=i+l

thus following the result in (a). The particular cases are trivially obtained by setting
i=0and j=i+1, respectively. The result in (b) is then readily verified since

(Qix;x)=Y ||[RV*B*A¥x|*> VxeH.
j=0

Therefore {tr (Q;)} and {||Q:||} are nondecreasing sequences. Since Q;=0 one gets
Q> 05 {{(Qx; x)=0= x=0}. But
(Qix;x)=0 & xe N N(RY?B*A%),

Jj=0

thus following the result in (¢). O
We shall be particularly interested in the asymptotic behaviour of the sequence

{Qi; iz 0}

LEMMA 2. (a) If Q;»> " Qe B[H], then Q,~°Q, and the limit has the following
properties: 0= Q,=Q=Q%, | Q| 7| Q|, and

Q=A"'QA*""' +Q, Viz0.
Moreover,
(A,BR"?) is A-C & Q>0 = Po(A*)c{reC:|A|<1}.

(b) If Q> " Qe B,[H], then tr (Q;) /7 tr (Q), and Q,;~>"Q.

Proof. If Q;»"Qe B[H], then by the Banach-Steinhaus theorem {Q;} is uni-
formly bounded (cf. [14, p. 78]). Therefore since {Q;} is a nondecreasing sequence

(according to Proposition 1(b)) of self-adjoint operators, it follows that Q;~ °Q, and
Q= Q* (cf. [14, p. 79]). Actually 0= Q, = Q for every i =0, since

(Qix;x)y=Y |R'?B*A¥x||>= ¥ ||R'>B*A¥x|>=(Qx; x)
j=0 j=0

for all x € H. Thus |Q;|| = Q||. Hence the nondecreasing sequence {||Q;||} converges,
and || Q| =supjyj-1 lim;.{(Q; Xx; x) =lim;. || Q;]|. Then || Q]| / ||Q|l. By Proposition
1(a) it follows that
Qj _ (Ai+lQA*i+l + Q;) — Ai+l(Qj-—i—-l _ Q)A*i+l

for every j>i=0. Therefore, since Q;~>°Q,

I[Q —(A™ QA* ™ + Q) Ix|| = A" |(Qj-i-1 — Q)A* x| >0
as j>oo, for all xe H and every i=0. Then, by uniqueness of the strong limit,
Q=A""QA*"*! +Q, Vi=0. Moreover,

(Qx;x)=0 & xe N N(RV?B*AY).

Jj=0

So, recalling that Q =0, one has

0>0 & {(Qx:x)=0=>x=0} @.F_'i N(R'2B* A% = {0}.

Jj=0
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Finally take any A € Po(A*) (if Po(A*)=( the result is trivial), and let x # 0 be an
eigenvalue associated to A. Then

((Q—Qi-)x; x)=(A'QA*x; x)=|A(Qx; x) Yiz1.

Hence |A|<1 whenever Q;->"Q>0, which completes the proof of part (a). Now
assume that Qe %B,[H]. Then tr (Q;) =tr (Q), since Q;=Q, and the nondecreasing
sequence {tr (Q;)} converges. Thus, for any orthonormal basis {e,} and for every n= 1,

tr(Q)=lim ¥ (Qew:e)+ ¥ (Qei e

i»00 k=1 k=n+
0
Slimtr(Q)+ Y (Qe; e) nlimtr(Q;) asn-oco.
i->00 k=n+1 i—»00

Then tr (Q;) / tr (Q). Therefore
[Q-Qi=tr (Q—Q)=tr (Q)—tr (Q;)>0 asi-—co. O

Remark 5. Concerning the final statement of Lemma 2(a) it is worth mentioning
that positivity (which is sufficient) is not necessary, but nonnegativity is not sufficient
(i.e. Q=0 Po(A*)c={reC:|A|<1} Q>0). It is also easy to show that ¥/(Q)<
N(Qis1) = N(Q)), Viz0.

We shall say that the linear system in (2) is mean square stable if the state
correlation sequence {Q;; i =0} converges to a correlation operator Q (i.e. E{x;ox;} >
E{xox} as i > for some second order H-valued random variable x), such that the
Lyapunov equation Q= AQA*+ Q, in Lemma 2(a) has a solution Q=0¢e B,[H].
However, by Lemma 2(b), the above convergence has to be uniform. So we define as
follows.

DerFINITION 2. The linear system in (2) is mean square stable if

Q> Qe B [H].

We now investigate the connection between mean square and uniform asymptotic
stability concepts.
THEOREM 1.

a) Q 5Q>0eB[H] = r,(A)<L.

b) Q 5Q>0eB[H] = r(A)=I.

Proof. Since Q>0,3Q 'e B[H]. By Lemma 2(a) Q- Q;=A""'QA*"! Vi=0.
Hence

(a) A" =]AT(QVHQVA) TP = AT (QVIIPIQYA T
=A™ QA*™|Q7=lle-QlllQ7'I->0 asi->oo,
thus following the desired result by Lemma 1.
(b) “A*H—lx“ — ll(Ql/z)_l(Ql/z)A*iHX"2§ "(Ql/2)—l"2"(Ql/2)A*i+1x"2
=[Q7' (AT QA* ™ x; x)= Q7 ((Q - Q)x; x)>0 asi->co,

for all x € H, thus following part (b) by Remark 3, since r,(A*)=r,(A). O
THEOREM 2.

r,(A)<1l = Q5> Qe%B[H]
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Proof. Suppose r,(A) <1. Since
ledi=2x IA’QoA™ || = | Qol Py lA’)* vizo,
Jj= J=

it follows by Lemma 1 that {Q;; i = 0} is uniformly bounded. Therefore, using Proposi-
tion 1(a), we get for every j>i=0,

1Q - Q= 1Q-il1A™ = sup [ QIA™|P >0 as i~ o,

by Lemma 1. Then Q; > " Qe B[H], since {Q;} is a Cauchy sequence and B[H] is a
Banach space. Finally, since A{ and B are bounded and R is nuclear, it can be shown
[14, p. 173] that tr (A’BRB*A%¥) = || A’||*|| B| tr (R). Therefore, using Lemma 1 again,

tr(Q) = ¥, tr (WBRB*A®) =t (R) | BJY % ||

j=o0

Hence {tr (Q;)} is a bounded sequence, and so (cf. [14, p. 179]) the uniform limit Q
of the nuclear sequence {Q;} must be nuclear. 0O

Remark 6. We notice from Lemma 2 that Q,»"Q & Q,»>°Q, and Q;>"Q¢
B\[H]=> Q;~ "Q. However it can be shown that

(a) Q>QeB[H] #» Q,>QeRB[H],
(b) Q= QeRB[H] # Qe%B[H]

Moreover, it can also be verified that both strong convergence and positivity are not
sufficient in Theorem 1(a). That is,

(©) Q> Q>0eB[H] # r(A)<l,
(d) Q% Q>0eB[H] # r(A)=1.

To illustrate the above statements we consider the following examples.

Example 1. First we show that the statements (a) and (c) in Remark 6 hold true.
Set H=1, and U=R'. Let Ae B[] be the right shift operator, A(¢,, &, )=
(0, ¢, &, --)forall x=(&, &, - -)el,. Let Be B[R', I,] be given by Bu=(u,0, - - -)
for all ueR', and set R = 1, the identity operator in R'. It is a simple matter to verify
that

Q.= Y ABB*A% =diag(l,---,1,0,---)=0e B,[L] Vi=0,

Jj=0

with the nonzero entries at the first i +1 positions, such that tr (Q;) =i+ 1. Hence
Q.= Q=1>0e B[L],

since [|[(I — Qx| =Y5- .1, &[> >0 as i>oo for all x= (£, &, - - ) € b, although {Q;}
does not converge uniformly since || —Q;||=1, Vi=0. This supports the statement
(a) in Remark 6. However, as it is well known [11], r,(A) =1, thus confirming the
statement (c) in Remark 6.

Example 2. Now we illustrate the statements (b) and (d) in Remark 6. Let
{ex; k= 1} be areal positive sequence in I, and define a real positive strictly decreasing
null sequence {A;; k= 1} as follows.

A1 = Ak — &g, A=Y e
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Set H=U=1,., Let Ae®B[l,] be a constantly weighted left shift operator,
A(é, &, ) =p"(&, &, - ) forallx=(&, &, - +) € b, such that [11] r,(A) = p'/*>
0. Let B=1¢€ %B[l,], the identity operator, and R =diag (&, &, - - - ) >0€ B,[1,], with
tr (R) = A,. It is readily verified that

Q= Z A’RA% = diag (VZO Pj3j+1, _Zopj5j+2, e ) >0e By[L],
Jj= j=

j=0
with tr (Q;) =Z;=O p’Aj 41, ViZ 0. In particular, with r,(A) =p =1 it follows that
Qi=diag (A= Ais2, A= Ayyy, - - 1) >0€ By[ 1],
with tr (Q;) =ZL+=', Aw. Thus

Q. Q=diag (A, Ay, - - -)>0e B[L],
since |Q— Qill = A;,,~>0 as i> 0. However
Qe R[] & tr(Q)=k‘él)‘k<°°,

which does not necessarily happen. For instance,

1
= k=1 =— Vk= B[l
Ex k(k+l) v = Ak k v 1 = QE l[ 2],

2k +1 1
5k=m ngl = Ak=7(—2 Vk;l = Qe%l[b]'

This confirms the statement (b) in Remark 6. Now let r,(A)>=p>1 and set g, = a* "',

Vk=1, with 0<a<p~'<1. Then R=diag(l, a, a? ---)>0e B,[L,], with tr (R)=
(1—a)™', and

l_(ap)i+l )
Q=—""—R>0eB,[L] Viz0,
1—ap

with tr (Q;) =[1 —(ap)‘“][(l —ap)(l —a)]—'. Thus
Q > Q=(1-ap)'R>0e B,[L],
with tr (Q)=[(1—ap)(1—a)]™', since [Q-Q;=(1—ap) '(ap) ™ >0 as i—>oo.

However r,(A)> 1, thus supporting the statement (d) in Remark 6.
Remark 7. By Theorem 1(a), Theorem 2, and Remark 1 one has

Q > Q>0eB[H] = dim(H)<®,
although (cf. Example 1)
Q > Q>0eB[H] # dim(H)<cw.
If dim (H) <o, then B,[H]= B[H], Po(A)=0c(A), strict positivity is equivalent to

positivity, and uniform convergence is equivalent to strong convergence. Therefore, in
such a case, it follows by Theorem 1 and Theorem 2 that

Q~>Q>0eB[H] & r,(A)<land Q>0.
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However the assumption Q> 0, which appears in both sides of the above statement,
may not be dismissed. That is, even for finite-dimensional spaces,

Q> QeRB[H] # r,(A)=1, r,(A)<l #& Q>0

as it is readily verified. These finite-dimensional results can be extended to infinite-
dimensional spaces, whenever A is compact, as follows.
CoroOLLARY 1. If Ae B, [H], then the following properties are equivalent:

(a) r,(A)<1 and (A, BR'?) is A-C.
(b) Q: > Q>0eB,[H]
() Q> Q>0e%RB[H]

Proof. (a)=>(b) by Lemma 2(a) and Theorem 2, and (b)=>(c) trivially, for any
Ae B[H]. Now assume that Ae B, [H]. Then (c)=>(a), since r,(A)=r,(A*)=
max {|A|: A € Po(A*)U{0}} <1, by Lemma 2(a). O

5. Concluding remarks. In this paper we have considered mean square stability
for discrete bounded linear systems in Hilbert space driven by white noise. The evolution
and convergence of the state correlation operators sequence were investigated in
Proposition 1 and Lemma 2. It has been shown in Theorem 2 that uniform asymptotic
stability is a sufficient condition for mean square stability, although the reverse is not
necessarily true (cf. Remark 6), as it occurs in a finite-dimensional setting whenever
Q>0 (cf. Theorem 1 and Remark 7).

For compact operators the discrete-time stability problem is quite clear, being a
straightforward generalization of the finite-dimensional case. Indeed, as recalled in
Remark 4, for deterministic systems strong and uniform asymptotic stability are
equivalent concepts whenever A is compact. Comparing Remark 7 with Corollary 1
it is readily verified that a similar situation actually happens for stochastic systems
with a compact operator A.
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(LCC/CNPq) for his helpful comments and stimulating discussions on the subject of
this paper. Thanks are also due to Prof. Dr. Ruth F. Curtain (University of Groningen)
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SUFFICIENCY OF EXACT PENALTY MINIMIZATION*

O. L. MANGASARIANTY

Abstract. By employing a recently obtained error bound for differentiable convex inequalities, it is
shown that, under appropriate constraint qualifications, a minimum solution of an exact penalty function
for a single value of the penalty parameter which exceeds a certain threshold, is also a solution of the convex
program associated with the penalty function. No a priori assumption is made regarding the solvability of
the convex program. If such a solvability assumption is made, then we show that a threshold value of the
penalty parameter can be used which is smaller than both the above-mentioned value and that of Zangwill.
These various threshold values of the penalty parameter also apply to the well-known big-M method of

linear programming.
AMS (MOS) subject classifications. 90C30, 90C25

Key words. nonlinear programming, penalty functions, optimization, convex programming

1. Introduction. Consider the convex program
(L.1) minimize f(x) subject to g(x)=0

where f: R" > R, g: R" > R™ are convex functions on the n-dimensional real Euclidean
space R". It is well known [11], [6] that if (1.1) has a solution X and if the constraints
of (1.1) satisfy a constraint qualification, then the exact penalty function

(12) P(x, a)=f(x) +aeg(x). =f(x) +a ¥ max{0, g(x)}

where e is a vector of ones in R™, has a global minimum at X for each value of a = &
for some threshold value &. In [11, p. 356] [2, Thm. 40] it was shown that

(1.3) God = fxh—f(x)+1

min, << _gi(xl)

where x' is any point satisfying the Slater constraint qualification
(1.4) g(x")<o.
In [6, Thm. 4.9] it was shown that

(1.5) a@=d,=|i]o= max @

where # is an optimal Lagrange multiplier for (1.1) provided that (1.4) holds. A minor
modification of the proof of [6, Thm. 4.9] which invokes [10, Thm. 28.2] instead of [7,

Thm. 5.4.8] extends (1.5) to the case where a relaxed Slater constraint qualification
holds, that is

(1.6) g, (x*)<0, g, (x*)=0 for some x’

where g;, is nonlinear and gy, is linear and I; U I, ={1, - - - , m}. In contrast Zangwill’s
threshold (1.3) does not hold under the relaxed Slater constaint qualification (1.6) but
must be replaced by a different value given by (2.2) below.

* Received by the editors December 6, 1983, and in revised form March 6, 1984. This research was
sponsored by the U.S. Army under contract DAAG29-80-C-0041. This material is based on work sponsored
by the National Science Foundation under grant MCS-8200632.

+ Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706.
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What is not well known and constitutes a principal concern of this work are
converses to the results stated above. In [11, p. 356], [2, Thm. 40] Zangwill shows that
if we assume a priori that the minimization problem (1.1) has a solution, the Slater
constraint qualification (1.4) is satisfied and X minimizes the exact penalty function
(1.2) for some « = @, then X solves the minimization problem (1.1). Note the a priori
assumptions that (1.1) is solvable and that it satisfies the Slater constraint qualification.
By contrast in [6, Thm. 4.1] without any a priori assumptions regarding the solvability
of the minimization problem (1.1) or the satisfaction of a constraint qualification it
was shown that if (1.1) is feasible, that is g(x)=0 for some x, and if X minimizes
P(x, a) for all values of a = a for some a, then X solves the minimization problem
(1.1). Note the distinction between these two sufficient conditions for X to solve the
minimization problem (1.1). In Zangwill’s result there are a priori assumptions that
(1.1) is solvable and that its constraints satisfy the Slater constraint qualification, while
the penalty function P(x, ) need be minimized for a single value of = &,. In [6,
Thm. 4.1] no a priori assumption regarding the existence of a solution to (1.1) is made;
however, feasibility of (1.1) is assumed and X must be a solution to min, g P(x, a)
for all @ = a for some @, in order for X to be a solution to (1.1).

A primary purpose of this work is to combine the good features of these two
results, namely the minimization of the penalty function for a single value of the
penalty parameter and without an a priori assumption that the minimization problem
has a solution. This is done in Theorem 3.1 where it is established that if for a single
value of the penalty parameter a = &; for a well-defined a;, X minimizes the exact
penalty function P(x, a) over R", then X is also a global solution of the minimization
problem (1.1). Although no a priori assumption regarding the solvability of (1.1) is
made in Theorem 3.1, both the relaxed Slater constraint qualification (1.6) and a mild
asymptotic constraint qualification (3.2) are needed in order to invoke the recent [8,
Thm. 2.1] absolute error bound for convex differentiable inequalities which plays a
key role in the derivation of Theorem 3.1. Another result of this work is a two-way
improvement of Zangwill’s sufficiency result in Theorem 2.1, where the threshold value
of & is decreased from @&, of (1.3) to &, of (1.5) and the Slater constraint qualification
(1.4) is replaced by the relaxed constraint qualification (1.6). We also give in Corollary
2.3 a finite counterpart of the threshold value &, of (1.3) when the Slater constraint
qualification (1.4) is replaced by the relaxed qualification (1.6) which renders &, infinite.
Table 1 below gives a general outline of the relations between the various sufficiency
results derived here and elsewhere for exact penalty functions and indicates the key
assumptions needed for the different results to hold.

TABLE 1
An outline of the key assumptions needed in the various sufficiency theorems establishing
that each minimizer of an exact penalty function (1.2) solves the minimization problem (1.1).

Penalty function A priori solvability of min. prob. (1.1):
(1.2) minimized Constraint
for: Assumed Not assumed qualification:
Allaza Han-Mangasarian Not assumed
[6, Thm. 4.1]
Asingle az a Zangwill [11, p. 356] Theorem 3.1 Assumed

Theorem 2.1
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In § 3 of the paper we show that the big-M method of linear programming [1],
[9] is in fact equivalent to an exact penalty problem and hence the threshold values
of the penalty parameter developed in this work apply to it as well as to a big-M
formulation for convex programs. Such threshold values do not seem to have been
given for the big-M method for linear programs.

We briefly describe now our notation. For a vector x in the n-dimensional real
Euclidean space R", x, will denote the vectorin R" with components (x..); = max {x; 0},
i=1,-- -, n Foravector norm ||x| on R", ||x||' will denote the dual norm on R", that
is ||x||'=max;, =, xy, where xy denotes the scalar product ¥ |_, x;y. The Cauchy-
Schwarz inequality |xy|=||x|||y]’ for x and y in R" follows immediately from this
definition of the dual norm. For 1=p, g=o0 and (1/p) +(1/q) = 1, the p-norm | x|, =
(X7, |x[?)"/? and the g-norm are dual norms in R". For an m X n matrix A, A; denotes
the ith row, while || Al|, denotes the matrix norm subordinate to the vector norm |- ||,
that is || A[|, = max ), - | Ax||,. The consistency condition || Ax||, = || A|,||x|, follows
immediately from this definition of a matrix norm. We shall also use |- | to denote
an arbitrary vector norm and its subordinate matrix norm. A vector of ones in any
real Euclidean space will be denoted by e. For a differentiable function g: R" > R™,
Vg(x) will denote the m xn Jacobian matrix evaluated at the point x in R".
For a subset I<{l,---, m}, g,(x) or gic;(x) will denote those components g;(x)
such that ie I Similarly Vg,(x) will denote the rows (Vg(x)); of Vg(x) such
that i€ I. The set of vectors in R" with nonnegative components will be denoted
by R'.

2. Exact penalty characterization assuming solvability of the minimization prob-
lem. In this section we completely characterize solutions of the minimization problem
(1.1) in terms of minimizers of the exact penalty function (1.2) for a single value of
the penalty parameter exceeding the threshold @,. This is done under the assumptions
that the minimization problem is solvable and that it satisfies the relaxed Slater
constraint qualification (1.6). The necessity part of the following result Theorem 2.1
is an improvement over both [6, Thm. 4.9] and Zangwill’s theorem [11, p. 356] both
of which require the Slater constraint qualification (1.4) instead of the relaxed qualifica-
tion (1.6) needed here. This is a simple but important difference because it allows us
to handle linearly constrained problems with no constraint qualification, and because
Zangwill’s threshold value &, becomes infinite under the relaxed constraint qualification
(1.6). The new sufficiency part of Theorem 2.1 again improves over Zangwill’s
sufficiency result by using the relaxed Slater constraint qualification (1.6) instead of
the Slater constraint qualification (1.4), and the smaller threshold value &, instead of
a,. It is interesting to note that the sufficiency part of Theorem 2.1 for the threshold
value @, does not appear to have been given before even under the Slater constraint
qualification. Now we state our result.

THEOREM 2.1 (Exact penalty characterization of solvable convex programs). Let
f:R"> R and g: R" > R™ be convex functions on R". Let either (X, 4)e R" xR be a
Karush—Kuhn—Tucker saddlepoint of the minimization problem (1.1), or let the relaxed
Slater constraint qualification (1.6) hold and X be a solution of (1.1). A necessary
(sufficient) condition for X € R" to solve the minimization problem (1.1) is that X minimizes
P(x, a) over x in R" for each (some) a = ||i||o(a > ||#]|o) where iic RY is any (some)
dual optimal multiplier for (1.1).

Proof. Necessity. By assumption or by [10, Thm. 28.2] there exists a i€ RY such
that (%, @) is a Karush—-Kuhn-Tucker saddlepoint of (1.1). For any other dual optimal
multiplier #, (X, &) is also a Karush—-Kuhn-Tucker saddlepoint of (1.1) [4, p. 5]. Hence
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for xe R" and a = /i«
P(%, ) = f(%) = f(%) + ig(X) = f(x) +ddg(x)
=f(x) +ig(x) . =f(x) + ]|l g (x) -] = P(x, a).

Sufficiency. Let ii € R”} be some dual optimal multiplier for (1.1). Since (%, @) is
a Karush—-Kuhn-Tucker saddlepoint for (1.1) it follows by the necessity part of this
theorem that for 8 := |||

P(x, B) = min P(x, B).

Let X be a solution of min,.g" P(x, a) for some a > ||i] .= B. Hence
f(X) + aeg(%)+ = f(X) + aeg(X).

and
S(X) +Beg (%), = f(X) +Peg(X)..

Addition of the last two inequalities gives upon noting that g(x), =0

(a—pB)eg(X),=0.

Since a > B, this implies that g(X) =0 and hence X is feasible for (1.1). For any other
feasible point x

f(x)=P(x, a) = P(X, a) = f(X). a

The following corollary shows that under the Slater constraint qualification the
threshold value &,:= ||ii||o of Theorem 2.1 is smaller than that of Zangwill’s @, as
defined in (1.3).

COROLLARY 2.2. Let f:R" >R and g:R" > R™ be convex functions on R", let x'
be any point in R" satisfying the Slater constraint qualification g(x') <0, and let % be a
solution of the minimization problem (1.1). Then for any dual optimal multiplier i € R"

for (1.1)
SO =FB) S -fE@ 1

2.1 o= i), = - = a,.
@.1) “u“ "u“] minlgiém_gi(xl) mlnléiém_gi(xl) “

Proof. Since X is a solution of (1.1) and the Slater constraint qualification is
satisfied, it follows that X and some # € R} constitute a Karush—-Kuhn-Tucker saddle-
point for (1.1) and by [4, p. 5] so does (X, @). Consequently

F(R) = (%) +iig(®) =f(x') +ig(x) Sf(x") = |l min —g(x"),

from which (2.1) follows. 0O

We establish now another upper bound for the threshold value &,:= ||#]l, of
Theorem 2.1 under the relaxed Slater constraint qualification (1.6).

COROLLARY 2.3. Let f:R" >R and g: R" > R™ be differentiable convex functions
on R", let x* be any point in R" satisfying the relaxed Slater constraint qualification (1.6),
and let X be a solution of the minimization problem (1.1). Then there exists a dual optimal
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multiplier ii € R} for (1.1) such that

S = f(%)

ldllo= ] ==
e : min;e g, —gi(xz)

(2.2)
- f(xz)—f(i) = ) T T -1
+{ ||V +———|V Aro(AroArx s
(“ f miny —g,~(x2)" g, ()| [nax A1 (At ALe) ™
I(x)eJ(x)
where
(2.3) J(x)={I|I< I, Axx = by, A;c; lin. indep.}

and g(x)=Apx—by,.

Proof. Since x is a solution of (1.1) and the relaxed Slater constraint qualification
is satisfied, it follows that X and some @€ R constitute a Karush—-Kuhn-Tucker
saddlepoint for (1.1). Since f and g are differentiable, it follows that

(2.4) Vf(%)+a, Vg, (%) +i,A,=0, ag(£)=0, g(X)=0, @

v

0.

By the fundamental theorem on the existence of basic feasible solutions [3, Thm. 2.11]
it follows that there exists @ € R, such that (X, i) is a Karush—-Kuhn—Tucker saddlepoint
of (1.1) and

(2.5) V(%) +1;, Vg (%) +1d 1Az =0, Uigrurz =0,
where I(x) belongs to J(X) as defined by (2.3). Hence

(2.6) 0= —(Vf(%) +id,V g1, (X) Al (A1 Als) -
Consequently

(2.7) N rcolli= VA |+ 111V e, (DD ALy (A AT) ™ -

From the saddlepoint property we have that
S(X) = f(x?) +ily, 8, (X7) + iy 08 10y (X7) = f(x%) — || iy, |1y rglln -gi(x?).
Hence

(8) )
Combining (2.7) and (2.8) gives

f(x*) - f(%)
min, ., —gi(x?)

(I + 2O yog, )1, ) AT (Arco AT I

lale=llal,=

ier, ~8i(
Inequality (2.2) follows from the above upon replacing the last term by its maximum
over all feasible x. [

It is evident that the last term in (2.2) may be difficult to compute because of its
combinatorial aspect. However if there are only a few linear constraints, or if the point
x? is interior to most of the linear constraints, in which case these constraints can be
lumped with the nonlinear constraints, it may not be too difficult to compute the bound
of (2.2). Obviously since X is unknown beforehand, f(X) must be replaced by a lower
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bound (as must be done for Zangwill’s bound &,) and ||Vf(x)|, and ||Vg; (%), by
upper bounds in (2.2).

3. Exact penalty characterization without assuming solvability of the minimization
problem. In this section we characterize solutions of the minimization problem (1.1)
in terms of minimizers of the exact penalty function (1.2) without any a priori assump-
tion regarding the existence of solutions to (1.1) as was the case in the previous section.
We do however need the relaxed Slater constraint qualification (1.6) and a mild
asymptotic constraint qualification (3.2) below, which is automatically satisfied if all
the constraints are linear. It is interesting to note that the threshold value @; of the
penalty parameter in Theorem 3.1 below exceeds or equals the threshold value @,=
|# of Theorem 2.1.

THEOREM 3.1 (Exact penalty characterization of feasible convex programs). Let
f:R" > Randg: R" > R™ be differentiable convex functions on R". Let the relaxed Slater
constraint qualification (1.6) hold, let

(3.1) 0# B:=sup {||Vf(x)||g(x) =0} <o

and let the following asymptotic constraint qualification [8] hold:

For each nonempty I < {1, -+, m} and each sequence of points {x'} such that:
g(x")= 0, g (x_') =0 and Vg 1(x") are linearly independent, each accumulation
point (Vg,,Vgy,VgL) of the sequence {Vg;c1(x')/|Vger,(x), Vgi(x"),
Vg,(x')} satisfies

(3.2) Vg,z>0,Vg,2>0,Vg,z2=0 for some ze R"
where I,U I, U I, is a partition of I such that the sequence {V gj(x')} is unbounded
for je I, and bounded for j€ I,, g;c,u1, is nonlinear and g;., is linear.
A necessary (sufficient) condition for X € R" to solve the minimization problem (1.1)

is that X minimizes P(x, a) over x in R" for all a = &; (some a > a&,) where

= Bsup {lwilllg(p)=0, w; >0, g;(p)=0, ||lw, Vg (p)l,=1,
w,p,
(3.3) Vgjc:(p) lin.indep., I {1, - -, m}}.

Proof. We first note that the finiteness of @, is ensured by the asymptotic constraint
qualification [8, Thm. 2.1].

Necessity. Let X be a solution of (1.1) and let # € RT be an optimal dual multiplier
for (1.1) chosen as indicated below. We will show that @, = ||i|. and hence by the
necessity part of Theorem 2.1, X minimizes P(x, a) for a = @;. If Vf(x) =0, we take
#=0 and evidently @;= ||u||°0—0 Suppose now Vf(x)#0. Take @ = (i, iix) where
;> 0 and corresponding to “‘basic” g (X) = 0 such that Vg;., (X) are linearly indepen-
dent and iix =0. Hence by the Karush—-Kuhn-Tucker conditions [7]

Vf(x)+a,Vg.(x)=0

and consequently

VgL(X)

H IIVf( Ol
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Hence by the definition (3.3) of &; and the definition (3.1) of B

L ll72]loo
VA2 VA~
Sufficiency. Let X be a solution of min,.g» P(x, «) for some a > &;. We first shov

by contradiction, that g(X) =0. For if X is infeasible, then by [8, Thm. 2.1] there exis
a feasible p(x) such that

=P “ﬁ

= || a]lo= @

(3.4) IIi—p(f)Iloo— > g(®) = eg(x)+
Then for a > a;,
f(p(x)) = P(p(X), a)

= P(X, a) (since X minimizes P(x, a) over xe R")
=f(X) + aeg(X),
>f(%)+B[|x-p(X)|w  (by (3.4), @> &, and g(X),#0)
zf(Z) + [V (pENilx-p(®)  (by (3.1))
= f(X)=Vf(p(x))(x—p(x)) (by the Cauchy—Schwarz inequality)
= f(p(x)) (by the convexity of f)

which is a contradiction. Hence g(x) =0 and X is feasible. For any other feasible x
and a > a,

f(X)=P(x, a) = P(x, a) = f(x)

and hence x solves (1.1). O

Obviously the threshold value @; given by (3.2) is difficult to compute in general.
However besides providing an existence result for the minimization problem (1.1), it
is useful to know that such a threshold value exists and to know how it depends on
the problem parameters, especially when one is engaged in an unconstrained exact
penalty function minimization either on R", as a substitute for the original constrained
optimization problem, or on R' as part of an iterative method [5]. In both cases an «
such that a > @, would be a useful upper bound to the penalty parameters employed.
This would avoid the use of arbitrarily large penalty parameters that may lead to
numerical difficulties.

4. An application: The big-M method for convex programs. In linear programming,
a well-known method [9], [1] for solving a linear program without an explicit phase I
procedure is to add nonnegative artificial variables to the constraints and then add a
penalty to the objective function involving the artificial variables. If the penalty
parameter is “sufficiently large”, then the artificial variables will be driven to zero and
an optimal solution will be obtained, if one exists. In this section we will make the
“sufficiently large” concept precise by using the results of the two previous sections
and extend the idea of the big-M method to convex programs. We first state a simple
lemma whose elementary proof we omit.

LeEMMA 4.1. Let f:R" >R, g:R" > R™ and let a >0. Then the problems

(4.1) min /(x) +aeg(x), = min P(x, a),

(4.2) f(x)+aez st g(x)=z2z=0

(x, z) Rn+m
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are equivalent in the following sense: For each solution x of (4.1), (%, Z:= g(X),) solves
(4.2), and for each solution (X, Z) of (4.2), X solves (4.1).

The formulation of (4.2) is the big-M formulation and is used in linear program-
ming because it is easy to obtain a feasible point for it by taking any x in R" and
z:=g(x),. Formulation (4.2) can be used also for the very same reason in convex
programming. Theorem 2.1 tells us that if we know a priori that problem (1.1) has a
solution, f and g are convex and the relaxed Slater constraint qualification (1.6) is
satisfied, then the penalty parameter a of the big-M formulation (4.2) must satisfy
@ > a,= ||ii]|, where i is any optimal dual multiplier to (1.1). Note that if g is linear,
then the relaxed Slater constraint qualification (1.6) is satisfied by any feasible point
x. If we have no a priori knowledge that (1.1) is solvable, but that it is merely feasible,
that f, g are differentiable and convex, and that (3.1) and the constraint qualifications
(1.6) and (3.2) are satisfied, then the penalty parameter a of the big-M method (4.2)
must satisfy a > &, where @, is defined by (3.3). Note that if g is linear, then (1.6)
and (3.2) are automatically satisfied, and if in addition f is nonconstant and linear,
then (3.1) is also automatically satisfied.
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A HIGH ORDER TEST FOR OPTIMALITY OF BANG-BANG CONTROLS*

ALBERTO BRESSANT

Abstract. For control systems of the form X = X (x) +Y /-, Y;(x)u;, a strengthened version of the classical
Pontryagin maximum principle is proved. The necessary condition for optimality given here is obtained
using functional analytic techniques and quite general high order perturbations of the reference control. As
shown by an example, this test is particularly effective when applied to bang-bang controls, a case where
other high order tests do not provide additional information.

AMS subject classifications. 49B10, 49B27

Key words. admissible variational family, high-order tangent vector

1. Introduction. Let U be a closed convex subset of the Banach space
£'([0, T]; R™) and consider a continuously Fréchet differentiable mapping ¢ : U > R".
Given i € U, in this paper we give a high-order sufficient condition for ¢ (i) to belong
to the interior of the image ¢(U). Problems of this kind arise frequently in control
theory. Indeed, consider a control system of the form

x(1) = f(x(1)) + G(x(1))u(t),
x(0)=0, u(t)eQ fora.e. te[0, T],

(S)

where Q is a compact convex subset of R™ and f, G are €' mappings from R" into
R" and R" XR™ respectively. If T is small enough, then (S) yields a €' map ¢:u~>
x(u, T) from the set U of admissible controls into R". Here x(u, T) is the point reached
at time T by the trajectory of (S) corresponding to the control u. A classical problem
is then the following: given an admissible control #, decide whether # is time-optimal.
This is often equivalent to showing that x(#, T) lies on the boundary of the reachable
set R(T).

A well-known necessary condition for optimality is given by the Pontryagin
maximum principle (PMP) [2], [8]. Krener’s high-order maximal principle (HMP) [6]
provides further conditions, obtained from the study of more general one-parameter
perturbations u, of the control . If the first-order variation at the terminal point of
the trajectory
(1.1) lim [x(ug, T)—x(i, T)]/ €

£->0
vanishes, a high order tangent vector can be generated, and additional necessary
conditions for extremality are found. This method yielded several new results [3], [4],
[5], [6], especially concerning the problem of local stability. In this case, the reference
control is #(¢)=0 and lies in the interior of Q) =[—1, 1]. Hence there are several ways
to locally perturb @ and achieve a cancellation in the first order variation (1.1). The
HMP can be here particularly effective. On the other hand, if @ is bang-bang, #(?)
already lies on the boundary of (2, and only one-sided perturbations of & are admissible.
As a result, in general there is no way of generating high order tangent vectors, as
long as only the “instantaneous” control variations considered in [5], [6] are used. In
order to develop a genuine high order test for optimality of bang-bang controls, it is

* Received by the editors April 21, 1983, and in revised form January 2, 1984.
 Istituto di Matematica Applicata, Universita di Padova, 35100 Italy. This research was supported by
the Consiglio Nazionale delle Ricerche, G.N.A.F.A. and by the U.S. Army under contract DAAG29-80-0041.
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necessary to achieve the cancellation of the first-order variation (1.1) by perturbing @
simultaneously in the neighborhoods of two or more distinct times. This leads us to
consider more general control variations.

In the following, the variable t always denotes time, while & c¢ are used. as
variational parameters: u(&,-) or u(c & -) will denote controls in £'([0, T]; R™)
depending continuously on the parameters & c. In the abstract setting considered in
§8§ 2, 3, the control u is regarded merely as a point in a Banach space E, and we use
the shorter notation u(¢) or u(c, £) to indicate its dependence on one or two parameters.

DEeFINITION 1. A one-parameter admissible variational family of control functions
(AVF) for a control @ on [0, T], generating a tangent vector v€R", is a continuous
map v: £ u(¢, -) from a nondegenerate interval [0, £] into £'([0, T]; R™) such that

(12) u(oa')=a('), u(f")EU V§e[0, f_]’
(1.3) lle; [x(u(¢ ), T)—x(a, T)}/ =0

We say that the AVF v has order h if there exist constants C;, C, for which
(1.4) 0<Ci=¢Mulg)—a(-)|=C, VEe(0, &l

Notice that one can recover every high order tangent vector by means of the
first-order derivative (1.3), via a suitable change of the parameter £ As shown in [5],
this method differs from Krener’s only in computational ease. The above class of AVF
is at the same time simpler and more general than those studied in [5], [6], hence the
corresponding family of tangent vectors can be much larger. One would like to use
all of these vectors to derive a stronger HMP. Assume that, given suitable variational
families v; for @ (i =0, - - -, k), the positive span of the corresponding tangent vectors
v; is all of R". To conclude that x(ii, T) lies in the interior of the reachable set R(T),
one has to construct approximate convex combinations of the v; continuously depend-
ing on the parameters. More precisely, the »; should be summable in the sense of the
next definition.

DEFINITION 2. Let F={w,, - * -, v} be a finite collection of AVF for the control
#, generating the tangent vectors v, * * *, U Set

(1.5) Ak={c=(co,---,ck);c,~§0, i C,~=l}.

% is summable if there exist £> 0 and a continuous map (¢, £) > u(c, &, -) from A* x[0, £]
into £'([0, T]; R™) such that, for all ce A¥,

(1.6) u(e,0,)=a(-), u(c&-)eU Vée[o, €],
(L.7) 1;3; [x(u(c, &), T)—x(a(-), T))/ = EO civ;

uniformly on A*,

This crucial property holds for variational families of the special kind considered
in [5], [6], but is not satisfied by an arbitrary collection of AVF (see §5 for a
counterexample). Our key result is that if all but one of the »;€ & have order 1, then
% is summable. This is first proven in an abstract setting, then stated for the control
system (S). We thus obtain a strengthened version of the PMP which is particularly
effective when applied to bang-bang controls. Indeed, our single high order variational
family is allowed to be quite arbitrary. An application of this technique is given in § 5.
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2. Notation, statement of the main results. Consider a mapping ¢ from a neighbor-
hood of a closed subset U of a Banach space E into R" and denote by De(u) its
differential at u. We say that ¢ is €' if the map u > D¢(u) from E into the space of
continuous linear operators L(E ; R") is continuous. For the definition of the operator
norm on L(E;R") and for the basic properties of differentials our general reference
is Diéudonne [1].

If @€ U, by an admissible variational family (AVF) for i, generating a tangent
vector v € R", we mean a continuous map »: £- u(¢) from [0, 1] into U such that

(2.1) u(=a, u(¢)eU Veelo,1],
(22) lim [p(u(§) ~p(D))/ €=

If, for some 0< C,= C,< and all £€ (0, 1],

(2.3) Ci=¢Mu(g) -al"=C,

we say that v has order h. We write B(x, r) for the closed ball centered at x with radius
r. The Euclidean norm on R" and the operator norm on the set of n X m matrices are
both written as |-|, while double bars are used for the norms ||-|| in Banach spaces
such as E or L(E;R"). Int A, dA, ¢o A denote the interior, the boundary and the
convex closure of a set A. With these conventions we have the following theorem.

THEOREM 1. Let U be a closed convex subset of a Banach space E, and let ¢ be a
€' mapping from a neighborhood of U into R". Assume e U and let v &> u(€) be
AVF for i generating the tangent vectors v; (i=0,- - -, k). If 0eint o {v,, - - -, v} < R"
and v\, - - -, v, have order 1, then ¢(i1) €int o(U).

From this result, a sharper form of Pontryagin’s maximum principle for the system
(S) can be derived. To fix the ideas, assume that f and G are €' on B(0, r)=R"; f,,
G, will denote the corresponding differentials. Let

sup {|f(x)|v|G(x)|; xe B(0, r)} < M,,
sup {|w|; we Q} < M,, 0<T<r(M,+ MM, ".
This guarantees that, for every control u in the admissible set
U={ue £ ([0, T]; R™);u(t)eQa.el,

|lu|| < M, T and there exists a unique solution ¢ - x(u, t) of (S) defined on [0, T}, taking
values inside B(0, r). Notice that the open ball B ={ue ¥'; |u|| < M,T} is a neighbor-
hood of U. We assume that () is closed, bounded and convex, thus the same holds
for U. The map ¢ : B » €°([0, T]; R") that associates to each control u the correspond-
ing solution x(u, -) of (S) is continuously Fréchet differentiable. Indeed, ¢ is implicitly
defined by the equation (u) =Y (u, ¢(u)), with

(2.4) W(u, x)(t)= th(x(s)) ds +It G(x(s))u(s) ds.
The map ¥ can be thought of as the composition ¥, ¥,, defined by
Wy (u, x)(1) = (u(1), f(x(1)), G(x(1))),

t t

yi(s) ds +j y2(s)u(s) ds.

0

\I,Z(u’ Y1, }’2)(t) =I

(]
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Clearly ¥, is €' and ¥, is bilinear. Hence ¥ is €' and the same holds for ¢, because
of the implicit function theorem ([1, p.272]). An application of Theorem 1 yields
Theorem 2.

THEOREM 2. Let 4 be an admissible control for the system (S) and assume that
x(@, T) € dR(T). Then, for every tangent vector v, generated by a (possibly high order)
AVF v, for i, there exists an absolutely continuous nontrivial n-vector valued function
t-> A(t) on [0, T] which satisfies

(25)  A(T)-0,=0,

(26)  A(6)=—A(0) [fu(x(@, 1)) + G (x(@, 1))i(1)],

(2.7)  A(1)-G(x(a, 1))ia(r) = max {A(t) - G(x(@ t))w; we Q},
for almost every t in [0, T].

3. Proof of Theorem 1. It is certainly not restrictive to assume that k=1 and that
all vectors v; are nontrivial. Relying on the fact that »,, - - -, v, have order 1 we first
prove Lemma 1.

LeMMA 1. The collection of admissible variational families ¥ ={v,, -, v} is
summable.
Proof. Define the scalar function a by setting

(3.1) a(€)=sup {||u()— "> 0=¢{=¢€}.

Clearly « is a continuous, nondecreasing function with «(0)=0. The existence of a
first order tangent vector v, # 0 implies Dg(ii) # 0. By (2.2), for £>0 small enough,
we thus have

(3.2) lluo(€) —all/ & = [vol/ 2| Do ()]

Therefore there exists a £> 0 such that

. 172
3.3) (5['1%1(%_)”) =a(f)=1, Ela(é)=1

for all £€ (0, £]. Define u(c, £) on A* x[0, £] by

K
u(c, &) = up(cof) + El ci(¢/ a(é))u(a(€)) —uo(coé)]
ifo<¢sE

(3.4) u(c,0) =i

By (3.3), u(c, ¢) is well defined and takes values inside U, being a convex
combination of members of U. As £ 0, uy(c, £) tends to @ and each term inside the
summation in (3.4) tends to zero uniformly w.r.t. c¢. Therefore u depends continuously
on the parameters c, & To show (1.7) we write

(3.5) e(u(e, 1‘2) —e(a) _ <P(uo(co§§)) —o(a1) +<P(u(c, £) ;‘P(“o(cof))'

As £-0, the first term on the right-hand side of (3.5) converges to ¢,v,. The second
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term can be written as

1
I Do (8u(c, £) +(1—0)uo(co€)) © [u(c, §) —uo(coé)] dO
0
(36) 1 k
=J [De(i1) +x(c, & 6)]° { 2 cf(l/a(f))[ui(a(f))—uo(cof)]} de.

0 i=1
The continuous Fréchet differentiability of ¢ implies that x(c & 0)=
De(0u(c, £) +(1—0)uy(coé)) — De(ii) is a continuous linear operator whose norm
tends to zero uniformly in ¢, 8 as £ > 0. Observe that

(1/ (&) |ui(a(€)) — uo(coé) | = (1/ @ (&) ui(@(§)) — || +(1/ a(€)) | uo(cof) — il
(3.7) = K +uo(coé) —a|'?
for some finite constants K; (i=1,- - -, k), because the AVF »; have order 1 and by
(3.1). The limit as £ 0 of the last term in (3.5) is therefore given by

Kk ‘
(3.8) lim De(a) - ¥ ( G )(ui(a(f))_ii)‘
£>0 i—1 \a(§)

By the definition (2.2) of tangent vector, one has
o) —e(a) . De(a)- (u(£€)—a)+o(§)
v; = lim =lim
>0 4 >0 ¢
=1§in; De(i1) - (u(§) —a)/ &

(3.9

Indeed u; is a first order AVF, hence the term o(£), which is infinitesimal of higher
order w.r.t. ||u;(¢)—i|| as £ 0, is also of higher order w.r.t. £ Comparing (3.9) with
(3.8) one concludes that

lng [e(u(c, §)—e(a))/ €

(310) k k
= v+ ¥, ¢ lim Do (@) o [u(a(§) - @/ (€)= ¥, v,

uniformly on A,

Using the above lemma, the proof of Theorem 1 can now be completed by an
application of Brouwer’s fixed point theorem.
LEMMA 2. Assume that w €R" and that v,, - - - , v, € R" satisfy

(3.11) Ocintco{v,, - * -, Uk}
Let  be a continuous map from A* x[0, £] into R" such that

w(c0)=w VYceAk
lim[w(c, §)—w]/é= i G,
£-0 j=0

uniformly on A*. Then the image w(A* %[0, £]) covers a whole neighborhood of w in R".
Proof. Clearly (3.11) implies k= n. It is not restrictive to assume k = n. Indeed,
if k>n, choose n+1 vectors v}, -:-,v,€C0{vy, -, 0t} such that Oe
intco {vg, : -, v,}. For 0=i=n, let
k k
i=Y ag; witha; =0, ) a;=1.
j=0 j=0
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The map w':A" X[0, £]>R" defined by

w'(c,&)=w(c ) withe= Zj:o agc;, 0=j=k,
is continuous and satisfies w'(¢’, 0) = w for all ¢’ € A". Moreover

lim [w'(e', &)~ wrl/é= 5 (£ aet)o = £ el

-0 j=0 \i=0 i=0

uniformly on A", and the image of w' is clearly contained in the image of w. By possibly
replacing o with ', it therefore suffices to prove the lemma in the special case k= n.

Let & =dist (0,0¢0 {v,, : - *, v,,}) and choose &, so small that
(3.12) w(c é)—m—& Y cv;| <£8/2
i=0

for all ce A". Consider the injective map o:A" >R" defined by
glc)=am+& L o
i=0

For x € B(w, £,6) define F(x)=w(o"'(x), &). By (3.12), |F(x) — x| < £&8/2. For
each x,€ B(w, £38/2) an application of Brouwer’s theorem ([8, p. 251]) now implies
the existence of some x € B(w, £,8) for which F(x)=x, We have thus shown that
B(w, £°5/2) < w(A* x[0, £]), proving the lemma.

By (3.10), Theorem 1 follows from Lemma 2 by setting @ = ¢(i1), w(c, &)=
e(u(c £)).

4. Proof of Theorem 2. Suppose that the conclusion is false. Then there exists an
admissible variational family v, for #, possibly high order, that generates a tangent
vector v, such that, for every absolutely continuous A(-) satisfying (2.5) and (2.6),
one has

4.1) A)G(x(a, t))d(t) <max {A(t)G(x(@, t))w; we Q}

for t in a subset J = [0, T]having positive measure. For each vector n # 0 with - v, =0,
let A,(-) be the unique solution of (2.6) for which A, (T) =7, and choose a control
u, € U such that

(4.2) A, () G(x (i, t))u,(t) =max {A, () G(x(i, t))w; we Q}

for a.e. t € [0, T]. The continuity of A,, G and x(i, - ) and a selection theorem [7] imply
that such a measurable u,, exists. Define an AVF » for @ by setting

(43) u(§ ) =éu,(-)+(1-¢a(-) VEelo, 1]

Then, for every £ u(£)e U because U is convex, and |u(¢)—il/é= ||lu, — | #0,
showing that v has order one. Let IT: €°[0, T]->R" be the linear projection x> x(T).
From the remarks made in § 2 it follows that the map &~ x(u(£), T) is the composition
of €' mappings, hence the tangent vector generated by the AVF (4.3) exists and is
given by

v= 1iﬁé [x(u(¢), T)—x(a, T))/ £ =111 Dy(a1) - (u, — @)
(4.4) g
= J M(T, s)G(x(a, s))(u,(s)—(s)) ds,

0
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where s> M(T, s) is the matrix fundamental solution of
2(t) = —z(t) - [fe(x(@, 1)) + G (x(a, 1)) (1)]

with M(T, T)=1, and ¢ is the input-output map defined above (2.4). By (2.6) the
inner product of n and v is

n- v=J A (TYM(T, s)G(x(, 5))(u,(s)—u(s)) ds

(]

T
= J A, (s)G(x(d, 5))(u,(s)—i(s)) ds>0
(4]

because of (4.1). Hence, for every nontrivial vector n with 7 - v,=0, there exists a first
order tangent vector v for which n-v>0. A standard compactness argument yields
the existence of finitely many first order tangent vectors vy, - - -, v, such that the positive
span of {vo, vy, -, v} is the whole space R". Theorem 1 applied to the €' map
¢=Ilr-¢:u->x(u, T) yields x(&1, T) eint R(T), a contradiction.

5. Examples. The assumption on the order of the variational families in Theorem
1 is essential. Indeed, two arbitrary second order AVF need not be summable, as shown
by the following example.

Example 1. Define a time-dependent system on R® by
(X1(2), %2(1), X3(1)) = (@2(1)x3() (1), @2() X3 (1) (1), @1(H) us(1)),
(%1(0), x2(0), x5(0)) = (0, 0, 0),

where t € [0, 3], the smooth function ¢,, ¢, satisfy

(5.1)

ei(1)=0,  @(1)=0 forte[l,2],
(5.2) @,(1)=0 forte[0,1]U[2,3],
J ¢ (1) dt= J.z @a(1) dt=_J3 ei(t)dt=1

0 1 2
and the controls satisfy the constraints

(5.3) 0o=u()=1 (i=1,2), —00 < u;(t) < +00.
The reachable set at time ¢ =3 is then
(54) R(3) ={(x, x2, X3); x,x, = 0}.

Let @ be the null control. Consider the two AVF for u:
u(g 1) =(£7%,0,£77), u®(g 1)=(0, £"2, £,

constant on the time interval [0, 3]. Notice that for i=1, 2

1u &) -l €= (j (g, 1) i) / £=18.

By setting h=2, C,=C,=18 in (1.4) one checks that u'" and u® have order two.
The endpoints of the corresponding trajectories are

x(uV(£),3)=(£0,0),  x(u®(£),3)=(0,-£0).
Hence u'" and u® generate the tangent vectors

(5.5) v,=(1,0,0), v,=(0,~1,0).
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Comparing (5.5) with (5.4), it is clear that these two AVFs cannot be summable. In
this example, the set of high order tangent vectors of the special type considered in
[6] is the cone I'={(0, 0, x5); x5 € R}. This is of course convex and coincides here with
the first order tangent cone. Notice that the time dependency can be easily removed
by adjoining a new variable x,=1.

We now illustrate a nontrivial application of Theorem 2 to the study of optimality
of bang-bang controls.

Example 2. Consider the three-dimensional autonomous system with scalar
control u(t)e[—1,1]:

(5.6) (%1, X3, X3) = (4, Xy, X, +kxf/2), (%1(0), x2(0), x3(0)) = (0, 0, 0).
The adjoint equations for this system are
(5.7) (A1, Ay, A3) = (=Az = kxihs, =43, 0).

If |k| <1, then a theorem of H. Sussmann [9] yields the existence of a T >0 such that
every time optimal control u(-) on [0, T] is bang-bang with at most two switchings.
If|k| > 1, the above result does not apply. Indeed, for every T > 0, there exist bang-bang
controls u that satisfy Pontryagin’s necessary conditions for optimality and have an
arbitrarily large number of switchings on [0, T]. In order to construct a regular feedback
synthesis for (5.6) it is important to rule out the optimality of such controls. In this
direction we prove the following proposition.

PROPOSITION 1. Assume |k|> 1. Then every bang—bang control assuming the value
+1 on a positive neighborhood of the origin is not optimal after its third switching time.

Proof. Let i be a bang-bang control which is initially +1 and has at least 3
switchings, and let 0<t; <t,<t; be its first three switching times. Fix any T > t,,
smaller than the fourth switching time if there is any. We will prove that x(#4, T) e
int R(T). If the classical Pontryagin’s necessary conditions do not hold for @, we are
done. Otherwise, let A (t) = (A,(t), A5(1), A5(t)) be a nontrivial adjoint variable satisfying
(2.6) and (2.7), given in this case by (5.7) and

(5.8) u(t)=sgnA(t) ae.on[0, T]

respectively. Our first task is to compute A(T). Set t,=0, t,= T. From (5.7) it follows
that the map ¢t A(t) is €' on [0, T] and piecewise analytic on [t;_,, t;] (i=1,- - -, 4).
In particular, we have

(5.9) A;3(1) = A5(0), Ay(1) = A,(0) =1+ A3,
(5.10) () =A(1—ksgn A, (1)) ae.on[0, T],
(5.11) LE)=0  (i=1,2,3).

Hence A, is a polynomial of degree 2 in t on each subinterval [#;_;, ;]. If A,(¢) =0 for
some t€ (1, t,), then we would have A (t) =0, against the assumptions. Thus A,(#) #0
for 1, <t<t, By (5.11), A, is not identically zero. Together with (5.10), this implies
A3>0. Multiplying A; by a positive scalar we can therefore assume A;(¢)=1. This,
together with (5.10) and (5.11), determines A,(¢) uniquely:

1+

(5.12) MO=E =1 ) forteln, bl

(5.13) )t,(t)=%<(t—t2)(t—t3) for te[t,, t;].
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The computation of A,(t,) using alternatively (5.7), (5.12) and (5.13) yields

M) = —Ay(1) — kxy (1) = —A5(1) — k(2t,—t,)

k+1 k-1
=—2—‘(t2“t1)=—2—(t3“2)~

(5.14)

Notice that the above expressions coincide because A is €'. From (5.7), (5.14) we deduce
(5.15) AM(T)=1t,(1-3k)/2+t,(1+k)/2—T.

For notational convenience, set a=t,, b=t,—t, c=t;—t,, d = T—t;. So far, we
have proven that, up to a positive scalar factor, there exists a unique adjoint variable
A(t) that satisfies (2.6) and (2.7) on [0, T]. In particular, (5.15) and the last equality
in (5.14) yield

(5.16) A(T)=(/\,(T),—ka +Lc%£b—c—d,l>,

(5.17) (k=1)b=(k-1)c.

The second part of the proof consists in the construction of a second order AVF
for u generating at ¢t = T a tangent vector v having a positive inner product with A(T).
A lengthy but elementary computation (see Appendix) shows that the control @ steers
the system from the origin to a point x(#, T) whose coordinates are

x, (4, T)=a—b+c—d,
x,(4, T)=T?/2—(b+c+d)*+(c+d)*—d?,
G189 xX3(i, T)=[T*/2—(b+c+d)* +(c +d)* - d*)/3
+a*+(b—a)’ +(c—b+a)’ +(d—c+b—a)*/2]k/3.
For te[0, T] and £> 0 suitably small define
u(g t)=1 iftef0,a+£"*c)Ula+b+¢£"*(b+c), T—d +£"%b),
u(g t)=—1 iftela+&"%ca+b+£7*(b+c))U[T—d +¢£V%b, T].

The coordinates of x(u(¢, -), T) are thus obtained from (5.18), replacing q, <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>