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STABILIZABILITY OF LINEAR SYSTEMS OVER A COMMUTATIVE
NORMED ALGEBRA WITH APPLICATIONS TO SPATIALLY-
DISTRIBUTED AND PARAMETER-DEPENDENT SYSTEMS*

WILLIAM L. GREEN" AND EDWARD W. KAMEN

Abstract. The problem of achieving stabilization by using state feedback is considered for linear systems
given by a pair of matrices whose entries belong to a real or complex commutative normed algebra. This
framework is applicable to various types of linear systems, including spatially-distributed systems, systems
depending on parameters, and infinite-dimensional systems. Necessary and sufficient conditions for stabiliza-
bility are derived in terms of solutions to an associated Riccati equation defined in the Gelfand-transform
domain. Necessary and sufficient conditions for stabilizability are also given in terms of a local rank criterion
involving the Gelfand transform of the system coefficients. The results are applied to the problem of
positioning a long seismic cable.
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1. Introduction. In this paper we study the problem of stabilization for linear
systems whose coefficients belong to a commutative normed algebra. This framework
arises in the study of spatially-distributed systems, systems whose coefficients depend
on parameters, and infinite-dimensional systems. We begin by describing these applica-
tions in some detail, and then we consider the problem of stabilization.

With 2’ equal to the set of integers and R equal to the field of real numbers, let
II(z,R) denote the commutative convolution algebra of absolutely summable real-
valued functions defined on ’. We may regard a matrix over ll(., ) as an absolutely
summable hi-infinite sequence of matrices over R. A pair (F, G) consisting of a n x n
matrix F over/1(7/, ) and a n x m matrix G over/1(7/, ) then defines a type of linear
spatially-distributed continuous-time system given by the state equation

(1 1) dx(t,r.____)= , F(r-j)x(t,j)+ , G(r-j)u(t,j), tl, rZ.
dt =-oo =

In (1.1), x(t, r)eR" is the state at time and spatial point re/, and u(t, r)eR" is the
input or control at time and spatial point r. Representations of the form (1.1) arise
in the study of long strings of coupled systems, such as strings of vehicles (see Melzer
and Kuo [26] and Chu [6]). They also result from the discretization (with respect to
the spatial coordinate) of partial differential equations. An example of such a discretiz-
ation is the representation for a long seismic cable used in offshore oil exploration
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(E1-Sayed and Krishnaprasad [7]) given by

(1.2)

0 1 Vq(t’r)q Vq(t’r-1)o

ll dt J k/2M ;]tdq(t-iI
+[k/2M ] tdq(t’-tt+l +[IM] u(t’r,"

In (1.2), q(t, r) is the position of the rth cable segment relative to some reference,
u (t, r) is the control applied to the rth cable segment, and k, c, M are positive constants.
As in [7], we omit the boundary conditions, on the grounds that each cable segment
is very short when compared with the total length of the cable. Clearly, (1.2) can be
written in the form (1.1) by defining

F(O)--k/M -c/M
F(-1)=F(1)=

k/2M 0

G(O) [1/OM], G(r) O, Ir]:> 1.

The spatially-distributed representation (1.2) for the seismic cable is useful in problems
involving the control of the cable since the control mechanism would be discrete in
the spatial coordinate.

A pair (F, G) of matrices over 11(’, N) also defines a linear spatially-distributed
discrete-time system given by

(1.3) x(k+l,r)= Y. F(r-j)x(k,j)+ Y G(r-j)u(k,j), k,r7/.

Equation (1.3) could be the representation for a long string of coupled discrete-time
systems. Systems of the form (1.3) may arise by discretizing in time a spatially-
distributed continuous-time system given by (1.1). For example, consider the state
equation (1.2) for the seismic cable. We can write the solution to (1.2) in the form

x(t, r) eU()(t-a)x(a, r)

(1.4)

where

+ eV()(t-)[F(1)x(r,r-1)+F(-1)x(r,r+l)+G(O)u(r,r)]dr,

x(t, r)= [q(t, r)
dq(t,

t> A,

(prime denotes the transpose operation). Now given a fixed real number T> 0, we
can discretize (1.4) in the usual manner, which yields the following discrete-time
approximation of the cable:

(1.5) x(kT+ T, r)= eV()Tx(kT, r)+Crx(kT, r-1)+CTx(kT, r+ 1)+ DTu(kT, r),
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where

(1.6) CT eF(’F(1) dr, Dr eF(’G(O) dr.

Clearly, (1.5) can be written in the form (1.3) with the entries of F and G belonging
to the algebra 11(7/, ). This representation can be utilized to generate control laws
that are discrete in both the time variable and the spatial variable. In 5, we use the
representation (1.5) in the study of a cable positioning problem.

In the application to spatially-distributed systems, the variable k in (1.3) is the
discrete time variable and the variable r is the discrete spatial variable. If both k and
r are interpreted to be spatial variables, (1.3) could be the state representation for a
two-dimensional digital filter or "array processor", that is, a system which processes
arrays of data (see Kamen [18], [19] and Kamen and Green [20], [21]).

Now let (f,) denote the commutative algebra consisting of all real-valued
continuous functions defined on a compact subset l-I of v, where N is a fixed positive
integer. As in the work of Byrnes [3], [4], [5], a pair (F, G) of matrices over (l, )
defines a linear continuous-time system whose coefficients depend continuously on N
parameters. This system is given by the collection of differential equations

(1.7) dx(t’t)=F(to)x(t, to)+G(o)u(t, to), toef.
dt

Systems specified by (1.7) appear in applications where one or. more of the system
coefficients are sensitive to operating conditions such as temperature. Representations
of the form (1.7) also result from the linearization of nonlinear systems with respect
to nominal operating points specified in terms of a set of parameters. An example is
the satellite problem (see Brockett [2, pp. 14-15]) which is linearized with respect to
a nominal radius and nominal angular velocity.

A pair (F, G) of matrices over (f, N) also defines a parameter-dependent linear
discrete-time system, given by the collection of difference equations

(1.8) x(k+l,w)=F(w)x(k,w)+G(w)u(k,w), toel).

Again, (1.8) may result by discretizing in time a continuous-time parameter-dependent
system given by (1.7).

A common feature of the spatially-distributed systems and the parameter-depen-
dent systems defined above is that they are specified in terms of a pair of matrices
with entries in a commutative algebra (l(Tl, ) in the former case and (1, ) in the
latter case). It is well known that 1(2, ) is a commutative Banach algebra with the
usual norm and that (l), ) is also a commutative Banach algebra with the usual
sup norm. Both of these algebras have identities, so each class of systems defined
above is given in terms of matrices defined over a commutative Banach algebra with
identity.

It is thus natural for us to consider a pair (F, G) of matrices defined over an
arbitrary commutative normed algebra B0 with identity, and this brings us to our third
class of systems. We claim that whenever B0 is infinite-dimensional as a linear space,
we may interpret such a pair (F, G) as a linear infinite-dimensional discrete-time
system. To see this, first note that there exists a Banach space Y such that Bo can be
viewed as a subalgebra of the Banach algebra (Y) of all bounded linear maps on Y
(e.g., we can take Y to be the completion of Bo). Then the pair (F, G) defines a system
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via the first-order difference equation

(1.9) Xk+I-’FXk+GUk, ke7].

In (1.9), the state xk at time k is an element of Y", the Banach space of n-element
column vectors over Y, and the input or control Uk at time k is an element of
The terms FXk and GUk in (1.9) are computed via the usual action of a matrix on a
column vector. Linear infinite-dimensional discrete-time systems defined by a difference
equation in a Hilbert or Banach space have been studied by Lee, Chow, and Barr
[25], Zabczyk [32], [33], Helton [15], [16], [17], Fuhrmann [9], [10], [11], Przyluski
[27], [28], [29], [30], and others. In contrast to this past work, by exploiting the fact
that Bo is a commutative algebra we will be able to utilize Gelfand-transform techniques
in the study of system behavior and in the study of control.

The primary purpose of the present paper is to study the problem of feedback
stabilization for linear systems given by a pair (F, G) of matrices with entries in a
commutative normed algebra Bo with identity 1. Our specific objective is to derive
necessary and sufficient conditions for the existence o a m x n feedback matrix L over
B0 such that the closed-loop system (F-GL, G) is stable. When (F, G) is interpreted
to be a continuous-time system (e.g., given by the state equation (1.1) or (1.7)),
stability of the closed-loop system (F-GL, G) means that

(1.10) 0 as

When (F, G) is interpreted to be a discrete-time system (e.g., given by the state equation
(1.3) or (1.8)), stability of (F-GL, G) means that

(1.11) II(F-GL)II--,O askoo (k=O, 1,2,...).

The norms in (1.10) and (1.11) are the induced matrix norms (defined later).
The solution to the above-defined stabilization problem can be directly applied

to the stabilization of spatially-distributed systems and systems whose coefficients are
unctions o parameters. The application of this algebra framework to the stabilization
of systems with parameters was first considered by Byrnes [3], [4], [5]. To make this
precise, suppose that Bo c(f,R) and we interpret a system (F, G) over Bo as a
parameter-dependent discrete-time system given by the state equation (1.8). If we can
find a matrix L over B0 such that F-GL is stable in the sense defined above, then
with state feedback u(k, to)=-L(to)x(k, to), the closed-loop system

x( k + l, to) (F(to)- G(to)L(to))x( k, to),

will be asymptotically stable for every to fl. Hence, via this approach we can consider
designing stabilizing compensators without knowing a priori (before the system is in
operation) the specific values of the parameters. This control structure can be imple-
mented by estimating the system parameters on-line.

In the application to spatially-distributed.systems with Bo =/1(,, ), the existence
of a feedback matrix L over B0 such that (F-GL, G) is stable implies that with
distributed state feedback

u(t, r)=- , L(r-j)x(t, j), tR or tZ,

the resulting closed-loop system is stable uniformly across the distributed structure;
that is, for any initial state x(0, r) such that SUpr IIx(0, r)ll <oo, the free (unforced)
response x(t, r) of the closed-loop system converges to zero uniformly in the spatial
variable r.
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The property of stabilizability is of fundamental importance in a wide range of
control problems. In fact, certain types of regulation problems, such as tracking and
disturbance rejection, can be reduced to the problem of stabilizing an augmented
system, a technique that is often employed in the control of finite-dimensional systems.
This point is illustrated in 5 where we apply our stabilizability results to a seismic-cable
positioning problem.

In the special case when Bo is equal to the reals R, so that F and G are matrices
over , it is well known that necessary and sufficient conditions for stabilizability can
be expressed in terms of the solution sequence to an associated Ricati difference
equation or in terms of a solution to an associated algebraic Riccati equation (see the
textbook by Kwakernaak and Sivan [24]). The Riccati-equation approach to stabiliza-
bility has been extended by Zabczyk [32] to linear infinite-dimensional discrete-time
systems given by bounded linear operators on Hilbert spaces. In the first part of this
paper, we apply the Riccati-operator approach to the problem of stabilizing a discrete-
time system (F, G) defined over an arbitrary commutative normed algebra B0. Initial
results on this problem were obtained by Kamen [19] and Green and Kamen [12], [13].
Byrnes [3], [4], [5] has developed a Riccati-operator approach to the stabilizability of
linear continuous-time systems defined over a Banach or Fr6chet algebra. One of the
key results in the work of Byrnes is the conclusion that "locally" controllable systems
are "globally" stabilizable. There remains the important question of when local
stabilizability (which is much weaker than local controllability) is equivalent to global
stabilizability. We answer this question below for discrete-time systems, leaving the
continuous-time case for future work.

Thus the plan for this paper is as follows. Section 2 consists of preliminaries. In
3, we associate to each system (F, G) over B0 a transformed system (/, ); here

denotes the Gelfand transform, which generalizes to arbitrary Bo the familiar Fourier
transform. Using Zabczyk’s results, we give necessary and sufficient conditions for
stabilizability of (F, G) in terms of the stabilizability of (/, t). Indeed, we show that
if the image of the completion of B0 under the Gelfand transform is closed under
complex conjugation, then (F, G) is stabilizable with respect to Bo if and only if (/, )
is stabilizable with respect to cO(X), where X is the Gelfand carrier space of B0. In
4, we study the notion of local stabilizability, which is characterized by a local rank

criterion. It is shown that local stabilizability is always equivalent to (global) stabilizabil-
ity of the Gelfand-transformed system. An example is given to illustrate how the local
rank criterion for stabilizability can be used as a test in the case of linear systems
whose coefficients depend on parameters. Section 5 completes our discussion of the
seismic cable, and 6 consists of concluding remarks.

We shall find it desirable to consider complex algebras as well as real algebras,
both as a technical convenience and for the sake of wider applicability. To avoid
repetition, we shall whenever possible assume that Bo is an algebra over , where
denotes either the field R of real numbers or the field C of complex numbers.

2. Preliminaries. Given a positive integer n and a normed K-algebra A with
norm[I’ [], we shall let A denote the normed K-linear space consisting of all n-element
column vectors with entries in A and with the norm

where x is the ith component of the vector x e A" and p is a fixed real number with
1 <_-p < o. We shall let Mn(A) denote the normed N-algebra consisting of all n x n
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matrices over A with the norm

(2.1) Ilell =sup {llexll: x A", Ilxll 1},

where Px is the usual action of a matrix on a column vector. It is not difficult to check
that a sequence {Pk} in M,(A) converges to Pc M,(A) if and only if for each and
each j, the (i, j)th entry of Pk converges to the (i, j)th entry of P.

Now as in the Introduction, let Bo denote a fixed commutative normed -algebra
with identity 1. The completion of B0 will be denoted by B. If C, we put Bc B.
If K R, we let Bc denote any complexification of B (as in [1 or [31 ]). Up to renorming
with an equivalent norm (which has no effect on stabilizability), we may identify any
two complexifications of B. In particular, we may identify M,(Bc) and (M,(B))c.

Let X denote the carrier space of Bc; that is, X is the set of all nonzero algebra
homomorphisms from Bc into C with the weak* topology. As is well known [31, pp.
110-114], X is a compact Hausdortt space. Let qg(X) denote the commutative
C*-algebra consisting of all continuous complex-valued functions defined on X. The
involution f f* on (X) is defined by f*(x) f(x), where "bar" denotes the complex
conjugate. The Gelfand transform of an element b B (or b Bc) is the element/ of
cO(X) defined by/;(x) x(b), x X. The Gel]and transformation from Bc into
is the norm decreasing (and hence continuous) algebra homomorphism defined by b

The Gelfand transform of a n m matrix T (t j) with entries tij B (or Bc)
is defined componentwise; i.e., (t]). For each x X, we shall let (x) denote the
n m matrix over C given by (x) (tj(x)). Given a n n matrix T M,(B), the
spectrum Sp T of T is defined by

Sp T={A C:AI- T is not invertible in M,(Bc)}.

Letting Ai(’(x)), 1, 2,. ., n, denote the eigenvalues of ’(x), x X, by [20, Prop.
1, p. 589] we have the following characterization of Sp T:

(2.2) Sp T={A,(T(x))" i= 1, 2,..., n, x6 X].

The spectral radius p(T) of TM,(B) is defined by p(T)=sup {IA]: A Sp T}.
As defined in the Introduction, a system over the -algebra B0 is a pair (F, G)

consisting of a n n matrix F over Bo and a n m matrix G over B0. The Gelfand
transform of the system (F, G) is defined to be the system (, (), where i (resp.
is the Gelfand transform of the matrix F (resp. G). By definition, the Gelfand transform
(, 0) is a system over the commutative C*-algebra cO(X).

We now define a notion of stability which was studied in [20], [21]. The system
(F, G), or the matrix F, is said to be uniformly asymptotically stable (u.a.s.) if Fk - 0
in M,(B) as k c. The system (, (), or the matrix/, is u.a.s, if ()k 0 in M,(cO(X))
as k . Here the term "uniform" refers to the fact that we are considering asymptotic
stability with a uniformity condition on the initial state. More precisely, u.a.s, of (F, G)
is equivalent to

(2.3) sup IIF xll 
IlXllp<- l,xn"

Viewing FMn(B) as a bounded linear operator on Bn, we can show (see [20,
p. 587]) that u.a.s, is equivalent to asymptotic stability defined by IIFUxllp 0 for every
x in Bn. However, for arbitrary bounded linear operators on Bn, it is not true in
general that u.a.s, and asymptotic stability are equivalent. For a counterexample, see
[20, p. 600], where a sequence {Fk} satisfies FkXO for all x, yet IIFII 0.
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As shown in [20, Thms. 1 & 2, pp. 588-589], u.a.s, of (F, G) is equivalent to
each of the following conditions:

(2.4) (a) p(F) < 1,

(2.5)

(2.6)

(2.7)

(b) there is a positive integer q such that IIFqll < 1,

(c) Y IIFII<,
k=0

(d) 1, i= 1, 2,..., n, all xX.

Using the equivalence between u.a.s, and condition (2.7), we get the following
result.

PROPOSITION 1. The system (F, G) is u.a.s, if and only if the Gelfand transform, is u.a.s.
It should be mentioned that u.a.s, of (F, G) is equivalent to other notions of

stability which have been studied in the literature. One such notion is /e-stability
(Przyluski [30]) defined by

(2.8) IIfxll < oe for all xeB".
=0

The equivalence between the condition o(F)< 1 and (2.8) follows directly from the
work of Zabczyk [32, 5, pp. 727-728]. (Zabczyk considers stability of a bounded
linear operator on an abstract Banach space.) Another notion of stability which is
equivalent to u.a.s, is power stability as defined in the work of Przyluski [30].

Now let A be a commutative normed N-algebra containing the N-algebra B0.
The system (F, G) defined over B0 is said to be stabilizable with respect to A if there
exists a rn x n matrix L over A such that the closed-loop system (F-GL, G) is u.a.s.
as a system over A. Since (F-GL)’=/-(/2, Proposition 1 implies that (F, G) is
stabilizable with respect to A if and only if (/, () is stabilizable with respect to ,
where A is the image of A under the Gelfand transformation. Although we are
interested in stabilizability of (F, G) with respect to B0, we will see that it can be
helpful to consider first stabilizability of (F, G) with respect to an algebra A containing
B0. An example of an algebra A for which stabilizability with respect to A implies
stabilizability with respect to B0 is given in the following result.

PROPOSITION 2. Suppose that Bo is a dense subalgebra ofA. Then a system (F, G)
over Bo is stabilizable with respect to Bo if and only if it is stabilizable with respect to A.

Proof. Suppose there exists an L over A such that F-GL is u.a.s. Then by (2.5),
there exists an integer q such that I](F-GL)qll < 1, and since Bo is dense in A, we
can find a matrix/S over Bo such that II(F-GE)qI] < 1. Again by (2.5), p(F-G;)< 1,
and thus (F, G) is stabilizable with respect to Bo. (The proposition also follows from
the continuity properties of the spectrum.)

3. Stabilizability and the Riccati operator. In this section we shall study the
stabilizability of a system (F, G) over B0 in terms of the Riccati operator. We begin
by considering commutative *-algebras and the notion of positivity.

Let A be a fixed commutative Banach K-algebra with a continuous involution
a a* and with identity 1. We also require that the involution be hermitian; that is,
every hermitian element (a =a*) in A has a real spectrum. (See [31, p. 184].) For
example, A could be the C*-algebra (X), where X is a compact Hausdorff space.
The involution on A can be extended to the algebra M,(A) of n n matrices over A
by defining P* (pij)*= (p). With this involution and the matrix norm (2.1), M,(A)
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is a Banach*-algebra (over ) whose involution is continuous and hermitian. In.
addition, it A is a C*-algebra, then Mn(A) is a C*-algebra under a norm which is
equivalent to the matrix norm (2.1).

A hermitian element Pc M,(A) is said to be positive semidefinite, denoted by
P=0, i A 0 for every A Sp P. It PM,(A) is hermitian and i A >0 or every
A Sp P, P is said to be positi.ve definite, and we write P>0. Note that by (2.2), a
hermitian element Pc Mn(A) is positive semidefinite (resp. definite) if and only if

(3.1) A,(/(x))=0(resp. Ai(/(x))0), i=1,2,... ,n, all xX,

where X is the carrier space of Ac and P is the Gelfand transform of P. If P 0, P
has a positive definite inverse P- belonging to Mn(A). Using (3.1), one can show
that i[ P=0 and R0, then T*PT+RO for any TeM,(A).

Let V denote the subset oM(A) consisting o all hermitian positive semidefinite
elements of M(A). Given hermitian positive definite matrices QM(A) and R e
Mm(A) and a pair (D, E) o n x n, n x m matrices over A, the Riccati operator on V
associated with (Q, R) and (D, E) is defined by

(P)=Q+D*PD-D*PE(E*PE+R)-IE*PD, Pc V,

where D* (dij)* (d). Since P>-0 and R>0, E*PE +R>0, and thus E*PE +R
has a positive definite inverse in Mn(A). Hence (P) is an element of Mn(A) for
every P V. Now if we define

L (E*PE + R)-IE*PD,
it is easily checked that

(3.2) (P) Q+L*RL+(D-EL)*P(D-EL).

Since Q>0, it follows from (3.2) that (P) is a hermitian positive definite element
of Mn(A) for every P e V. In fact, (P)=> Q; that is, (P)-Q-> 0.

Using a matrix-inversion identity, we can also rewrite (P) in the form

(3.3) (P)= Q+D*P[I+E(R-1)E*p]-ID.

The expression (3.3) for the Riccati operator is the one utilized by Zabczyk in his
work [32].

The Riccati difference equation (RDE) associated with (Q, R) and (D, E) is defined
by

Pj+I (Pj), j=O, 1,2,. .,

Note that since (P)>0 for all Pc V, the solution sequence {Pj} to the RDE is a
sequence of positive definite matrices belonging to Mn(A).

The algebraic Riccati equation (ARE) associated with (Q, R) and (D, E) is defined
by

P= (P).

Now given a system (F, G) over Bo as defined previously, we shall first consider
stabilizability of the Gelfand transform (/, t) defined over the commutative C*-
algebra cO(X). As in the previous section, X is the carrier space ofBc, where B is
the completion of B0. Choose Q Mn(B) and R Mm(B) so that Q is a hermitian
positive definite element of Mn(cC(X)) and R is a hermitian positive definite element
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of M,,(g(X)) (for example, we could take Q and R to be the identity matrices). Let
Sj+I

_
(Sj) and S (S) denote the RDE and ARE associated with (t),/) and

(F, G). We then have the following result which follows from the work of Zabczyk [32].
TrEOREM 1. The following conditions are equivalent.
(a) The Gel]and transform (, t) is smbilizable with respect to g(X).
(b) The ARE S=(S) has a hermitian positive semidefinite solution S

M,( cg(X)).
(c) The solution sequence {Si} to the RDE Si/l =(Si) converges in norm in

M, cg X) to a hermitian positive semidefinite S, and S is a solution to the ARE.
Further, if either (a) or (b) holds, a stabilizing feedback over g(X) for (15, J) is

(3.4) L t*St+/)-1 t*S/.

Proof. Since g(X) is a C*-algebra, by the Geland-Naimark theorem [1, Thm.
10, p. 209], there exists a complex Hilbert space H and an isometric *-isomorphism
o cA(X) onto a C*-subalgebra o the algebra (H) o bounded linear operators rom
H into H. If we take the space H of n-element column vectors as the state space
and the space H o m-element column vectors as the input space, the Geland
transform (, t) defines a linear infinite-dimensional discrete-time system given by
Xk+ Xk "" Uk, where Xk H", Uk H", and where " (resp. t) is viewed as a
bounded linear operator from H into H (resp. from H into Hn). By Theorem
6.2 in Zabczyk [32, p. 729], there exists a bounded linear operator L: H" -H" such
that p(j6_ 0L) < 1 if and only if the associated algebraic Riccati equation has a positive
semidefinite solution. Since F and t are over cA(X), using norm convergence of the
solution sequence to the Riccati difference equation as given in [32], we have that the
existence of a positive semidefinite solution to the algebraic Riccati equation is
equivalent to the existence of a stabilizing operator over cA(X). So the proof of the
theorem follows by application of the results of Zabczyk.

COROLLARY. Let W be any real (or complex)*-subalgebra o]’ cO(X) such that
W contains the image o of Bo under the Gelfand transformation. Then the following
conditions are equivalent.

(a) (/, 0) is stabilizable with respect to W.
(b) (/6, ) is stabilizable with respect to qg(X).
(c) (/, () is stabilizable with respect to a C*-algebra containing qg(X) as a

C*-subalgebra (i.e. as a norm closed complex *-subalgebra).
Proof. The implications (a)(b)=>(c) are obvious, since every complex algebra

is also a real gebra. Suppose then that (X) is a C*-subalgebra of a C*-algebra A
and that (/6, G) is stabilizable with respect to A. The closure if" of W in qg(X) is a
closed real *-subalgebra of (X) containing/. (The Gelfand transform A. B-* cA(X)
is continuous, and B0 is dense in B.) Since 16, t,/, and t are matrices over/, the
solution sequence {S} to the RDE Sj+I (S) is over W. Again by Zabczyk’s results
[32], {S} must converge in norm in M,(A), and thus {S} must converge in norm to
a positive semidefinite e_lement S of Mn(W). In particular, the stabilizing feedback
(3.4) has entries from W. By Proposition 2, (F, G) is stabilizable with respect to W,
and we have (c)(a).

Let us now consider stabilizability of (F, G) with respect to B0. First, it follows
from Proposition 1 that stabilizability of (F, G) with respect to B0 implies that the
Gelfand transform (/, () is stabilizable with respect to/. Hence the conditions in
Theorem 1 are necessary conditions for stabilizability of (F, G) with respect to Bo.
However, these conditions are not in general sufficient for stabilizability with respect
to Bo. A counterexample is given in the next section. For a large class of algebras, it
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turns out that the conditions in Theorem 1 are necessary and sufficient for stabilizability.
In particular, we have the following result.

THEOREM 2. Let * denote the involution on cO(X). Suppose that either ;o or
is a *-subalgebra of c(X). Then (F, G) is stabilizable with respect to Bo if and only if
the (equivalent) conditions in Theorem 1 are satisfied.

Proof. Apply the corollary to Theorem 1 with W =/0 or with W =/. In the
latter case, apply Proposition 2.

Now suppose that the completion B of B0 admits a hermitian involution. It follows
easily that a + ib a*- ib* is a hermitian involution on Be, and hence (see [1, p. 188])
that the restriction of the Gelfand transformation to B is a *-homomorphism from B
into c(X). Thus/ is a *-subalgebra of qg(X). In particular, the hypothesis of Theorem
2 is satisfied, and we have the following result.

COROLLARY. If the completion B admits a hermitian involution, then (F, G) is
stabilizable with respect to Bo if and only if the conditions in Theorem 1 are satisfied.

Both of the examples B0 B =/l(7/,R) and B0 B c(, R) considered in the
Introduction have continuous hermitian involutions. In particular, for /(7/, E) the
involution is given by a(k)* =a(-k), k7/, and for c(l),E) the involution is the
identity map. So by the corollary to Theorem 2, stabilizability of a .system over either
of these algebras is equivalent to the conditions in Theorem 1.

Let us now assume that the completion B admits a continuous hermitian involution
b o b*. Then we can consider the positivity of matrices over B, as we did in the first
part of this section. Given hermitian positive definite matrices Q M,(B) and R
M,,(B), let Pj+I-- (Pj) denote the RDE associated with (Q, R) and the system (F, G)
defined over B0. As noted previously, the solution sequence {P} to the RDE is a
sequence of positive definite matrices belonging to M,,(B). By the Corollary to
Theorem 2, the system (F, G) is stabilizable with respect to Bo if and only if the
Gelfand transform sequence {Pj} converges in norm in M,,((X)) to some positive
semidefinite TM,,((X)). If {/3j} does converge to T in norm, the matrix L=
(*T+J)-I*T/ is a stabilizing matrix for the Gelfand transform (/3, 0). Using
the same type of argument as in the proof of Proposition 2, we can show that there
exists a positive integer q such that

is also a stabilizing matrix for (/3, (). Since *" B- B is hermitian, it is easy to check
that the Gelfand transform on M,,(B) is a *-homomorphism. Thus q is the Gelfand
transform of Lq=(G*PqG+R)-IG*PqF, and thus by Proposition 1, the matrix Lq
stabilizes (F, G). Hence it is possible to compute a stabilizing feedback over B without
having to compute the limit of the sequence {P}.

To illustrate some of the interesting aspects of the stability criteria given above,
let us consider the case n m 1; that is F f B0 and G g Bo. We also assume
that B0 B and that B admits a continuous hermitian involution. Choosing Q R 1,
the ARE associated with (Q, R) and (f, g) is given by

(3.5) p (p) 1 +f’p(1 + g(g*)p)-lf.

Rewriting (3.5) using commutativity of B, we have

(3.6) (gg,)( p2) + (1 -f’f) p- 1 O.

Taking the Gelfand transform of both sides of (3.6), we have

(3.7) I(x)lZ(x)Z/(a-lfl(x)lZ)(x)-a-o, xX.
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Let K {x X: (x) 0} {x X: (gg*) ^(x) 0}. If/3 c(x) is a nonnegative sol-
ution to (3.7), then we must have

-(1 -] )(x) 2) +x/(1 -I )(x) Iz)2 + ale(x) 2

(3.8a) /3(x) 21(x)12
if xK and

(3.8b) /3(x) (1- If(x)[2)-’
if x K. It follows immediately that (3.7) has a positive semidefinite solution /3 in
c(X) only if (f, g) satisfies

(3.9) I)(x)l<l for all xX such that (x)=0.

Conversely, suppose that (3.9) holds and put t= t(x)= I(x)l(1-[ )(x)[2) -1 whenever
[](x)l< 1. Clearly (3.8a, b) gives an everywhere positive solution /3 to (3.7), and
moreover

1 (1 +4t2) 1/2- 1
1-1(x)l2 2t2

on an open subset of X which contains K. Since t(x)O as x approaches the set K,
an application of L’Hospital’s rule shows that/ is continuous on X. We have thus
shown that the ARE (3.7) has a positive semidefinite solution (given by (3.8a) and
(3.8b)) in of(X) if and only if condition (3.9) is satisfied, in which case the solution is
unique and positive definite. By the Corollary to Theorem 2, condition (3.9) is also
equivalent to stabilizability of (f, g) with respect to B. Note that if (gg*)^is never
zero on X, then the element b (1 _f.f)2+ 4gg* of B can be shown to have a positive
definite square root/3 in B. Thus if never vanishes on X, then condition (3.9) is
vacuously satisfied and the ARE (3.5) has the positive definite solution

p (- 1 + f*f +/3)(2gg*)-1

in B. Of course, (f, g) must then be stabilizable with respect to B, and indeed
L g-if B is a stabilizing feedback.

It is worth noting that the argu,ments above go through even when m > 1, provided
that n 1 and that we replace Ig(x)] by (gg*)^(x). In the case when n > 1 and B
admits a hermitian involution, it is still true (by the Corollary to Theorem 2) that
stabilizability with respect to B is equivalent to the existence of a positive semidefinite
solution in Mn(cO(X)) to the transformed ARE. However, even when GG* is invertible,
it remains unclear whether this is also equivalent to the existence of a positive
semidefinite solution in Mn(B) to the ARE (assuming that B is not a C*-algebra). It
is thus fortunate that stabilizability with respect to B can be reduced to stabilizability
with respect to cO(X), especially since this latter type of stabilizability can be checked
pointwise on X. (See Theorem 4 in the next section.) The fact that one can more easily
demonstrate the existence of a solution to the ARE in the Gelfand transform domain
is of course a reflection of the very special tractability of cO(X) (or more generally of
any C*-algebra) in comparison to the much broader class of Banach algebras with
continuous hermitian involutions.

4. Local stabilizability. The conditions for stabilizability derived in the previous
section are all expressed in terms of a solution to an associated Riccati equation, and
thus it is necessary to solve the Riccati equation in order to test for stabilizability. For
finite-dimensional systems given by a pair (F, G) of matrices over the reals , it is
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well known that one can test or stabilizability without having to solve the associated
Riccati equation. In particular, there is the Hautus stabilizability criterion [14] given by

(4.1) rank [zI F G] n, all z c :lzl--> 1.

In the first part of this section we show that stabilizability of the Gelfand transform
(/, () of a system (F, G) over Bo can be checked by applying the Hautus criterion
"point-by-point". We begin with the notion of local stabilizability. As in the previous
sections, B0 is a commutative normed K-algebra with identity. We do not require that
the completion B admit an involution until later.

DEFINITION. A system (F, G) over Bo is said to be locally stabilizable if for each
x X, the system ((x), 0(x)) defined over C is stabilizable with respect to C; that
is, if for each x X, there is a matrix Lx over C such that (x)- G(x)L, has spectral
radius strictly less than one.

It is clear that any system (F, G) that is stabilizable with respect to Bo (or B) is
locally stabilizable. By applying point-by-point the Hautus criterion (4.1), generalized
to finite-dimensional systems over C, we have that local stability of (F, G) is equivalent
to

(4.2) rank [zI- ’(x) ((x)] n, all Izl--> 1 and all x X.

It is interesting^ to note that when n rn 1, local stabilizability is equivalent to
requiring that IF(x)l < 1 for all x X such that G(x) 0, which is the same as condition
(3.9) derived from the Riccati-equation approach.

THEOREM 3. The Gelfand transform (ffz, ) is stabilizable with respect to qg(X)
if and only if (F, G) is locally stabilizable.

Proof. The only difficult part of the proo is showing that local stabilizability
implies that the Geltand transform is stabilizable with respect to (X). To prove this,
we will first show that local stabilizability implies that (/, G) is stabilizable with respect
to l(X), where l(X) is the commutative C*-algebra consisting of all bounded
unctions rom X into C with the sup norm. For each x X, choose Lx, a matrix over
C, such that p((x)-((x)L)< 1. Choose a positive integer kx--> 1 such that

ll(:(x)-(x)Lx) < 1.

Let ex > 0 be chosen so that

((x)- (x)L)ll 1 e.

Then {Ox: x X}, where

O (y X" II((y)-- t(y)Lx) < 1 ex},

is an open cover for X. Since X is compact, there exist xl, x2,’", xt such that
X _C LI i--1 O,,,. Put k,, ki, Ox, Oi, and L,, L where 1, 2,. ,/. Define L as
follows:

L L1 on O1, L L2 on O2\O1, L L3 on O3\(Oll..J 02), etc.

Since each entry of L is piecewise constant on X, clearly each entry of L lies in l(X).
It remains only to show that L is a stabilizingAfeedback for (F, G) with respect to
l(X). To do this, it suffices to show that (F-tL)k-->O in M,(I(X)). Let e
min (el, e2,""", et), and let

S= l_i<_-,sup { sup ll(x)- t(x)L,
O<--j ki-
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Since X is compact and x --> II#(x)- J(x)Lil[ is continuous for each fixed i, j, we have
S < oo. Let xX. Then for some with 1 <-i <- l, we have x Oi and L(x)= Li. Thus
for all q and j=0, 1, 2,..., ki-1, we have

((x) C,(x)t(x) qk’+ll <= ((x) C,(x)Z,) ", I1" II:(x) :_,(x)t, <_- 1 e )qs.

It follows that supxx (#(x) 0 as k o0, since (1-e)qs is independent
of x. But this last supremum is the norm of (#-JL)k in the C*-algebra M,(I(X)).
Hence (/3, t) is stabilizable with respect to l*(X), and by the corollary to Theorem
1, (/, 0) is stabilizable with respect to g’(X).

Combining Theorems 2 and 3, we get the following central result.
THEOREM 4. If Bo or B is a *-subalgebra of c(X) (e.g. the latter is true if B

admits a hermitian involution), then (F, G) is stabilizable with respect to Bo if and only
if (F, G) is locally stabilizable.

The following example shows that if/ is not *-closed, the equivalence stated in
Theorem 4 can fail.

Example 1. Let Bo B, where B is the disc algebra; that is, B is the algebra of
all continuous complex-valued functions defined on the closed unit disc A in C which
are analytic on the open unit disc A. In this case, we may identify B with Bc, X with
A, and the Gelfand transform with the identity map. Now consider the system (f, g),
where f(x) x and g(x) x2, x Z. Since the only zero of z-f(x) z- x is at z x,
and g(x)=0 if and only if x =0, the rank criterion (4.2) is satisfied, and thus (f, g) is
locally stabilizable. By Theorem 3, the Gelfand transform (f, g) is stabilizable with
respect to c(A). Now suppose that (f, g) is stabilizable with respect to B, so there
exists an L B such that p(f-gL)< 1. By the maximum-modulus theorem, we have
(letting T unit circle in C)

1 > sup Ix- x2L(x)l = sup Ix- x2L(x)l sup I1- xt(x)l
xE xT xT

sup I1 xL(x)l -I1 -(O)L(O)I 1.

We have a contradiction, and thus there is no stabilizing feedback belonging to B.
This last example shows that local stabilizability is not in general equivalent to

stabilizability with respect to B. It also shows that stabilizability of (, ) with respect
to (X) is not in general equivalent to stabilizability of (F, G) with respect to B. Of
course, these equivalences fail in this example only because the disc algebra is not a
*-subalgebra of c6’(z). Indeed, if b(x)= x, then b lies in the disc gebra and b*(x)=
b(Jc) for x A-. Since b* is continuous but not analytic, B B is not closed with
respect to the involution on (X).

We shall conclude this section with an example illustrating the use of the local
rank criterion (4.2) as a stabilizability test for systems depending on parameters.

Example 2. Let Bo B (1), R), where l’l is a compact subset of R2o In this
case, the complexification Bc can be identified with the algebra c(, C) of complex-
valued continuous functions on II, and the carrier space X of Bc can be identified
with fl. Thus the Gelfand transformation is the identity map on c(fl, C). Now consider
the pair (F, G) over (f, ), where

W2 1 W2

As noted in the Introduction, the pair (F, G) can be interpreted as a linear discrete-time
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system with parameters given by the dynamical equation

(4.3) x(k+ 1)=F(w1, w2)x(k)wG(Wl, w2)u(k),

or in component form,

Xl(k + 1) WlXl(k)+ x2(k) + u(k),

x2(k + 1) W2Xl(k) -t-- x2,(k) w2u (k).

Here Wl and w2 are parameters with (Wl, w2) taking values from f. We would like
to know if there is a stabilizing feedback L(Wl, WE) over (f, ) for the system (4.3).
Since the identity map on (,) is a continuous hermitian involution, by Theorem
4 such a feedback exists if and only if

(4.4) rank [zI-F(Wl, w2) G(Wl, WE)] 2, IZl >_-- 1, (Wl, W2) f.

We have

[zI_F(Wl, W2) G(Wl, W2)]__ [z- w1 -1 1 ].we z- 1 w2

The common zeros of the three 2 x 2 minors of [zI-F G] are z 1 when W2 ---0 and
z w + 1 when Wl w2 w. Thus the rank condition (4.4) is satisfied if and only if f
does not intersect the set

(4.5) {(w1, 0): wleRIU{(w, w): weR, lw+ll->l}.

Therefore the system (F, G) defined over c(1), R) is stabilizable with respect to (1), )
if and only if 1) does not intersect the set given by (4.5).

5. Application to the positioning of a seismic cable. Let us again consider the
seismic cable which is given by the discrete-time approximation

(5.1a) x(kT+T,r)=eF()Tx(kT, r)+CTx(kT, r-1)+CTx(kT, r+l)+DTu(kT, r),

(5.1b) q( kT, r) Hx( kT, r),

where H [1 0], CT and DT are defined by (1.6), and as in the Introduction, q(kT, r)
is the position of the rth cable segment at time kT, k .

Let /(7/, ) denote the Banach space of bounded real-valued functions defined
on 7/with the sup norm. We would like to know if there exists a feedback controller
which brings the cable to a specified position q0/(7/, ), starting from any initial
position q(0,. ) 1(7/, ). In other words, we want

(5.2) q(kT, r)-qo(r) in/(Z,R) askc

for any qo/(Z, ) and any q(O,.)/(7/, ). This problem can be reduced to the
stabilization of an augmented system defined as follows. First, let e(kT, r) denote the
error between the actual position x(kT, r) and the desired position qo(r) of the cable;
i.e.,

e(kT, r)=q(kT, r)-qo(r), r 7/.

Consider the error-driven system given by the scalar state equation

(5.3) v(kT/ T, r)= v(kT, r)/e(kT, r)= v(kT, r)/Hx(kT, r)-qo(r).

Now combine the cable system (5.1a) with the error-driven system (5.3), which yields
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the augmented system given by

(kr+T,r) H

(5.4)

0 0 kT, r+l

Let Fa and Ga denote the coefficient matrices of the augmented system given by

F,(0)= F(-1)=F,(1)= I____1_0_1, F,(r)=0, Irl>=2,
10 0’,03

Ga(0) I___1, G(r).-0, [rl>_- 1.

Clearly, F and G are defined over/1(7], 1), SO the augmented system is a discrete-time
system over Bo l(’, ).

Now suppose that the augmented system is stabilizable; i.e., there exists a three-
element row vector L over IX(’, ) such that Fa- GaL is u.a.s. Partitioning L into the
form L =ILl L2], where LI is a two-element row vector vector over 1(7/,) and
L e I(7/, ), consider the feedback control law

(5.5) u(kT, r)=- E L(r-j)x(kT, j)- E L(r-j)v(kT, j).

We claim that our "tracking" objective (5.2) is satisfied with the feedback control law
(5.5). In other words, the feedback controller defined by (5.3) and (5.5) solves the
cable positioning problem posed above. This result is a generalization of the well-known
result in the finite-dimensional case that tracking of a step function can be achieved
with integral control. We omit the details.

By the above analysis, the existence of a solution to the cable positioning problem
reduces to determining whether or not the augmented system (Fa, G) is stabilizable.
Since /I(z,) is a hermitian algebra, we can test for this by using the local rank
criterion (4.2). In this application, the carrier space of the complexification of the
algebra/1(/, ) can be identified with the interval [0, 2r] and the Gelfand transform
can be identified with the Fourier transform. Taking the Fourier transform of Fa and
G, we get

/a (O)) a((-O)
H

Thus the augmented system (F, Ga) is stabilizable if and only if

(5.6) rank[zI3- ’a(tO) Izl->_l,
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where I3 is the 3 x 3 identity matrix. It is easy to see that (5.6) is equivalent to

rank[ZIE-emr-(2costo)Cr Dr]=2, Iz]_->l, o[0,2r](5.7a)

and

(5.7b) rank
I2-eF()r-(2 cos to)Cr

0
D

O__.j =3, to [0, 2r].
-H 0 0

The criterion (5.7a) is equivalent to stabilizability of the given cable system (5.1a),
while (5.7b) can be shown to be equivalent to the requirement that the transfer function
or the cable does not have any zeros at z 1. Hence, the cable positioning problem
has a solution if the cable system (5.1a) is stabilizable and if the rank condition (5.7b)
(which is a zero criterion) is satisfied.

As a particular example, i[ we take M 1, T 1, c 0.1, and k 0.2525, we have

[zi2_emOr_(2eosto)Cr Dr]=[z-.8802-.0708eoso -.9119 .28041
.2303-.2421cos o z-.7900 9588.]"

The determinant ot the 2x2 matrix formed trom the first and third columns ot
[zI- e(r (2 cos o)Cr Dr] is equal to z -.9475. Since .9475 < 1, (5.7a) is satisfied
and the cable is stabilizable. Now the matrix in (5.7b) is given by

Iil198-.0708ccso-.9119 0 .282302-.2421 coso .2100 0 .9 8

-1 0 0

and this clearly has rank 3 tor all o e [0, 2r]. Theretore, for the particular values of
the system parameters selected above, the cable positioning problem has a solution.
The stabilizing gain vector L [L L] could be computed using the Riccati difference
equation as discussed in 3. We shall not pursue this here.

6. Discussion. We have seen that the use of the Gelfand transform, together
with a Rieeati equation, yields a useful "local" criterion for stabilizability of a system
defined over B0, and we applied this criterion explicitly to the stabilization of several
systems, including the long seismic cable. Some reflection on extensions of these
techniques, and on other recent approaches to similar problems, is in order. As we
saw in 4, local stabilizability and stabilizability with respect to Bo are not equivalent
in general unless the norm closure B of B0 admits a hermitian involution. We also
saw that the existence of a positive semidefinite solution S e M,(’C(X)) to the "trans-
formed" Rieeati equation is not in general equivalent to stabilizability with respect to
B0 unless B admits a hermitian involution. Thus it appears that hermitian *-algebras
are the most general framework (in the commutative ease) in which the methods of
this paper can be expected to work without exception. We should note that after the
first version of this paper was written, further results on the stabilization of linear
systems over c(fl, ), where II is an arbitrary subset of, were obtained by Kamen
and Khargonekar [22].

At present, it is unclear whether topologies on commutative rings without an
involution can be used to study systematically stabilization by state feedback. However,
for linear systems over commutative rings without an involution, there is a theory of
stabilization by dynamic output feedback based on a polynomial-matrix representation
of the system. For results on this, see Emre [8], Khargonekar and Sontag [23] and
the references in these papers.
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It is possible to give a stabilization theory similar to that presented above for
systems (F, G) defined over a noncommutative C*-algebra B. In particular, for such
systems there is a natural notion of local stabilizability based on the primitive ideal
space of B. This notion of stabilizability can be shown to be equivalent to stabilizability
over B. Results on the noncommutative case will be available in a separate paper.
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MEAN SQUARE STABILITY FOR DISCRETE BOUNDED
LINEAR SYSTEMS IN HILBERT SPACE*

C. S. KUBRUSLYt

Abstract. The asymptotic behaviour for infinite-dimensional discrete linear systems driven by white
noise is considered in this paper. Both the evolution and convergence of the state correlation operators
sequence are analysed. Mean square stability conditions are investigated, including a comparison with the
deterministic stability problem. The particular case of compact operators is considered in some detail.

Key words, asymptotic stability, infinite-dimensional systems, linear dynamical systems, discrete-time
systems, stochastic systems

1. Introduction. Conditions for asymptotic stability of finite-dimensional discrete
linear system operating either in a deterministic or stochastic environment are by now
well established (cf. [10], [9]). On the other hand the same problem in an infinite-
dimensional setting, which is endowed with a much richer structure, still presents some
unsolved questions.

As far as the asymptotic stability problem for infinite-dimensional discrete linear
deterministic systems is concerned, there is available in the current literature a fairly
complete collection of results (cf. 3). This does not seem to be the case for discrete
stochastic systems, although some few results have already been investigated by using
different approaches and under different motivations. For instance, the convergence
analysis of stochastic approximation algorithms .in Hilbert space considered in [13]
and [8] actually gives asymptotic stability conditions for infinite-dimensional dynamical
systems. Questions related to optimal stochastic control problems have also motivated
some partial results in this direction (cf. [6], [16] and [17]).

In this paper we consider the mean square stability problem, by analysing both
the evolution and asymptotic behaviour of state correlation operators, for discrete
linear systems in Hilbert space. The paper is organized as follows. Notational pre-
liminaries and basic concepts, which will be needed along the text, are considered in

2. These comprise bounded linear transformations, positive and nuclear operators,
correlation operators, and approximate controllability. A brief review on asymptotic
stability for deterministic discrete systems is presented in 3, including the auxiliary
results which will be used in the sequel. The central theme of the paper appears in

4. There it is analysed the evolution and convergence of the state correlation sequence
{Qi; ->-0} for discrete linear systems driven by white noise. The main results (cf.
Lemma 2, Theorems 1, 2 and Corollary 1) deal with the relationship between conver-
gence of {Qi; i->0} and the spectral radius r(A) of the system operator A. It is shown
that r(A)< (i.e. uniform asymptotic stability for the free system) is sufficient to
ensure uniform convergence of {Qi; i>= 0} to a correlation operator (i.e. mean square
stability for the disturbed system). Necessary and sufficient conditions for uniform
convergence of {Q; _>- 0} to a positive correlation operator are also given, for the case
of a compact system operator A.
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2. Notational and conceptual preliminaries. In this section we pose the notation
and some basic concepts which will be used in the sequel. Throughout this paper we
assume that U and H are separable nontrivial Hilbert spaces. and will stand
for inner product and norm, respectively.

Bounded linear transformations. Let X and Y be Banach spaces. [X, Y] will
denote the Banach space of all bounded linear transformations of X into Y. For
notational simplicity we write [X] for [X, X]. (T) and (T) will stand for the
null space and range space of T [X, Y], respectively. The spectrum of T [X]
will be denoted by tr(T). Ptr(T) c tr(T) will denote the point spectrum (i.e. the set of
all eigenvalues) of T [X]. r(T)=sup{lh]: h or(T)} is the spectral radius of
T [X]. T* [H, U] is the adjoint of T [U, HI. We shall write T T, T T,
or T T if a sequence { T; > 0} of operators in [H] converges weakly, strongly,
or uniformly to T [H] as i oo, respectively.

Positive and nuclear operators. A self-adjoint operator T T* [H] will be called
nonnegative (T-> 0), positive (T> 0), or strictly positive (T > 0) according to the
following standard definitions:

T>=O : (Tx;x)>=O VxH,

T>O :> (Tx;x)>O VxOH,

T>-O , lv>Osuchthat(Tx;x)>-/llxll VxeH.

If T -> 0e N[H] (T> 0, T> 0), then there exists a unique T1/2 >= Oe [g] (rl/2> O,
T/2> 0) such that (T/2)2= T. For T_-> 0e N[H] we define the trace of T as usual:

def.

tr (T) Y( Tek ek)
k k

where {ek; k>_ 1} is any orthonormal basis for H, and {/k_->0; k_>- 1} is the set of all
h e Pr(T), each of them counted according to its multiplicity. T_>- 0 e .[H] is nuclear
(or trace-class) if tr (T)< oo. Let NI[H] denote the class of all nuclear operators on
H, and recall that N[H]c o[H]c N[H], where N[X] denotes the class of all
compact linear operators on a Banach space X. The following well-known result will
be needed in the sequel.

Remark 1. If T N[H] has a bounded inverse (in particular, is strictly positive)
and it is compact (in particular, nuclear), then H is necessarily finite-dimensional.

Correlation operators. For arbitrary x, y H define the operator x oy g[H] as
follows [3]:

(xoy)z=x(z;y),

for every z e H. Now let u and v be H-valued second order random variables, and
define the following sesquilinear form:

def.

E{((uov)x;y)} E{(x; v)(u;y)}

Let (1, M, p) be a probability space where M is a g-algebra of subsets of a nonempty basic set
and p is a probability measure defined on M. An H-valued second order random variable is a p-measurable
map u 1"/ H such that

E{llull =} | u(,o)ll dp < oo

(i.e. u L2( p; H)). Here E denotes the expectation operator. An H-valued second order random sequence
{u;i>=O} is a family of H-valued second order random variables. For an introduction to the theory of
H-valued random variables see, for instance, [1 ].
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on H H, which is bounded. The symbol E on the right hand side denotes expectation
in the usual way. Then (cf. [14, p. 120]) there exists a unique operator in [H], say
E {u v}, defined by

(E{uov}x; y)= E{((uov)x; y)}

for every x, y H. We call E{uov} [H] the correlation of u and v.
Remark 2. The following auxiliary results are readily verified.

E{uov}=E{vou}*,

E{(u +v)o(u +v)}= E{uou}+E{vov}+E{uov}+E{vou},

E{AuoBv}=AE{uov}B* I A, B[H].

Moreover, the correlation of u is self-adjoint nonnegative and nuclear; that is

0<= E{uou} E(uou)* ,[H],

since

tr (E{uou})= E(llull2}.
H-valued second order random variables u and v are said to be uncorrelated if
E{uov}= E{u}oE{v}. An H-valued second order random sequence {ui; i>=0} is wide
sense stationary if E{uio uj} depends only on the difference i-j for all i,j => 0. It is a
white noise if E {u uj} 0 for all # j.

Approximate controllability. A pair of operators A [H] and B 6 [U, HI is
approximate controllable [2], briefly (A, B) is A-C (also called weakly reachable [4]),
if

CI (B*A*) {0}.
j=0

We shall be particularly interested in the approximate controllability for the pair
(A, BR/2), for some R R*->_0 [U]2. Notice that

(A, BR/) is A-C :=> (A, B) is A-C,

since V(B*A*) c Jf(R/B*A*), and

R > 0 and (A, B) is A-C ==> (A, BR/) is A-C,

since R > 00(R/) {0} =:>(R/2B*A*) c Jf(B*A*J). Also notice that the reverses
of the above statements are not generally true.

3. Deterministic asymptotic stability. Asymptotic stability for discrete determinis-
tic infinite-dimensional linear systems has been investigated by several authors (e.g.
see [5], [15], [7], [12]). In this section we present some basic concepts and auxiliary
results which will be used in 4.

DEFINITION 1. Let X be a Banach space, A [X], and define an X-valued
sequence {x; i->_ 0} as follows:

X + Axi, Xo X.

If R is thought of as a correlation operator for an input disturbance sequence, then approximate
controllability for the pair (A, BR /2) is sometimes termed stochastic approximate controllability.
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The free linear system given in (1) (or equivalently, the operator A [X]) is:
(a) uniformly asymptotically stable if A’ --> 0. That is,

Ila’ll-->0 as i-->oo.

(b) strongly asymptotically stable if A’ --> 0. That is,

IIa’x - 0 as i--> oo Vx x.
Remark 3. By the Banach-Steinhaus theorem [14] it is immediate to verify that

sup IlA’xll < o Vx x r(A) -< 1,

since r(A)j= r(A) -< IIAII-<sup, IIA’II < oo, j0 (the reverse is clearly not true, for
take any operator A 3[R2] such that r(A)= and IIA’II- oo as i-> oo). Moreover it
is also readily verified by contradiction that

A’ -0 => Po’(A) {. C’IhI< 1}.

However even the combined reverse is not true, that is

r(A)=< and Po’(A) {h C" I 1< 1} :/=> A’ -0,

since by setting X=12 and letting AY3[12] be the right shift operator (i.e.
A(sCl, :2,""" (0, sol, so2, for all x (:l, :2,""" 12), it follows [11] that r(A) 1,
P(a)-, but IIA’xll- Ilxll i>_-0, for an arbitrary x 12.

On the other hand there are several equivalent ways of stating uniform asymptotic
stability.

LEMMA 1. LetXbe a complex Banach space andA [X]. Thefollowingproperties
are equivalent:

(a) Ila’t[->O as i-->oo.

(b) r(A) < 1.

(c) There exist real constants ), >- and p (0, 1), such that

(d) IIA’oll < for some io >- O.

(e) E [[A’ll’ < for any k > O.
i=0

(f) Y e’ll o < oo for some ko > O.
i=0

(g) E IIA’xll <, Vx x, for any k 1.
i=0

(h) E IIA’xll<, V X, for some ko 1.
i=0

Proof It is trivially verified that (c) => (e) (f) => (a). Since r,(A)’ r(A’) <= IIA’[[,
/i->0, one gets (a)=>(b). By the well-known Gelfand formula, IlAil] l/’-r(a) as
i- oe, and by the radical test for infinite series, it follows that (b) :=>IIA’H < pi, vi >= io,

For a real Banach space X the lemma still holds if r(A) is changed to r(A+), where A 3[X +]
is defined by A/(x +x/-ly)= Ax +x/--Ay, for all x, yX, with the complex Banach space X denoting
the complexification of X (cf. [14]). Notice that Ila+’lltx+a Ila’lltm, Vi-->0.



DISCRETE BOUNDED SYSTEMS IN HILBERT SPACE 23

for some integer io>-O and any p(r(A), 1); which implies (c) with y=
max{ AJ O <=j <- io}p-io>= 1. Since IIA’xI[g<--_IIA’[Ik[[x[[ ’, for all xX, it is immediate
to verify that (e) :=> (g). That (g) (h) is trivial. It has been proved in [15] that (h) => (b).
Finally it is clear that (c):=>(d), and (d)(a) since [[A0[[-< [lAnolin, Vj>-O. lq

Remark 4. Obviously uniform asymptotic stability implies strong asymptotic sta-
bility. The fundamental difference between finite- and infinite-dimensional formulations
relies upon the reverse of the above statement, which is not generally true for infinite-
dimensional spaces. For instance, set X 12 and let A [12] be the left shift operator
(i.e. A(1, 2,""" )= (72, 3, for all X-’-(1, 2,""" ) 12). It is easy to show that
]lA’xll-O as i-oo for all x 12, but IIA’II Vi>=O. However, if A oo[X] (in
particular, if dim(X) < oo), then strong and uniform asymptotic stability are equivalent
concepts. Indeed, for A oo[X], or(A)-{0} Pcr(A)-{O}. Hence, if A o[X] is
strongly asymptotically stable, then the compact set or(A) is contained in the unit open
ball, according to Remark 3, and so r(A) < 1.

4. State correlation evolution and mean square stability. Consider a discrete linear
dynamical system evolving in a stochastic environment, and modelled by the following
autonomous difference equation.

(2) x+ Ax + Bud+l, Xo Buo,

where A Y3[H] and B [U, H]. Here {x; i-> 0} denotes an H-valued state sequence
such that Xo is an (B)= H-valued second order random variable. The input disturb-
ance sequence {u; i->0} is assumed to be an U-valued second order wide sense
stationary white noise, with correlation operator

R R*= E{u, ou,}>-O I[U] /i --> 0.

Now define the following self-adjoint nonnegative operator.

Q, Q* E AJQoA-j>-- O6 ,[H], Qo BRB*,
j=0

for every i>_-0. Notice that Qi is actually nuclear since R is nuclear, A and B are
bounded, and I[H] is a two-sided ideal of [H] (cf. [14, p. 173]). On iterating (2)
from Xo onwards, and using Remark 2, it is a simple matter to show that Qi is the state

correlation operator; that is,

Qi E {X Xi } / >-- O,

which has the following further properties.
PROPOSITION 1.

(a) Qj A’+1 Qj_i_l A*i+l + Q, lj > >= O.

In particular,

Q+l AQiA* + Qo A+I QoA*+I + Q Vi >- O.

Therefore, for every >= O,

(b) Q,Q,+I,

thus tr(Q) -< tr(Q+1) and Q -<- Qi+1 [[. Moreover,

(c) Q,>0 :> W(RI/2B*A*)={0}.
j=0
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Proof Let i, j be any integers such that j > i_> 0. Then

j--i--I

QI _, A’QoA*t + A’QoA*’= Q, + A’+’+’ QoA*’+’+’,
1=o 1=i+1 I=O

thus following the result in (a). The particular cases are trivially obtained by setting
0 and j + 1, respectively. The result in (b) is then readily verified since

(Q,x; x)= E IIR’/B*A*xll Vx e n.
j=0

Therefore {tr(Q,)} and (110,11} are nondecreasing sequences. Since Q,->0 one gets
Q, > 0 :> {(Q,x; x) 0 =:> x=0}. But

(Qix;x)=0 : xe f’) W(R/2B*A*J),
j=0

thus following the result in (c).
We shall be particularly interested in the asymptotic behaviour of the sequence

{Q,;
LEMMA 2. (a) If Qi-> Q e 9[H], then Q-> Q, and the limit has the following

properties: 0 <= Q, <= Q Q*, Q, Q II,
Q=A+QA*i++Qi Yi->0.

Moreover,

(A, BR ’/) is A-C Q>0 Pr(A*){A ca: IAI< 1}.

(b) /f Qi Q e 3[H], then tr (Q,)/ tr Q), and Q Q.

Proof. If Q wQe [H], then by the Banach-Steinhaus theorem {Q} is uni-
formly bounded (cf. [14, p. 78]). Therefore since {Qi} is a nondecreasing sequence
(according to Proposition (b)) of self-adjoint operators, it follows that Q Q, and
Q Q* (cf. [14, p. 79]). Actually 0 <-Q =< Q for every i=> 0, since

(Q,x; x)= E IIR’/2B*A*Jxll 2<-

.for all x e H. Thus IIQ, -< IIQII. Hence the nondecreasing sequence (IIQ, II} converges,
and IIQII--sup__, lim,_(O,x; x) <= lim,_. IIQ, II. Then IIQ, , IIQII. By Proposition
l(a) it follows that

Q1 (A,+, QA,,+ + Q,) A’+I(Qj_,_,- Q)A,’+

for every j > >_- 0. Therefore, since Q1 --> Q,
II[Q -(A’+’ QA*’+ + Q,)]x II--< IIA’+’ iI(Qi-,-,- Q)A*’+’xll - 0

as jc, for all xe H and every i=>0. Then, by uniqueness of the strong limit,
Q A+QA*i+l + Q, Y 0. Moreover,

(Qx; x)=O , xe iq ,N’(R/2B*A*).
j=O

So, recalling that Q _-> 0, one has

Q>O => {(Qx; x)=O:=>x=O} :> CI A/’(R’/2B*A*) ={0}.
j=O
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Finally take any h Pr(A*) (if Per(A*)= the result is trivial), and let x 0 be an
eigenvalue associated to A. Then

((Q-Qi-1)x; x)=(AiQA*ix; x)=lhl2i(Qx; x) wi >- 1.

Hence ]hi< whenever Q WQ> 0, which completes the proof of part (a). Now
assume that Q [H]. Then tr(Q)-<_tr(Q), since Q-<_ Q, and the nondecreasing
sequence {tr (Qi)} converges. Thus, for any orthonormal basis {ek} and for every n >_-- 1,

tr (Q) lim Qiek ek) + 2 (Qek; ek)
i- k=l k=n+l

_<- lim tr (Q,) + Y (Qek; ek) lim tr (Q,) as n -> o.
i-o k=n+l i-eo

Then tr (Q)/ tr (Q). Therefore

[1Q Q, --< tr Q Q,) tr (Q) tr (Q,) --> 0 as --> oo. 13

Remark 5. Concerning the final statement of Lemma 2(a) it is worth mentioning
that positivity (which is sufficient) is not necessary, but nonnegativity is not sufficient
(i.e. Q>-O= Pr(A*)c {h C" Ix[< 1}: Q>0). It is also easy to show that W(Q)c
c(Q+) c ’(Qi), i-> 0.

We shall say that the linear system in (2) is mean square stable if the state
correlation sequence {Q; i_-> 0} converges to a correlation operator Q (i.e. E{xox}
E{xox} as i oo for some second order H-valued random variable x), such that the
Lyapunov equation Q AQA* + Qo in Lemma 2(a) has a solution Q >- 0 l[H].
However, by Lemma 2(b), the above convergence has to be uniform. So we define as
follows.

DEFINITION 2. The linear system in (2) is mean square stable if

Q, 5> Q [H].

We now investigate the connection between mean square and uniform asymptotic
stability concepts.

THEOREM 1.

a) Q, 5>Q>.0[H] =:> r(A)<l.

b) Q, 5>Q>0 3[H] ::> rr(A)<-_ 1.

Proof Since Q>-O,:IQ-[H]. By Lemma 2(a) Q-Q=A+QA*+, Vi>0.=
Hence

(a) IIa’+’ll =-- [IA’+(Q’/2)(Q/2)-II<-I[A’+’(QI/2)II2II(Q’/)-’[[
a’+’ QA*’+’ Q-’II Q Q, Q-’II - 0 as --> oo,

thus following the desired result by Lemma 1.

(b) IIm*’+’xll It(Q’/)-’(Q’/)A*’+’xlI<=II(Q’/)-’IIII(Q’/)A*’+xll
--IIQ-II <a’/’Qm*’/’x;x>-IIQ-ll ((Q-Q,)x;x>-O as i-oo,

for all x H, thus following part (b) by Remark 3, since r(A*)= r,(A), l-]

THEOREM 2.

r(A)< :=> Q, % Q ,[H].
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Proof Suppose r(A) < 1. Since

Q, --< AjQoA* <-_ I1Qo Y m z v >- o,
=0 =0

it follows by Lemma that { Qi; _-> 0} is uniformly bounded. Therefore, using Proposi-
tion (a), we get for every j > >- 0,

IIQ-Q, II-<-IIQ-,-,I[ IIa’+’ll -<- sup IIQII IIa’+’[[=-0 as i-->,
k

by Lemma 1. Then Qi --> Q 3[H], since {Q} is a Cauchy sequence and [H] is a
Banach space. Finally, since A and B are bounded and R is nuclear, it can be shown
[14, p. 173] that tr (ABRB*A*) <-IIAJI[IIBII tr (R). Therefore, using Lemma again,

tr(Q)= Y tr(AJBRB*A*J)<=tr(R)
j=o =o

Hence {tr (Q)} is a bounded sequence, and so (cf. [14, p. 179]) the uniform limit Q
of the nuclear sequence {Q} must be nuclear.

Remark 6. We notice from Lemma 2 that Qi- WQ <=> Qi__> sQ, and Qi- WQ
I[H] :=> Q-* "Q. However it can be shown that

(a) O,L>O[H] :; O, -Q[H],

(b) Q,Q[H] :#> Og,[n].

Moreover, it can also be verified that both strong convergence and positivity are not
sufficient in Theorem l(a). That is,

(c) Q,-Q>0[H] > r(A)<l,

(d) O, 2--> O>0 ,[H] :/:> r(A) <- 1.

To illustrate the above statements we consider the following examples.
Example 1. First we show that the statements (a) and (c) in Remark 6 hold true.

Set H=12 and U=1. Let A[l] be the right shift operator, A(sC, so2, .)=
(0, :1, sc, ") for all x (:1, s, ") e l. Let B e[1, l] be given by Bu (u, 0,.
for all u e 1, and set R l, the identity operator in 1. It is a simple matter to verify
that

Q= AJBB*A*J=diag(1," ", l,O," ")>=Ol[l] Vi>=O,
j=0

with the nonzero entries at the first i+ positions, such that tr (Q)= + 1. Hence

Qi ----> O ] >" 0 [/2],

since I[(I-Q,)xl[=y,=,+2[,[2o as i-c for all x= ((,, so2, .) 12, although {Q}
does not converge uniformly since II1-Qi[[ 1, V i-> 0. This supports the statement
(a) in Remark 6. However, as it is well known [11], r(A)= 1, thus confirming the
statement (c) in. Remark 6.

Example 2. Now we illustrate the statements (b) and (d) in Remark 6. Let
{ ek k >= } be a real positive sequence in l, and define a real positive strictly decreasing
null sequence {hk; k >_- 1} as follows.

Ak+l Ak- ek, A1 ek.
k=l
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Set H--U=I2. Let A[12] be a constantly weighted left shift operator,
A(:t, :2," ") pt/2(sc2, :3," ") for all x (t, so2, ") 12, such that [11] r(A) pt/2>
0. Let B= I 3[/2], the identity operator, and R diag (et, e2,’" ")>0 t[/2], with
tr (R)= At. It is readily verified that

Qi AJRA*j =diag pJe+ e+2, >0 31[/2],
=0 =0 j=0

with tr (Qi) ==o pAj+t, ’i>-0. In particular, with r(A)=p it follows that

Q, diag (At- A,+:, A:-/i+3, ") > 0
i+1with tr (Q) k=t Ak. Thus

Q,--) Q=diag (h,, h2,’" .)>0

since 0 Q, A,+=- 0 as --> o. However

Q[12] :> tr(Q)= Y Ak<,
k=l

which does not necessarily happen. For instance,

’k -> :=> Ak /k _>-ek k( k + =- =:> Q t[I2],

2k+l
ek=k:(k+l): lk>-I :=> Ak=- ’k-->l =:> Qt[/2].

This confirms the statement (b) in Remark 6. Now let r(A): p > and set ek a k-l,
/k>_-l, with 0<a<p-t<l. Then R=diag(1, a,a2,’’’)>01[/2], with tr(R)=
(l-a)-t, and

-(ap)i+l

Q= R>03t[/2] Vi->-0,

with tr(Q,)=[1-(ap)’+][(1-ap)(1-a)]-t. Thus

Q, --) Q=(1-ap)-’R>O ,[/:],

with tr(Q)=[(1-ap)(1-a)]-t, since IIQ-Q, ll=(1-ap)-t(ap)’+’-->o as
However r(A)> 1, thus supporting the statement (d) in Remark 6.

Remark 7. By Theorem l(a), Theorem 2, and Remark one has

Q, --) Q>0e 9[H] =:> dim (H)<oc,

although (cf. Example 1)

Q, --) Q>0[H] dim(H)<c.

If dim (H)< o, then 3t[H] 3[H], Pit(A)= tr(A), strict positivity is equivalent to
positivity, and uniform convergence is equivalent to strong convergence. Therefore, in
such a case, it follows by Theorem and Theorem 2 that

Q,--)Q>O[H] :> r(A)< and Q>0.
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However the assumption Q > 0, which appears in both sides of the above statement,
may not be dismissed. That is, even for finite-dimensional spaces,

Q,Q[H] : r(A) <- l, G(A) < Q > O,

as it is readily verified. These finite-dimensional results can be extended to infinite-
dimensional spaces, whenever A is compact, as follows.

COROLLARY 1. IfA [H], then the following properties are equivalent:

(a) r(A) and (A, BR /2) is A-C.

(b) Q, Q>0 31[H].

(c) Q, Q>0 3[H].

Proof. (a)(b) by Lemma 2(a) and Theorem 2, and (b)==>(c) trivially, for any
A [H]. Now assume that A
max {IA ]:

5. Concluding remarks. In this paper we have considered mean square stability
for discrete bounded linear systems in Hilbert space driven by white noise. The evolution
and convergence of the state correlation operators sequence were investigated in
Proposition and Lemma 2. It has been shown in Theorem 2 that uniform asymptotic
stability is a sufficient condition for mean square stability, although the reverse is not
necessarily true (cf. Remark 6), as it occurs in a finite-dimensional setting whenever
Q> 0 (cf. Theorem and Remark 7).

For compact operators the discrete-time stability problem is quite clear, being a

straightforward generalization of the finite-dimensional case. Indeed, as recalled in
Remark 4, for deterministic systems strong and uniform asymptotic stability are
equivalent concepts whenever A is compact. Comparing Remark 7 with Corollary
it is readily verified that a similar situation actually happens for stochastic systems
with a compact operator A.
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SUFFICIENCY OF EXACT PENALTY MINIMIZATION*

O. L. MANGASARIANf

Abstract. By employing a recently obtained error bound for differentiable convex inequalities, it is
shown that, under appropriate constraint qualifications, a minimum solution of an exact penalty function
for a single value of the penalty parameter which exceeds a certain threshold, is also a solution of the convex
program associated with the penalty function. No a priori assumption is made regarding the solvability of
the convex program. If such a solvability assumption is made, then we show that a threshold value of the
penalty parameter can be used which is smaller than both the above-mentioned value and that of Zangwill.
These various threshold values of the penalty parameter also apply to the well-known big-M method of
linear programming.

AMS (MOS) subject classifications. 90C30, 90C25

Key words, nonlinear programming, penalty functions, optimization, convex programming

1. Introduction. Consider the convex program

(1.1) minimizef(x) subject to g(x) <- 0

where f: R -> R, g" R -> R are convex functions on the n-dimensional real Euclidean
space Rn. It is well known [11 ], [6] that if (1.1) has a solution and if the constraints
of (1.1) satisfy a constraint qualification, then the exact penalty function

(1.2) P(x, a):=f(x)+aeg(x)+=f(x)+oz E max {O, gi(x)}
i=1

where e is a vector of ones in R m, has a global minimum at
for some threshold value c7. In [11, p. 356] [2, Thm. 40] it was shown that

f(xl)-f(g,)+l
(1.3)

minl=<i_<_,, -gi(x 1)
where x is any point satisfying the Slater constraint qualification

(1.4) g(xl) <0.

In [6, Thm. 4.9] it was shown that

(1.5) 6 62 := Iltill= max
li_rn

where is an optimal Lagrange multiplier for (1.1) provided that (1.4) holds. A minor
modification of the proof of [6, Thm. 4.9] which invokes [10, Thm. 28.2] instead of [7,
Thm. 5.4.8] extends (1.5) to the case where a relaxed Slater constraint qualification
holds, that is

(1.6) gl(X) O, g(x2) 0 for some x

where g is nonlinear and gi is linear and 11 U I-- (1,. , m). In contrast Zangwill’s
threshold (1.3) does not hold under the relaxed Slater constaint qualification (1.6) but
must be replaced by a different value given by (2.2) below.

* Received by the editors December 6, 1983, and in revised form March 6, 1984. This research was
sponsored by the U.S. Army under contract DAAG29-80-C-0041. This material is based on work sponsored
by the National Science Foundation under grant MCS-8200632.

? Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706.
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What is not well known and constitutes a principal concern of this work are
converses to the results stated above. In [11, p. 356], [2, Thm. 40] Zangwill shows that
if we assume a priori that the minimization problem (1.1) has a solution, the Slater
constraint qualification (1.4) is satisfied and g minimizes the exact penalty function
(1.2) for some a >_- c 1, then solves the minimization problem (1.1). Note the a priori
assumptions that (1.1) is solvable and that it satisfies the Slater constraint qualification.
By contrast in [6, Thm. 4.1 without any a priori assumptions regarding the solvability
of the minimization problem (1.1) or the satisfaction of a constraint qualification it
was shown that if (1.1) is feasible, that is g(x)<-_0 for some x, and if minimizes
P(x, a) for all values of a >= c for some c, then solves the minimization problem
(1.1). Note the distinction between these two sufficient conditions for to solve the
minimization problem (1.1). In Zangwill’s result there are a priori assumptions that
(1.1) is solvable and that its constraints satisfy the Slater constraint qualification, while
the penalty function P(x, a) need be minimized for a single value of a _-> all. In [6,
Thm. 4. l] no a priori assumption regarding the existence of a solution to (1. l) is made;
however, feasibility of (1.1) is assumed and must be a solution to minxR P(x, a)
for all a >- ff for some ci, in order for to be a solution to (1.1).

A primary purpose of this work is to combine the good features of these two
results, namely the minimization .of the penalty function for a single value of the
penalty parameter and without an a priori assumption that the minimization problem
has a solution. This is done in Theorem 3.1 where it is established that if for a single
value of the penalty parameter a >_-t for a well-defined 3, minimizes the exact
penalty function P(x, a) over R", then is also a global solution of the minimization
problem (1.1). Although no a priori assumption regarding the solvability of (1.1) is
made in Theorem 3.1, both the relaxed Slater constraint qualification (1.6) and a mild
asymptotic constraint qualification (3.2) are needed in order to invoke the recent [8,
Thm. 2.1] absolute error bound for convex differentiable inequalities which plays a

key role in the derivation of Theorem 3.1. Another result of this work is a two-way
improvement of Zangwill’s sufficiency result in Theorem 2.1, where the threshold value
of c is decreased from Cl of (1.3) to c2 of (1.5) and the Slater constraint qualification
(1.4) is replaced by the relaxed constraint qualification (1.6). We also give in Corollary
2.3 a finite counterpart of the threshold value ci of (1.3) when the Slater constraint
qualification (1.4) is replaced by the relaxed qualification (1.6) which renders 1 infinite.
Table below gives a general outline of the relations between the various sufficiency
results derived here and elsewhere for exact penalty functions and indicates the key
assumptions needed for the different results to hold.

TABLE
An outline of the key assumptions needed in the various sufficiency theorems establishing

that each minimizer of an exact penalty function (1.2) solves the minimization problem 1.1 ).

Penalty function A priori solvability of min. prob. (l.1):
(1.2) minimized Constraint

for: Assumed Not assumed qualification:

All a _-> ci Han-Mangasarian Not assumed
[6, Thm. 4.1]

A single a _>- Zangwill [l l, p. 356] Theorem 3.1 Assumed
Theorem 2.1
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In 3 of the paper we show that the big-M method of linear programming [1],
[9] is in fact equivalent to an exact penalty problem and hence the threshold values
of the penalty parameter developed in this work apply to it as well as to a big-M
formulation for convex programs. Such threshold values do not seem to have been
given for the big-M method for linear programs.

We briefly describe now our notation. For a vector x in the n-dimensional real
Euclidean space R", x+ will denote the vector in R" with components (x+)i max {xi, 0},
i= 1,..., n. For a vector norm Ilxll on R, Ilxll’ will denote the dual norm on R", that
is IIx I1’ maxllyll= xy, where xy denotes the scalar product ni= xy. The Cauchy-
Schwarz inequality Ixyl <--Ilxll" Ilyll’ for x and y in R" follows immediately from this
definition of the dual norm. For -< p, q <= oo and (1/p) + (1 / q) 1, the p-norm xll :-
(Y=l IxlP)/ and the q-norm are dual norms in R". For an m n matrix A, A denotes
the ith row, while IIAII denotes the matrix norm subordinate to the vector norm I1" I1,
that is IIAII- maxllll,= Ilaxll. The consistency condition Ilaxll <--Ilallllxll follows
immediately from this definition of a matrix norm. We shall also use II. to denote
an arbitrary vector norm and its subordinate matrix norm. A vector of ones in any
real Euclidean space will be denoted by e. For a differentiable function g: R" - R",
Vg(x) will denote the mn Jacobian matrix evaluated at the point x in R n.
For a subset !c{1,..., m}, gl(x) or gi1(x) will denote those components gi(x)
such that iL Similarly Vg1(x) will denote the rows (Vg(x)) of Vg(x) such
that i L The set of vectors in R" with nonnegative components will be denoted
by R_.

2. Exact penalty characterization assuming solvability of the minimization prob-
lem. In this section we completely characterize solutions of the minimization problem
(1.1) in terms of minimizers of the exact penalty function (1.2) for a single value of
the penalty parameter exceeding the threshold c2. This is done under the assumptions
that the minimization problem is solvable and that it satisfies the relaxed Slater
constraint qualification (1.6). The necessity part of the following result Theorem 2.1
is an improvement over both [6, Thm. 4.9] and Zangwill’s theorem [11, p. 356] both
ofwhich require the Slater constraint qualification (1.4) instead ofthe relaxed qualifica-
tion (1.6) needed here. This is a simple but important difference because it allows us
to handle linearly constrained problems with no constraint qualification, and because
Zangwill’s threshold value c becomes infinite under the relaxed constraint qualification
(1.6). The new sufficiency part of Theorem 2.1 again improves over Zangwill’s
sufficiency result by using the relaxed Slater constraint qualification (1.6) instead of
the Slater constraint qualification (1.4), and the smaller threshold value c2 instead of

c. It is interesting to note that the sufficiency part of Theorem 2.1 for the threshold
value c2 does not appear to have been given before even under the Slater constraint
qualification. Now we state our result.

THEOREM 2.1 (Exact penalty characterization of solvable convex programs). Let

f: R" R and g: R R be convex functions on R. Let either (, f) R" R" be a

Karush-Kuhn-Tucker saddlepoint of the minimization problem (1.1), or let the relaxed
Slater constraint qualification (1.6) hold and be a solution of (1.1). A necessary
(sufficient) conditionfor R" to solve the minimization problem (1.1) is that minimizes

P(x, a) over x in R" for each (some) a >-Ilallo( > Ilall ) where a R’ is any (some)
dual optimal multiplier for 1.1 ).

Proof. Necessity. By assumption or by [10, Thm. 28.2] there exists a t7 R such
that (, t) is a Karush-Kuhn-Tucker saddlepoint of (1.1). For any other dual optimal
multiplier t, (, a) is also a Karush-Kuhn-Tucker saddlepoint of (1.1) [4, p. 5]. Hence
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for x R" and a >_-[I t IIoo
P(2, a) =f(2) =f(2) + ag(2) <-_f(x) + ag(x)

<=f(x) + ag(x)+<=f(x) + II ll llg(x)+]l, P(x, ).

Sufficiency. Let t R be some dual optimal multiplier for (1.1). Since (2, ti) is
a Karush-Kuhn-Tucker saddlepoint for (1.1) it follows by the necessity part of this
theorem that for/3 := t I1

P(,/3) min P(x, fl).
xER

Let Y be a solution of minxER. P(x, a) for some a > Ilall = . Hence

>f(Y) + aeg(:)+f(X)+aeg(2)+=

and

f() +/3eg(Y) + >_--f(2) + fleg(2)+.

Addition of the last two inequalities gives upon noting that g(2)+ 0

(a fl)eg(Y)+<-O.

Since a >/3, this implies that g(Y)<_-0 and hence : is feasible for (1.1). For any other
feasible point x

f(x) P(x, a) >- P(), a) =f(). [3

The following corollary shows that under the Slater constraint qualification the
threshold value 2: II l[ of Theorem 2.1 is smaller than that of Zangwill’s ffl as
defined in (1.3).

COROLLARY 2.2. Let f: R" R and g: Rn R" be convex functions on R’, let x
be any point in R satisfying the Slater constraint qualification g(x 1) < O, and let be a
solution of the minimization problem 1.1 ). Then for any dual optimal multiplier R’
for (1.1)

f(x’)-f(2) f(x l) -f(2) +
(2.1)

min<__i__<,, -gi(x) < min__<__<, -g(x l)

Proof Since 2 is a solution of (1.1) and the Slater constraint qualification is
satisfied, it follows that 2 and some t R’ constitute a Karush-Kuhn-Tucker saddle-
point for (1.1) and by [4, p. 5] so does (2, t). Consequently

f(X) =f(2) + ag(X) <--f(x l) + ag(x l) <=f(x’)- Ilall, min -g,(xl),

from which (2.1) follows.
We establish now another upper bound for the threshold value c72:= I111oo of

Theorem 2.1 under the relaxed Slater constraint qualification (1.6).
COROLLARY 2.3. Let f: R"o R and g: R" R" be differentiable convex functions

on R, let x be any point in R" satisfying the relaxed Slater constraint qualification 1.6),
and let be a solution of the minimization problem 1.1 ). Then there exists a dual optimal



34 O. L. MANGASARIAN

multiplier R for (1.1) such that

f(x) -f(X)
minil, -gi(x2)

(2.2)

( f(x)-f(.) )+ I[vf()ll, 4 l[7g,,()ll, max
mlni t, -gi(x2) g(x)<-O

i(x)J(x)

where

T T --1A()(A()A())

(2.3) J(x) {I[I c 12, A,x b,, A,, lin. indep.}

and g2(x) A2x- b.
Proof Since g is a solution of (1.1) and the relaxed Slater constraint qualification

is satisfied, it follows that : and some t R’ constitute a Karush-Kuhn-Tucker
saddlepoint for (1.1). Since f and g are differentiable, it follows that

(2.4) Vf(X)+O,,Vg,,(X)+A,=O, tTg(X)=0, g(:)=<0, ->_0.

By the fundamental theorem on the existence of basic feasible solutions [3, Thm. 2.11]
it follows that there exists R’ such that (, t) is a Karush-Kuhn-Tucker saddlepoint
of (1.1) and

(2.5)

where I() belongs to J() as defined by (2.3). Hence

(2.6) u,() -(7f(X) + gi,Vgll()) T T -1AI()(AI()AI())
Consequently

(2.7) I()1] ([[f()1[ +[[II[]I[[VglI()[II)IIA)(AI()AI()) [11.
From the saddlepoint propey we have that

f(g) f(x) + agl(x) + a()g()(x) f(x) -[[ , min -g(x).
iI

Hence

(2.8) i, [[1 --Combining (2.7) and (2.8) gives

f(x2) -f(:)
mini, --gi(x2)

f(x2) -f(X)
mini, --gi(X2)

f(x2 -f(2)+ Ilx7f(x)ll, mlniell- _g,(x=) Ilx7g,,(x)ll, [IAff()(A,()A())-’

Inequality (2.2) follows from the above upon replacing the last term by its maximum
over all feasible x.

It is evident that the last term in (2.2) may be difficult to compute because of its
combinatorial aspect. However if there are only a few linear constraints, or if the point
x2 is interior to most of the linear constraints, in which case these constraints can be
lumped with the nonlinear constraints, it may not be too difficult to compute the bound
of (2.2). Obviously since is unknown beforehand, f(:f) must be replaced by a lower
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bound (as must be done for Zangwill’s bound 1) and Ilvf()ll, and IlVg,,()lll, by
upper bounds in (2.2).

3. Exact penalty characterization without assuming solvability of the minimization
problem. In this section we characterize solutions of the minimization problem (1.1)
in terms of minimizers of the exact penalty function (1.2) without any a priori assump-
tion regarding the existence of solutions to 1.1 as was the case in the previous section.
We do however need the relaxed Slater constraint qualification (1.6) and a mild
asymptotic constraint qualification (3.2) below, which is automatically satisfied if all
the constraints are linear. It is interesting to note that the threshold value c3 of the
penalty parameter in Theorem 3.1 below exceeds or equals the threshold value ti2 :=
a I1 of Theorem 2.1.

TIaEOREM 3.1 (Exact penalty characterization of feasible convex programs). Let
f: R" R and g" R R" be differentiable convexfunctions on R n. Let the relaxed Slater
constraint qualification (1.6) hold, let

(3.1) 0 :/3 := sup {llVf(x)ll,lg(x) o} < o

and let the following asymptotic constraint qualification [8] hold"

For each nonempty I c {1,..., m} and each sequence of points {xi} such that"
g(x i) <=0, g(x) =0 and Vgj(x) are linearly independent, each accumulation
point (Vgo,V-t,,Vgt2) of the sequence {Vg,o(X’)/llVg,o(x’)ll, Vg,,(x’),
Vg2(xi)} satisfies

(3.2) Vgtoz > 0 Vg,z> O, Vg2z>-O for some z R

where Iota I1 t.J I2 is a partition ofI such that the sequence {Vgj(x)} is unbounded

for j Io and bounded for j I, goO is nonlinear and g is linear.

A necessary (sufficient) condition for R" to solve the minimization problem 1.1
is that Y, minimizes P(x, a) over x in R for all a >- t (some a > ta) where

(3.3)

ti3 :=/3 sup {11 w, IIlg(p) -< 0, w, > o, g,(p)=0, Ilw, Vg,(p)ll 1,
w,p,l

Vg,(p) lin. indep., I {1, , m}}.

Proof. We first note that the finiteness of t’ is ensured by the asymptotic constraint
qualification [8, Thm. 2.1].

Necessity. Let be a solution of (1.1) and let t R be an optimal dual multiplier
for (1.1) chosen as indicated below. We will show that t3 -> I111 and hence by the
necessity part of Theorem 2.1, minimizes P(x, a) for cr => ci3. If Vf()=0, we take
t=0 and evidently a3_>-IIll=0. Suppose now Vf(g)0. Take ti= (t, fir) where
aL > 0 and corresponding to "basic" gL(g) 0 such that Vgj L(g) are linearly indepen-
dent and tr -0. Hence by the Karush-Kuhn-Tucker conditions [7]

and consequently

Vf(:) + ttVgt,(:) 0

Uvg() 1.
Ilvf()ll,
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Hence by the definition (3.3) of c3 and the definition (3.1) of/3

Sufficiency. Let be a solution of min- P(x, a) for some a > c3. We first shov
by contradiction, that g()-<0. For if is infeasible, then by [8, Thm. 2.1] there exis
a feasible p() such that

< O3 O
(3.4) N P() II -II g()/Ill eg(N)+.

Then for a > ff3,

f(p()) P(p(), a)

_-> P(, a) (since g minimizes P(x, a) over x R)

=f()+aeg()+

>f(2) +fl[[2-p(2)[[oo (by (3.4), a>c73 and g(2)+O)

>=f() +llVf(p(g))llllg-p(g)ll (by (3.1))

>-f()-Vf(p())(2-p(2)) (by the Cauchy-Schwarz inequality)

>=f(p(2)) (by the convexity off)

which is a contradiction. Hence g(2)_-<0 and 2 is feasible. For any other feasible x
and a > c73

f(2) P(2, a) <= P(x, a) =f(x)
and hence 2 solves (1.1). [-1

Obviously the threshold value ci3 given by (3.2) is difficult to compute in general.
However besides providing an existence result for the minimization problem (1.1), it
is useful to know that such a threshold value exists and to know how it depends on
the problem parameters, especially when one is engaged in an unconstrained exact
penalty function minimization either on R", as a substitute for the original constrained
optimization problem, or on R as part of an iterative method [5]. In both cases an a

such that a > c3 would be a useful upper bound to the penalty parameters employed.
This would avoid the use of arbitrarily large penalty parameters that may lead to
numerical difficulties.

4. An application: The big-M method for convex programs. In linear programming,
a well-known method [9], [1] for solving a linear program without an explicit phase I
procedure is to add nonnegative artificial variables to the constraints and then add a

penalty to the objective function involving the artificial variables. If the penalty
parameter is "sufficiently large", then the artificial variables will be driven to zero and
an optimal solution will be obtained, if one exists. In this section we will make the
"sufficiently large" concept precise by using the results of the two previous sections
and extend the idea of the big-M method to convex programs. We first state a simple
lemma whose elementary proof we omit.

LEMMA 4.1. Let f:R" R, g’R" R" and let a>0. Then the problems

(4.1) min f(x) +aeg(x)+=: min P(x, a)
x_R x.R

(4.2) min f(x)+aez s.t.g(x)<-z,z>-0
(x,z)R
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are equivalent in the following sense: For each solution of (4.1), (, := g()+) solves
(4.2), and for each solution (, ) of (4.2), solves (4.1).

The formulation of (4.2) is the big-M formulation and is used in linear program-
ming because it is easy to obtain a feasible point for it by taking any x in R and
z:= g(x)/. Formulation (4.2) can be used also for the very same reason in convex
programming. Theorem 2.1 tells us that if we know a priori that problem (1.1) has a
solution, f and g are convex and the relaxed Slater constraint qualification (1.6) is
satisfied, then the penalty parameter a of the big-M formulation (4.2) must satisfy
> a2:-II ll where is any optimal dual multiplier to (1.1). Note that if g is linear,

then the relaxed Slater constraint qualification (1.6) is satisfied by any feasible point
x. If we have no a priori knowledge that (1.1) is solvable, but that it is merely feasible,
that f, g are differentiable and convex, and that (3.1) and the constraint qualifications
(1.6) and (3.2) are satisfied, then the penalty parameter a of the big-M method (4.2)
must satisfy a > t’ where c3 is defined by (3.3). Note that if g is linear, then (1.6)
and (3.2) are automatically satisfied, and if in addition f is nonconstant and linear,
then (3.1) is also automatically satisfied.
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A HIGH ORDER TEST FOR OPTIMALITY OF BANG-BANG CONTROLS*

ALBERTO BRESSAN’

Abstract. For control systems ofthe form X(x) +i% Y(x) ui, a strengthened version ofthe classical
Pontryagin maximum principle is proved. The necessary condition for optimality given here is obtained
using functional analytic techniques and quite general high order perturbations of the reference control. As
shown by an example, this test is particularly effective when applied to bang-bang controls, a case where
other high order tests do not provide additional information.
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Key words, admissible variational family, high-order tangent vector

1. Introduction. Let U be a closed convex subset of the Banach space
([0, T]; Rm) and consider a continuously Fr6chet differentiable mapping tO U->

Given ti U, in this paper we give a high-order sufficient condition for tO(fi) to belong
to the interior of the image tO(U). Problems of this kind arise frequently in control
theory. Indeed, consider a control system of the form

2( t) f(x( t)) + G(x( t))u( t),
(S)

x(O)=O, u(t)el) fora.e, te[0, T],

where fI is a compact convex subset of Rm and f, G are %1 mappings from R" into
N" and N" xN respectively. If T is small enough, then (S) yields a c map 4,:u-->
x(u, T) from the set U of admissible controls into N". Here x(u, T) is the point reached
at time T by the trajectory of (S) corresponding to the control u. A classical problem
is then the following: given an admissible control if, decide whether ti is time-optimal.
This is often equivalent to showing that x(ti, T) lies on the boundary of the reachable
set R(T).

A well-known necessary condition for optimality is given by the Pontryagin
maximum principle (PMP) [2], [8]. Krener’s high-order maximal principle (HMP) [6]
provides further conditions, obtained from the study of more general one-parameter
perturbations u of the control t. If the first-order variation at the terminal point of
the trajectory

1.1 lim [x(ue, T) x(t, T)]/sr
-0

vanishes, a high order tangent vector can be generated, and additional necessary
conditions for extremality are found. This method yielded several new results [3], [4],
5], 6], especially concerning the problem of local stability. In this case, the reference
control is (t)--0 and lies in the interior of gI-[-1, 1]. Hence there are several ways
to locally perturb fi and achieve a cancellation in the first order variation (1.1). The
HMP can be here particularly effective. On the other hand, if t is bang-bang, t(t)
already lies on the boundary of gI, and only one-sided perturbations of are admissible.
As a result, in general there is no way of generating high order tangent vectors, as
long as only the "instantaneous" control variations considered in [5], [6] are used. In
order to develop a genuine high order test for optimality of bang-bang controls, it is
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necessary to achieve the cancellation of the first-order variation (1.1) by perturbing fi
simultaneous|y in the neighborhoods of two or more distinct times. This leads us to
consider more general control variations.

In the following, the variable always denotes time, while sc, c are used. as
variational parameters" u(:, .) or u(c, , .) will denote controls in wl([0, T];R")
depending continuously on the parameters sc, c. In the abstract setting considered in

2, 3, the control u is regarded merely as a point in a Banach space E, and we use
the shorter notation u(sc) or u(c, ) to indicate its dependence on one ortwo parameters.

DEFINITION 1. A one-parameter admissible variational family of control functions
(AVF) for a control on [0, T], generating a tangent vector v R", is a continuous
map v" sc u(sC, from a nondegenerate interval [0, :-] into 1([0, T]; m) such that

(1.2) u(O, .)= a(.), u(,.) u v[0, ],

(1.3) lim [x(u(:, .), T)-x(a, T)]l=v.
0

We say that the AVF v has order h if there exist constants C, C2 for which

(1.4) O< C,_-<:-’llu(:, .)-a(.)llk,-<_G v#(o, #-].

Notice that one can recover every high order tangent vector by means of the
first-order derivative (1.3), via a suitable change of the parameter :. As shown in [5],
this method differs from Krener’s only in computational ease. The above class of AVF
is at the same time simpler and more general than those studied in [5], [6], hence the
corresponding family of tangent vectors can be much larger. One would like to use
all of these vectors to derive a stronger HMP. Assume that, given suitable variational
families vi for (i= 0,. ., k), the positive span of the corresponding tangent vectors

vi is all of ". To conclude that x(a, T) lies in the interior of the reachable set R(T),
one has to construct approximate convex combinations of the vi continuously depend-
ing on the parameters. More precisely, the v should be sumrnable in the sense of the
next definition.

DEFINITION 2. Let { Vo, , /k} be a finite collection of AVF for the control
ti, generating the tangent vectors Vo," , Vk. Set

(1.5) Ak= C--(Co,""" Ck)" ciO Ci--
i=o

ff is summable ifthere exist
into 1([0, T]; ’) such that, for all c Ak,

(1.6) u(c, 0, .) a(.), u(c,,.) U

(1.7) lim [x(u(c, ,. ), T) x((. ), T)]/ Y cv,
0 i=0

uniformly on Ak.
This crucial property holds for variational families of the special kind considered

in [5], [6], but is not satisfied by an arbitrary collection of AVF (see 5 for a
counterexample). Our key result is that if all but one of the vi have order 1, then
ff is summable. This is first proven in an abstract setting, then stated for the control
system (S). We thus obtain a strengthened version of the PMP which is particularly
effective when applied to bang-bang controls. Indeed, our single high order variational
family is allowed to be quite arbitrary. An application of this technique is given in 5.
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2. Notation, statement of the main results. Consider a mapping q from a neighbor-
hood of a closed subset U of a Banach space E into R" and denote by D(u) its
differential at u. We say that tp is qgl if the map u-> Dip(u) from E into the space of
continuous linear operators L(E;R") is continuous. For the definition of the operator
norm on L(E;R") and for the basic properties of differentials our general reference
is Di6udonne [1].

If U, by an admissible variational family (AVF) for t, generating a tangent
vector v ", we mean a continuous map ,::--> u(:) from [0, 1] into U such that

(2.1) u(O)= a, u(sC) U V:[O, 1],

(2.2) lira [o (u(:)) o (a)]/t: v.
:-,0

If, for some 0 < C1 <---- C < o and all : (0, ],

(2.3) C, _<- all -<

we say that u has order h. We write B(x, r) for the closed ball centered at x with radius
r. The Euclidean norm on " and the operator norm on the set of n m matrices are
both written as[. ], while double bars are used for the norms II" in Banach spaces
such as E or L(E;"). Int A, OA, K6 A denote the interior, the boundary and the
convex closure of a set A. With these conventions we have the following theorem.

THEOREM 1. Let U be a closed convex subset of a Banach space E, and let q be a
cl mapping from a neighborhood of U into . Assume U and let ,:- u() be
AVFfor generating the tangent vectors v (i O, , k). If 0 int K6 { Vo, , Vk}

__
R

and ’1, ", k have order l, then p( O) int p(U).
From this result, a sharper form of Pontryagin’s maximum principle for the system

(S) can be derived. To fix the ideas, assume that f and G are col on B(0, r) R"; f,,
G, will denote the corresponding differentials. Let

sup {If(x)
sup{lwl; wea}<M, O< T<r(MI +MIM_)-’.

This guarantees that, for every control u in the admissible set

U={u ([0, T]; R’); u(t) fl a.e.},

Ilull < M=T and there exists a unique solution --> x(u, t) of (S) defined on [0, T], taking
values inside B(0, r). Notice that the open ball 3 {u ; Ilull < M=T} is a neighbor-
hood of U. We assume that is closed, bounded and convex, thus the same holds
for U. The map b: 3 --> qg([0, T];) that associates to each control u the correspond-
ing solution x(u, of (S) is continuously Fr6chet differentiable. Indeed, , is implicitly
defined by the equation if(u)= (u, p(u)), with

(2.4) xtt(u, x)(t)= f(x(s)) ds + G(x(s))u(s) ds.

The map xlt can be thought of as the composition z" xttl, defined by

qtl(u,x)(t)=(u(t),f(x(t)) G(x(t))),

2(u, Yl, y2)(t)= yl(s) ds + y2(s)u(s) ds.
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Clearly qtl is cl and XI?2 is bilinear. Hence is cgl and the same holds for qt, because
of the implicit function theorem ([1, p. 272]). An application of Theorem yields
Theorem 2.

THEOREM 2. Let be an admissible control for the system (S) and assume that
x(, T) OR(T). Then, for every tangent vector Vo generated by a (possibly high order)
AVF Uo for 3, there exists an absolutely continuous nontrivial n-vector valued function

A (t) on [0, T] which satisfies

(2.5) A (T). Vo <-- 0,

(2.6) "A(t)=-A(t)’[f(x(ft, t))+Gx(x(a, t))fi(t)],

(2.7) A(t)’G(x(f, t))t(t) max {A(t).G(x(f, t))w; w f},

for almost every in [0, T].

3. Proof of Theorem 1. It is certainly not restrictive to assume that k >_- and that
all vectors vi are nontrivial. Relying on the fact that ul,’’’, Uk have order we first
prove Lemma 1.

LEMMA 1. The collection of admissible variational families if= {Uo,’", /k} is
summable.

Proof Define the scalar function a by setting

(3.1) a() sup (II Uo(’)- all l/Z; 0 <= " --< }-

Clearly a is a continuous, nondecreasing function with c(0)=0. The existence of a
first order tangent vector vl 0 implies Do(t) 0. By (2.2), for > 0 small enough,
we thus have

(3.2) Uo() a II/f ->- I,.,ol / 2 o(a)ll.

Therefore there exists a : > 0 such that

Ivol’: ),/(3.3) 211b-a)ll
for all sc (0, -]. Define u(c, sc) on A k x[0, ] by

k

u(c. )= Uo(Cof) + Z c,(l.(f))[u.((f))- Uo(Cof)]
i=1

if 0< :_-< so,

(3.4) u(c, 0) tT.

By (3.3), u(c, ) is well defined and takes values inside U, being a convex
combination of members of U. As :- 0, Uo(C, ) tends to and each term inside the
summation in (3.4) tends to zero uniformly w.r.t.c. Therefore u depends continuously
on the parameters c, . To show (1.7) we write

(u(c,:))-(a) (Uo(Co))-o(a) (u(c, :))-(Uo(Co:))
(3.5)

sc
-!

As s0, the first term on the right-hand side of (3.5) converges to CoVo. The second
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term can be written as

’
Do(Ou(c, ) +(1 O)uo(Co)) [u(c, )- Uo(CosC)] dO

o
(3.6)

The continuous Frchet ditterentiability of 0 implies that t’(c,, 0)=
Do(Ou(c, )+(1-O)uo(co))-Do() is a continuous linear operator whose norm
tends to zero uniformly in c, 0 as :- O. Observe that

(1/, ()) u,(, ()) Uo(Co)It _<- (1/, ())II u,(())- 11 /( 1/ce (:))II Uo(Co: all
(3.7) <= Ki + Uo(Co)-

for some finite constants Ki (i= 1,..., k), because the AVF vi have order and by
(3.1). The limit as sc 0 of the last term in (3.5) is therefore given by

(3.8) lim Do(t).
o ,= ,()

(u,(a())- a).

By the definition (2.2) of tangent vector, one has

(u,(:)) o (2) Dqg(t). (u,(:) a) + o(’)
v lim lim

(3.9)
lim D(a) (u,()- a)/.
-,0

Indeed u is a first order AVF, hence the term o(sC), which is infinitesimal of higher
order w.r.t. Ilu,()-all as -0, is aso of higher order w.r.t, sc. Comparing (3.9) with
(3.8) one concludes that

lim [o(u(c, so)) o (t)]/sc
--,0

(3.10)
CoVo + ci" lim Do(t) [u,(cr(sc))- t]/cr(s) c,vi,

i=l :0 i=0

uniformly on A.
Using the above lemma, the proof of Theorem can now be completed by an

application of Brouwer’s fixed point theorem.
LEMMA 2. Assume that nr n and that Vo, ", l)k n satisfy

(3.11) 0 int --6 {Vo,..., Vk}.

Let to be a continuous map from A [0, sc-] into " such that

a,( c, O)

lim [to(c, :) w]/: X cv
--,o j=0

uniformly on A. Then the image to(A [0, ]) covers a whole neighborhood of nr in ".
Proof. Clearly (3.11) implies k->_ n. It is not restrictive to assume k n. Indeed,

if k>n, choose n+l vectors v,...,v,E-6{Vo,...,v} such that 0
int E-6 {v,. ., v,}. For 0 < < n, let

vi= Y ajvj withaj >0, a=l.
j=0 =0
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The map to" A" x[0, :]R" defined by

to’( <-j= k,c, :)= to(c, :) with cj aijci, 0 <

i=0

is continuous and satisfies to’(c’, 0)= r for all c’e An. Moreover

lim [to (c, sc)-w]/:= aisc v c,v,
:-0 j=0 =0 =0

uniformly on An, and the image of to’ is clearly contained in the image of to. By possibly
replacing to with to’, it therefore suffices to prove the lemma in the special case k n.

Let 8 =dist (0, 0E-6 {Vo," , vn}) and choose :o so small that

(3.12) to(c, o) r o cv, < o/2
i=0

for all c An. Consider the injective map tr" A Rn defined by

(c) + o" c,v,.
i=0

For xeB(w, :ot) define F(x)=to(tr-(x), o). By (3.12), IF(x)-xl<o,/2. For
each Xoe B(w, :o8/2) an application of Brouwer’s theorem ([8, p. 251]) now implies
the existence of some x B(w, o) for which F(x)= Xo. We have thus shown that
B(nr, :o8/2)_ to( Ak x[0, -’]), proving the lemma.

By (3.10), Theorem follows from Lemma 2 by setting w=(a), to(c, :)=
(u(c,)).

4. Proof of Theorem 2. Suppose that the conclusion is false. Then there exists an
admissible variational family ’o for a, possibly high order, that generates a tangent
vector Vo such that, for every absolutely continuous A(.) satisfying (2.5) and (2.6),
one has

(4.1) A(t)G(x(a, t))a(t) <max {A(t)G(x(ft, t))w; wf}

for in a subset J [0, T] having positive measure. For each vector r/ 0 with r/. Vo <- 0,
let h,(-) be the unique solution of (2.6) for which A,(T)= 7, and choose a control

u, U such that

(4.2) h,(t)G(x(a, t))u,(t)=max {h,(t)G(x(a, t))w; wf}

for a.e. [0, T]. The continuity of A,, G and x(a,. and a selection theorem [7] imply
that such a measurable u, exists. Define an AVF , for a by setting

(4.3) u(:,.)=:u,(.)+(1-:)a(.) V:[0, 1].

Then, for every :, u(:) U because U is convex, and Ilu( )-all/ -llu - ll o,
showing that , has order one. Let II 7- q[0, T] n be the linear projection x - x(T).
From the remarks made in 2 it follows that the map : x(u(), T) is the composition
of mappings, hence the tangent vector generated by the AVF (4.3) exists and is
given by

(4.4)

v lim [x(u(:), T)-x(a, T)]/: IIT" D0(a).(u, a)
-0

M(T,s)G(x(a,s))(u,(s)-a(s)) ds,
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where s M(T, s) is the matrix fundamental solution of

:i(t)=-z(t).[f,(x(, t)) +G,,(x(, t))fi(t)]

with M(T, T)=/, and q is the input-output map defined above (2.4). By (2.6) the
inner product of r/ and v is

. v (T)M(7", s)G(x(, s))(u,(s)- (s)) ds

(s)G(x(, s))(u(s)- (s)) as > o
0

because of (4.1). Hence, for every nontrivial vector r/with r/.vo -< 0, there exists a first
order tangent vector v for which r/. v > 0. A standard compactness argument yields
the existence of finitely many first order tangent vectors v, , vk such that the positive
span of {Vo, v,..., vk} is the whole space R". Theorem applied to the ( map
(4 1--I T" I]/" U "> X( U, T) yields x(t, T) int R(T), a contradiction.

5. Examples. The assumption on the order of the variational families in Theorem
is essential. Indeed, two arbitrary second order AVF need not be summable, as shown

by the following example.
Example 1. Define a time-dependent system on R3 by

(,(t), 2(t), )3(t)): (q)_(t)x3(t)u,(t), q))_(t)x3(t)u2(t), ql(t)u3(t)),
(5.1)

(x,(0), x(0), x(0)) (0, 0, 0),

where e [0, 3], the smooth function q, q satisfy

q,(t)=0, q2(t)_->0 for [1, 2],

(5.2) q2(t)=0 for t[0, 1]L112,3],

q,,(t) dt= (t) dt w(t) dr=

and the controls satisfy the constraints

(5.3) 0=<u,(t)_<-I (i=l,e), -<u3(t)<+.

The reachable set at time 3 is then

(5.4) R(3)-- {(Xl, X2, X3) XlX2 > 0}.

Let t be the null control. Consider the two AVF for t:

u(l>(, t) (’/, 0, ’/-), u<>(, t) (0, ’/, -:/),
constant on the time interval [0, 3]. Notice that for 1, 2

(IoIlu’>() 0ll2/= u’(, t) dt sc= 18.

By setting h =2, Cl C= 18 in (1.4) one checks that u) and u2) have order two.
The endpoints of the corresponding trajectories are

x(u(’(), 3) (sc, 0, 0), x(u(2)(sc), 3) (0, -:, 0).

Hence u (1) and u (2) generate the tangent vectors

(5.5) v, =(1, 0, 0), v (0,-1, 0).
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Comparing (5.5) with (5.4), it is clear that these two AVFs cannot be summable. In
this example, the set of high order tangent vectors of the special type considered in
[6] is the cone F {(0, 0, x3); x3 R}. This is of course convex and coincides here with
the first order tangent cone. Notice that the time dependency can be easily removed
by adjoining a new variable Xo t.

We now illustrate a nontrivial application of Theorem 2 to the study of optimality
of bang-bang controls.

Example 2. Consider the three-dimensional autonomous system with scalar
control u(t)[-1, 1]:

(5.6) (2,, 2, 3) (U, Xl, X2 "+" kXl/2), (Xl(0), X2(0), X3(0)) (0, 0, 0).

The adjoint equations for this system are

(5.7) (X,, 2, 3) (-/2- kXll3, -i3, 0).

If Ikl < 1, then a theorem of H. Sussmann [9] yields the existence of a T> 0 such that
every time optimal control u(.) on [0, T] is bang-bang with at most two switchings.
If lkl > 1, the above result does not apply. Indeed, for every T> 0, there exist bang-bang
controls u that satisfy Pontryagin’s necessary conditions for optimality and have an
arbitrarily large number of switchings on [0, T]. In order to construct a regular feedback
synthesis for (5.6) it is important to rule out the optimality of such controls. In this
direction we prove the following proposition.

PROPOSITION 1. Assume ]k > 1. Then every bang-bang control assuming the value
+ on a positive neighborhood of the origin is not optimal after its third switching time.

Proof Let t be a bang-bang control which is initially +1 and has at least 3
switchings, and let 0< tl < t2< t3 be its first three switching times. Fix any T> t3,
smaller than the fourth switching time if there is any. We will prove that x(t, T)
int R(T). If the classical Pontryagin’s necessary conditions do not hold for tL we are
done. Otherwise, let , (t) (,l(t), ,2(t), ,X3(t)) be a nontrivial adjoint variable satisfying
(2.6) and (2.7), given in this case by (5.7) and

(5.8) tT(t)=sgn,(t) a.e. on[0, T]

respectively. Our first task is to compute (T). Set to 0, t4 T. From (5.7) it follows
that the map A (t) is col on [0, T] and piecewise analytic on [t_l, t] (i 1, , 4).
In particular, we have

(5.9) A3(t) A3(0), A2(t) A2(0)- t- A3,

l(t)=A3(1-ksgnA,(t)) a.e. on[0, T],

(5.11) Al(t,) 0 (i= 1,2,3).

Hence A is a polynomial of degree 2 in on each subinterval [ti_, ti]. If Al(t) =0 for
some t (t, t2), then we would have A(t) =0, against the assumptions. Thus Al(t)0
for t < < t2. By (5.11), ]1 is not identically zero. Together with (5.10), this implies
A3>0. Multiplying /3 by a positive scalar we can therefore assume A3(t)-= 1. This,
together with (5.10) and (5.11), determines A(t)uniquely:

(5.12) A,(t) l+k( t- t,)(t- t2) for 6 [tl, t2],
2

1-k
(5.13) A,(t) (t-t2)(t-t3) for t[t2, t3].

2
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The computation of 1(t2) using alternatively (5.7), (5.12) and (5.13) yields

(5.14)
,1 (t2) A2(t2) kx (t2) A2(t2) k(2t t2)

k+l
2

-(t2-t,)=
k-1

’2 ’’( t3 t2)"

Notice that the above expressions coincide because A is . From (5.7), (5.14) we deduce

(5.15) A2(T) t,(1-3k)/2+t2(1 +k)/2- T.

For notational convenience, set a tl, b 2- tl, c t2, d T- 3. So far, we
have proven that, up to a positive scalar factor, there exists a unique adjoint variable
A(t) that satisfies (2.6) and (2.7) on [0, T]. In particular, (5.15) and the last equality
in (5.14) yield

( k-lb-c-d, 1)(5.16) A(T)= Al(T),-ka+ "2
(5.17) (k-1)b=(k-1)c.

The second part of the proof consists in the construction of a second order AVF
for t generating at T a tangent vector v having a positive inner product with A (T).
A lengthy but elementary computation (see Appendix) shows that the control t steers
the system from the origin to a point x(fi, T) whose coordinates are

(5.18)

Xl (ti, T)=a-b+c-d,

x2(, T)= T2/2-(b+c+d)2+(c+d)2-d2,

x3(fi, T)=[r3/2-(b +c +a)3 +(c +d)3-a3]/3

+[a +(b- a)3 +(c- b + a) +(d c + b a)3/2]k/3.

For [0, T] and : > 0 suitably small define

u(:,t)=l if t[O, a +l/2c)U[a +b+l/2(b+c), T-d +scl/2b),

u(:,t)=-I if t[a+/-c,a+b+l/2(b+c))U[T-d +l/2b, T].

The coordinates of x(u(,.), T) are thus obtained from (5.18), replacing a, b, c, d by
a + l/2c, b + l/2b, c- l/2c, d l/2b respectively.

Using (5.17), one checks that in the expression of x(u(,.), T) all terms in :/2
cancel, hence the map :- u(:, is an AVF for of order 2. The computation of the
corresponding tangent vector v defined by (1.3) yields (see Appendix)

(5.19) v (0, 2, b+c+2d +k(2a-b+c))bc.

The inner product of (5.16) and (5.19) is

A(T). v=(k- 1)bc2> O.

This shows that the necessary conditions for extremality stated in Theorem 2 do not
hold for t, hence x(t, T) int R(T). For any T> t3, t is not time optimal after T,
therefore t is not optimal after its third switching time.
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Appendix. For the control t considered in Example 2, the coordinates of the point
x(T, fi) are:

x( T, ) f(s) ds a b + c- d,

x(r, a)= (r- s)a(s) s= r/-(b+c+)+(c+)-,
or T- s)2 k orx3(T, )= (s) ds+ (XI(S, ))2 ds

k
s2ds+ (2a-s ds+ (s-2b+2a ds+ d a+b

T (b/c+d) (c/d)
3 /-’--’’-

a+b+c
(2a-2b /2C-- S)2 ds]

+_kV2a3_ 2(a-b)3+2(c-b+a)3_ (d-c+b-a)3].21_3 3 3 3

The coordinates of x(T, u()) are"

x,( T, u()) xI( T, I),

x2(T, u())= T2/2-(b +c +d-c’/2)2 +(c +d-(b +c)’/2)2-(d-b’/2)2

x2( T, tT) + 2bc,

x3(T, u())=1/2[r3/2-(b +c +d-c’/2) +(c +d-(b +c)’/2)3-(d-b’/2)3]
k

+[(a + c:’/2) +(b a +(b c):/2) +(c- b + a b:’/2)

+(d-c+b-a)3/2]
X3( T, ) /[b2c / bc2]1/2 / k[b2c- bc2]1/2

/[bc2 + bEc /2bcd] / k[2abc- bEc + bc2] / O(sc3/2)
xa(T, a)+bc[b+c+2d +k(2a-b+c)]+O(s3/2),

because, by (5.17), b+c+k(b-c)-O. This yields (5.19).

REFERENCES

[1] J. DIEUDONNI, Foundations of Modern Analysis, Academic Press, New York, 1969.
[2] n. HERMES AND J. P. LASALLE, Functional Analysis and Time Optimal Control, Academic Press, New

York, 1969.
[3] H. HERMES, Local controllability and sufficient conditions in singular problems, J. Diff. Eq., 20 (1976),

pp. 213-232.
[4] Controlled stability ,nn. Mat. Pura ed Appl., CXIV (1977), pp. 103-119.



48 ALBERTO BRESSAN

[5] H. HERMES, Lie algebras ofvectorfields and local approximation ofattainable sets, this Journal, 16 (1978),
pp. 715-727.

[6] A. J. KRENER, The high order maximal principle and its applications to singular extremals, this Journal,
15 (1977), pp. 256-293.

[7] K. KURATOWSKI AND C. RYLL-NARDZEWSKI, A general theorem on selectors, Bull. Acad. Pol. Sc.
Math. Astr. Phys., 13, 6 (1965), pp. 397-403.

[8] E. B. LEE AND L. MARKUS, Foundations of Optimal Control Theory, John Wiley, New York, 1967.
[9] n. SUSSMANN, A bang-bang theorem with bounds on the number of switchings, this Journal, 17 (1979),

pp. 629-651.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 23, No. 1, January 1985

1985 Society for Industrial and Applied Mathematics

005

SECOND ORDER CONTROLLABILITY AND OPTIMIZATION
WITH ORDINARY CONTROLS*

J. WARGA

Abstract. Let Q be a convex subset of a real vector space and a topological space, Lr a topological
vector space, 0//c Q, C a convex subset of with a nonempty interior, and (4)0, the, b2): Q-->R R" Lr a

continuous function with a second order "finite" Taylor approximation at a point . This is a typical
framework for many smooth optimal control problems in which Q is the set of relaxed controls and 0// a

sufficiently "large" set of ordinary controls. We study certain new second order conditions that are necessary
for t] to minimize b0 on the set M f’l 0//, where

d ___a (q Ql6(q)=0, qb2(q) C}.

We also prove that if similar conditions are not satisfied by the function (bl, b2) at then there exist
neighborhoods of the origins G1 in ’ and G in Lr such that

6,(4) + G, {6(u)lu 0u, 62(u) + G2 C}.

Finally, we show that if ] minimizes bo on 4 f’l 0//but not on 4 then every qo 4 such that bo(q0) < b0(
is an "abnormal second order extremal".

Key words, local controllability, inclusion restrictions, equality restrictions, optimization, optimal
control, second order necessary conditions, relaxed controls, ordinary controls, abnormal extremal

1. Introduction. A large class of optimal control problems (defined by differential
or functional-integral equations) can be described by the following optimization model:
let Q be a convex subset of a real vector space, c Q, Lr a topological vector space,
C c ’, and (bo, b, b2): Q->R Rm, a given function. A minimizing //-solution is
an element that minimizes bo on the set f’)//, where

a={q Q[6,(q)=0, 62(q) C}.

The function b is strongly locally (, 4’2, C)-controllable at (t if there exist neighbor-
hoods of the origins Gl in m and G2 in Z such that

,(q) +o, = {,(u)[u , 6(u) +G= C}.

In typical optimal control problems, Q is the set of relaxed controls, a// is either the
entire set Q or its subset consisting of ordinary (point-valued) controls, bo is the
objective function, b(u)=0 describes constraints such as the endpoint restrictions,
and b2(u) C describes the unilateral (state variable) restrictions.

In a previous paper [6] we have shown that, under rather general conditions that
may be valid even without the customary differentiability assumptions, either (bo, b)
is strongly locally (a//, b2, C)-controllable at or satisfies certain first order conditions
that generalize Pontryagin’s maximum principle. These conditions are thus necessary
for t to be a minimizing /-solution. We have also studied second order conditions
for t to be a minimizing /-solution in two special cases: when the restriction b(u) C
is absent and the problem is strongly normal [4]; and with the assumption that Q
[7]. In the present paper we shall extend the results of [4] and [7], as well as certain
results of Bernstein [1], by dropping the above mentioned special assumptions and
deriving second order necessary conditions that are valid if bl is not strongly locally

* Received by the editors September 6, 1983, and in revised form March 20, 1984. This research was

supported in part by the National Science Foundation under grant MCS 8102079.
f Department of Mathematics, Northeastern University, Boston, Massachusetts 02115.
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(0, 2, C)-controllable at t. We shall then illustrate by an example from optimal
control that our results can prove strong local controllability at some (first order)
extremal point in some cases when other methods apparently fail.

2. Assumltions and results. Let Q be a convex subset of a real vector space, t Q,

’ a topological vector space whose topological dual we denote by ’*, C a convex
subset of Lr with a nonempty interior, and __a (bo, b, b2) Q--> R xR x y. Let

’kA{(O,,’’’,Ok)klojO,
j=l

and assume that, for every choice of a positive integer k and of q,..., qk Q, the
function

j----I

admits a second order Taylor approximation at 0, i.e., there exist (a restriction of) a
linear operator 0’(0):NxN xN and (a restriction of) a symmetric bilinear
operator q"(O) -N xR" xN such that

limlOl-E(q(O)-[q(O)+’(O)O+1/2q/’(O)O0])=O as 0-,0, 0e fig.

This is the case, in particular, if ’ is normed and , admits a second order derivative
,"(0) (relative to k) at 0 (see [1, Thm. A.1]).

We shall describe these properties of by borrowing a related expression used
by Neustadt [2, 1.7.4, p. 45] and saying that has a second order finite Taylor
approximation at (t. These properties imply, in particular, that there exist (a restriction
of) a linear operator ’(t]):Q--->xl" x and (a restriction of) a symmetric
bilinear operator "(t]) Q- t]-->R xR x such that

’(t)(ql t) ’(0)( 1, O, , 0),

"(q)(q,- q)(q- q) "(0)(1, 0,..., 0)(0, 1, 0,..., 0),

I)"(t)(ql- q)2=/]/"(0) (1, O,..-, 0)( 1, O,..., 0).

We refer to ’(q) and "(t) as finite derivatives.
In some of our theorems we shall require certain additional assumptions. We shall

say that (f, 0//, t]) satisfies Condition 2.1 if the following assumptions are satisfied.
Condition 2.1. Q has a uniform structure defined on it,f is a continuous function

from Q to some topological space, 0-//c Q and, for every choice of a positive integer
k, of q,..., qk . Q and of 0 -k, there exists a sequence (u,(O)) in q/such that

k

lim u. (O) q + Z O(q t) uniformly for 0 ffk,
j=l

0 --> u, (0) ’k -’> 0// is continuous for each n 1, 2,. .
We recall that, in particular, 0// has the properties described in Condition 2.1 if

Q is a set of relaxed controls and a// an "abundant" subset such as the set of all
ordinary controls [3, IV.3, pp. 279 ff].

We write ,, (4,,, 4,=), a, z (4,o,

M--a {q QId,,(q)= o, b2(q) C},
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and denote the interior, the closure and the boundary of a set A by A, ft. and 0A. We
k

identify Rk with its dual and thus write llX for Ii x if Ii, x Rk We write Ixl for Yj= Ixl
if x=(xl,’’’, Xk)k and define the norm Inl of a k k matrix B with columns
bl, b k accordingly, that is,

Inl-- max IbJl
ij--k

and

THEOREM 2.2. Let gl Q, 2(0) C, and let Yc Q- be such that

a y Y implies

’1 (t])y =0, (t])y e C b2(t)

(a2) Yl, Y2 Y, Y Y2 implies

’((t)yly2=O,
Then either

(b 1) there exists ll, l) ’ x* such that O,

(bl, 1) l’(gl)h>=O VhQ-h 12c<--O

and

(b l, 2) l"(t])y _-> 0 Vy e Y,
or

dp( gt)ylyg_ e C b2(t).

(b2) there exist neighborhoods G1 respectively G2 of 0 in R respectively 2 such that

41(0) + G {4’l(q)lq Q, ,h(q) +Gc C}.

Next assume that (, 11, (1) satisfies Condition 2.1. Then either statement (b l) is
valid or

(b3) there exist neighborhoods G respectively G of 0 in " respectively 2 such that

Remark. Conditions (bl) and (b2) (respectively (bl) and (b3)) are not exclusive.
As a corollary of Theorem 2.2, we shall derive Theorems 2.3-2.5 below. Theorem

2.3 had been derived before but Theorems 2.4 and 2.5 represent new results.
THEOREM 2.3 [7, Thm. A]. Assume that t minimizes Cho on M. Let Yc Q-gl be

such that

a y Y implies

(4)y-<0, (t])y=O, (4)yeC-(4)
and

(a2) y y2 Y, y y. implies

Cg(q)yly--<O, (4)yly=O, ’(4)ylyeC-(4).

Then there exists (/o, 11, 12) e [0, 00) X X* such that 0,

(bl, 1) IdP’(gt)h>-O VheQ-gl, 12c<=O Vce

and

(bl,2) /"(4)y2_->0 rye Y.
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THEOREM 2.4. Let (, , gt) satisfy Condition 2.1 and gl minimize 4)0 on sg f3 all.
Let Y be as in Theorem 2.3. Then the conclusions of Theorem 2.3 remain valid.

THEOREM 2.5. Assume that gl minimizes 4)0 on M f-I ll but not on M. Let qo M be
such that bo(qo)< bo(t), has a second order finite derivative at qo, and (, ll, qo)
satisfies Condition 2. l, and let Yo c Q- qo be such that

(al) y Yo implies

and
C’o( qo)y <--- O, tb(qo)y 0,

(a2) y 1, Y2 Yo, Y Y2 implies

qb(qo)y e C- dpz(qo)

qb(qo)YY<--O, dp’[(qo)y,y=O, ch(qo)ylyeC-dp2(qo).

Then the conclusions of Theorem 2.3 remain valid with 0 replaced by qo and with lo O.
Remark 2.6.
(a) We observe that Theorems 2.2-2.5 remain valid if all references to , C and

b2 are deleted. This can be seen by setting

Y=C=N, b2(q)=O forqeQ.

Then the second relation in statement (bl, l) of Theorem 2.2 implies that l 0 and
the inclusions in statement (b2) (respectively (b3)) read

t,(t) +G c: tl(Q (respectively )l(l) +G (l()).

Theorems 2.3 and 2.4 are similarly modified. Similarly, Theorems 2.3-2.5 remain valid
if we delete references to the. This can be seen by setting

( Q xN, 4o(q, a)= bo(q), b2(q, a)= b2(q),

b,(q,a)=a for = (q, a) e Q,

and applying these theorems with Q, bi replaced by 0, i. Then statement (bl, 1) of
Theorem 2.3 yields l a => 0, Va R; hence 11 0.

(b) If Q is the set of relaxed controls then statement (bl, 1) of Theorems 2.3 and
2.4 is a first order necessary condition for minimum that generalizes Pontryagin’s
maximum principle to problems with restricted state variables (see e.g. [3, Thms. V.2.3
and .3.2, pp. 303tt and 310ft]). If satisfies statement (bl, 1) then it is customary to
refer to it as an extremal. In view of Theorems 2.3-2.5, we might say that is a first
order extremal if, for some 0, it satisfies statement (b 1, 1) of Theorem 2.3; and say
that q is a second order extremal if, for every choice of a set Yc Q-g/satisfying
conditions (al) and (a2), satisfies statements (bl, 1) and (bl, 2) for an appropriate
I. If, for every such Y, there exists an associated l= (lo, ll, l) with lo 0 then we shall
say that is an abnormal second order extremal. Thus, Theorem 2.5 can be summarized
by saying that every qo e s with 4o(qo) < 4o(i) is an abnormal second order extremal.

3. An example. Let o//be the set of all (Lebesgue) measurable functions u :[0, 1]
[-l, 1]. For each u o//, let

lbl ($/) (Xl ), x2(1)), bz(U) x3(1),

where t--> x(t) (x, X2, X3) (t) is the absolutely continuous solution of the differential
equations

)t, u(t), x3u(t), 23 x- u(t)2 a.e. in [0, 1],

(Xl, X2, X3)(0 (0, 0, 0).
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We shall apply Theorem 2.2 to show that b is strongly locally (07/, b2, (-o, 0])-
controllable at fi 0 (the null function) despite the fact that fi is a (first order) extremal
satisfying Pontryagin’s maximum principle.

In order to apply Theorem 2.2, we must embed in an appropriate set Q and
extend the definition of b (1, 2) to all of Q. The most obvious way of doing this
is to define Q as a// which is a convex subset of the vector space of all measurable
functions from [0, 1] to [-1, 1]. While this approach will not yield the desired result,
we shall follow it briefly to illustrate the importance of choosing an appropriate linear
structure on .

It is easily seen that b has second order finite derivatives, with

’(0)u,=x(1;0,0), 4"(O)u,u=x(;o,o), "(0)u=x(1;0,0),
where the subscripts c and/3 denote partial differentiation and x(t)= x(t; a, ) is the
solution of

gl CUl(t) +u2(t), g_= x3" (CeUl(t) +u(t)),

g3 x-[aUl(t) +/3u:(t)]: a.e. in (0, 1],

x(0) (0, 0, 0).

An easy calculation shows that, for all

’(0)u,-- ul(t) dt, O, 0

qb"(O)u O, O, 2 u,( t’) dt’ u,(

If we choose 11 (0, 1), 12 0, (11, 12) then statements (b 1, 1) and (b 1, 2) of Theorem
2.2 are trivially satisfied for any choice of the set Y and therefore the validity of
statement (b3) remains open to question.

Since the simplest approach (of setting Q i.e. using Lagrangian variations)
fails, we turn to alternatives. A very general set of variations (that includes Lagrangian
variations) is the set of hybrid relaxed-Lagrangian variations introduced in [5].
However, for our present example, it will suffice to consider the smaller set Qreaxeci of
relaxed controls [3, Ch. IV] which are functions cr from [0, 1] to the class of Radon
probability measures on [-1, that are measurable in an appropriate sense and whose
set is endowed with an appropriate topology. It follows from [3, IV.3.9 and VI.2.1, pp.
285 and 353] that (b, o//, t) satisfies Condition 2.1. As usual, any u is identified
with the relaxed control - 6u,), where 6r is the Dirac measure concentrated at r (and
then the null function 0 is identified with the constant function 6o). The corresponding
definition of b(tr)= (bl, (2)(O’) for cr Qrelaxed is

b, (tr) (xl(1), x2(1)), b2(tr) x3(1)

where

1: I rcr(t)(dr), :z x3 I rcr(t)(dr), :3 x f rZcr(t)(dr) a.e. in [0, 1],

(Xl, X2, X3)(0 (0, 0, 0).

Since the set o// is now embedded in Qrelaxed, its induced linear structure is that of
relaxed controls, that is, of measure-valued functions. Therefore, for all y,
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Qrelaxed- o with Yi cri- 0,

b’(o)Yl=X(1;0,0), b"(tSo)ylY2=Xt3(1;O,O), "(o)y=x(1;0,0),

where x(t; a, ) is the solution of

2=(t)+(t), 2=x3[a(t)+(t)], 23=x-(t)-m(t) a.e. in[0, 1],

x(o) (0, 0, 0),

and where , are defined by

i(t)& I ri(t)(dr), wi(t)& I r2i(t)(dr).

If we set

a(t)& n,(r) dr, b,(t) ,(r) d%

then an easy computation yields

(go)Y (a(1), 0), (8o)y -b(1),

(go)y,y2 0,- [b(t)n2(t)+b2(t)n(t)]dt

(olyy= a(la(l ,
( Io Io67(o)Y O,-2 bl(t)nl(t) dt 2:(o)y 2 a(t)2 dr.

Now let

v={- o,-o} {y,, y},

where

o.l(t) {l fr 0<- t-<1/2,
o.2(t) {- fr 0=< =<1/2,

-l for1/2 <t=<l, for1/2 <t=<l.

We verify that Y satisfies conditions (a l) and (a2) of Theorem 2.2; indeed, we have

Thus

r/(t)=l for t=<-, r/(t)=-I for t>, r/2(t)=-r/l(t)

co(t) to2(t)

al(t)=t fort=<1/2, a(t)=l-t fort>1/2, a2=-a, bi(t)=t tt, i.

b](o)y, (0, 0), b[(o)y, =< 0 for 1, 2,

b(to)yly2 =(0, 0), (o)YlY a(t)a2(t) dt=- a(t dt<O.=

If statement (b l, l) of Theorem 2.2 is satisfied and if we define , w, a, b in terms
of as we defined , w, ai, b in terms of and set l (A, A2) then

Aa(1)-12b(1)O V Qreaxed 12C0 VC0;
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hence 12_-> 0 and

Io Io’ I-12 to(t) dt +Al q(t) dr= dt (-/2r2+Alr)tr(t)(dr)>=0.

If we do not have A1 12---0 then -12r2 / Air achieves a negative value at some point
p [-1, 1] and we may then set (t)= which yields a result contradicting the above
relation. This shows that Al l =0; hence A2 0. Thus statement (bl, 2) yields

Io’ [ rl’ /@"(6o)y=-2A bl(t),,(t) dt=-2A2 tdt- tdt =A2O,
aO 1/2

l"(o)y -A2 0,

two inequalities that contradict A2 0.
We conclude that statements (b l, l) and (b 1,2) of Theorem 2.2 cannot be

simultaneously satisfied, which implies that statement (b3) is valid.

4. Proofs. We shall require a lemma which follows simply from the classical
theorem about the separation of convex sets and which is similar to [3, Lemma V.2.1,
p. 299].

LEMMA 4.1. Let W be a convex subset of containing 0 and C’ an open
convex subset of, with 0 C’. en either there exists (ll, 12) m such that O,

lwO Vw W, 12c0 Vc C’

or there exist points i= (, ) W and numbers fli for i= 0,..., m such that the set
{(1, ])li =0,..., m} is linearly independent in +l and

i=o i=o

Proof Let WI A {ll(l, 2)6 W). Then either

(1) OOW; or

(2) 0 and there exists some ( W with (1 0, (2 C’; or

(3) 0 and every with 0, C’ is outside

If (1) holds then the first alternative is satisfied with 12 0. If (2) holds then there
exist Wandfl>0fori=0,... m such that the are veaices of a simplex in

containing 0 in its interiorhence the set {(1 )1i=0,...,m} is linearly
independentand

=o =o

If we choose a (0, 1] small enough and set

a +(1-)( fori=0,...,m

then will have the required propeies.
Finally, we consider the case (3), and set

w {wl(0, w) w}.

Then W2 is a nonempty convex subset of Y and W2 C’= . Since 0 W C’, it
follows that there exists A * such that A2 0 and

(4) A2w20A2c w2 W2, c C’.
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We denote by 0m the origin of W, and set

W# A-{(Wl,12w2)l(Wl, w2)E W},
g {0m, o )]o > 0}.

Then, by (4), We and H are disjoint nonempty convex subsets of N xN and there
exists (1, o) e Nm XN such that

(5) 0, lW1 +0A2W2 0a V(WI, W2) e Wand a >0.

We set l1 =#l, /2= o12 and conclude that oN0, /= (/l,/2)0 and, by (4) and (5),

lw O, 12c 0 Vw W, c C’. Q.E.D.

Proofofeorem 2.2. We first assume that (, , ) satisfies Condition 2.1, and set

c, c (0), c’ c,
W {"() E’ yY2 +2’(q)hly E rye [0, 1], h e O q},

where ’ denotes finite sums in which different terms contain distinct elements y.
Clearly, W is convex, 0e W and 0e C’. Thus, by Lemma 4.1, either there exists

(ll, l) e = x* such that

1#0, lwO Vw lcO Vc C,

or there exist {& ({, {)e W and , for i=0,..., m such that the set {(1, {)1i=
0,..., m} is linearly independent in + and

,>0, L,=, E,’,=o, ec’.
i=0 =0

If the first alternative holds then

lw /(E’ ry (O)y+2’()h)O VweWandheQ-q.

Then relation (bl, 1) is obtained by setting w= 2’(O)h and relation (bl, 2) by setting
w 6"(#)y

Now assume that the second alternative holds, and let
k

r.y,+2&’(0)h fori=0,-..,m.
j=l

If we represent all the distinct y.j as y, , Yk and redefine r, appropriately, we can
write that

k

r,.jy +2’(#)h,,
j=l

where k may be assumed (because r, may have value 0). We observe that for

lOt=l,
we have

and therefore

Oi’rij <=1
i=o

j=l i=0 i=0
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and

j=l i=0

+ "( 2 o, +’( 2 oA +(, o,
j=l i=0 i=0

where (, O)= o() uniformly for all 0 with 0 1. (This last asseion can be
verified by applying the Taylor approximation to () as a function of (, u, v) about
(0,0,0), where u =(u,..., u), v=(v,..., v), u is the coecient of y in and
v 0). Since

$;(q)ye C1, $f()ypy=O, $()ypy C ifp# r,’, (q)y =o,
we have

(1)

and

( ) 1/2

j=l i=0

2 (q) Oi.,2,p 2 0," YpYr CI
p,r= i=0 i=0

p#r

,/,(4) 4,(,) O,roy
(2)

j=l i=0

i=0

We recall that
such that

+G+G+GcC fori=0,...,m.

We may find aoe (0, (2k) -l] such that, for $ (6, 62),

hence, by (2),

(3) &=(4)+2(+) C if0oandl01= 1.

Let min (/max) denote the minimum (maximum) of {/3o,’’’,/3,,}, and let H
denote the nonsingular (rn + 1) (rn + 1) matrix with columns (1, sol) for i= 0,. ., rn.
We observe that there exists al (0, ao] such that

(4)

We have 4 e Q if a (0, 1] and 101- 1; and w e -k+m+l if w (o)1, ", tok+m+l) and

=a20i fori=0,’’, m.% a Y 0iriZ, forj= 1,..., k, tok+i+,
i=0

Because Condition 2.1 is assumed satisfied, there exists a sequence (u,(to)) in 0//such

that: lim, u,(to) t uniformly for all to corresponding to a [0, al] and 101 the
functions

(a, O) o- u.(oo)
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are continuous for each n; and there exists N such that

(5) [e(c, o)[<=sl, e2(a, O)s2G if0_-<c<-c,,10]

where s was defined in (4) and

(6) e(a, O) a-(el, e2)(a, 0) a-- 4(uN(w))- b(), s2a--Sl +1/2a.
Let y __a ]a and

x - {x (Xo, ., x) /’ Ix,- t,l--< 1/2Yflmin for 0,... ,m}.

The set X is compact and convex and

(7) xX impliesO<1/2yfli<x,<yfl,,= O,___l
For each z " with Izl _-< s, the function

x - ,13 -2H-’(-s,, q,,(Ixl l/=, Ixl-’x) +e(Ixl ’/, Ixl-’x)- z)

of X into R"+1 is continuous and, by (4)-(7), maps X into itself. Therefore this
^2 1/2 --1functonhasafixedpolntx=a 0, wherea=lxl 0=Ix] x, 10]=l.

Let , 03 be defined the same way as , w but with k, t replacing a, 0, and let
=a uv (o3). We have

9-=yfl-2H-(-s,, q,(, )+e,(c, )-z);
hence

c2H
which yields

(8)

and

1/22 1/2,}/ -I- S S2

Oil--I/tl(i, )+el( ce, /) =1/2T 2 iii +z= z.
i=o i=o

Therefore, by (2),

(9) (1()= 1() -t- el(,
i=o

Furthermore, by (5) and (6),

42(a) 42()+ e2(c, )e 4-()+s:G;

hence, by (3) and (8),

(10) 62(a) +s_G= 62() +s2(G + G) c C.

If we denote by G the ball in g" about 0 with radius s and set G_ a- szG then
statement (b3) follows from relations (9) and (10).

The proof of the first part of the theorem is a simplified version of the preceding,
with no reference to u, (w) and with e(a, 0), a replaced by 0, . Thus the only elements
of Q involved in discussing the second alternative are of the form t, and there is no
need to use Condition 2.1. Q.E.D.

Proof of Theorem 2.3. Let

(q) b(q), 2(q) (62(q), 6o(q)- 6o(q)) for q 6 Q,

e=x, =cx(-oo,0], =(,,).
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We observe that if we replace b, , C by , e, then the assumptions of the first
part of Theorem 2.2 remain satisfied and therefore one of the alternatives (b l) or (b2)
of that theorem is valid. The second of these alternatives i.rnplies that there exist
neighborhoods G and G2 (-s, s) of the origins in R" and L such that

0G {bl(q)lq Q, q2(q) + G2 C, bo(q)- bo(4) +s < 0}.

Thus there exists qo Q such that

o(qo)<o(q)-S<o(q), (qo)=0, (qo)C,

contrary to ass.ump.tion; T.herefore alternative (b l) appJies to , , and implies the
existence of (ll, 12, lo)) R" x x such that 0,

(1) ’t’(t) h ’l b (t) + ’2b(t) + ’ob(t)]h >- 0 VhQ-t,

(2) (l, fo)(C,a,)=l"2C+foa<=O VcC-dz(gl),a<=O,

(3) l"(51)y2=[l(q)+ldp.(q)+lob)(q)]y:>=O Yy Y.

Relation (2) implies
to>-_ O, l"2c <- O Vc C-b2(t),

and the remaining assertions of Theorem 2.3 follow from (1) and (3). Q.E.D.
Proof of Theorem 2.4. The proof is the same as for Theorem 2.3 except that the

reference to (b2) is replaced by reference to (b3) which implies

0 Gl-= {bl(u)lu q/, (2(U) -" G2 C, bo(U)- to(t) + s < 0}. Q.E.D.

Proof of Theorem 2.5. We apply the second part of Theorem 2.2, with t], Lr, C, b
replaced by qo, Y, C, b, where

e c x, c x (-, 6o(q)),

(,(q) b,(q), 2(q) (b2(q), 6o(q)).

Statement (b3) implies then the existence of neighborhoods G and G2 x (-s, s) of the
origins in R’ and r )<R such that

0G GI c {b,(u)}u 0//, b2(u) + G2 c C, bo(U) + s < 6o()}.

Thus there exists u a// such that

4o(U,)<4o(Ct)-s, 6,(u,)=0, 4(u,)c,

contrary to assumption. Ter.,efore alternative (b 1) of Theorem 2.2 is valid and implies
the existence of =(/, (l, lo)) YR, S0 that satisfies the relations

(1) ’(qo)h>=O lh Q-qo,

(2) (l, ’o)(C, a)= l*2c + l*oa <=0

Relation (2) implies that

lo O, l"2c <- 0 /c C bE(qo),

and the remaining assertions of Theorem 2.5 follow from (1).

l"(qo)y2>-O Vy Yo,

Vc C bo(qo), a (-, bo(q)- bo(qo)).

Q.E.D.
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SOME RESULTS ON BELLMAN EQUATION IN HILBERT SPACES*

G. DA PRATOf

Abstract. We give an existence result on the Bellman equation related to an infinite dimensional control
problem.

Key words. Bellman equation, dynamic programming, nonlinear semigroup

1. Introduction. This paper deals with the evolution equation

(1.1)
et=1/2Tr(S,x)+(Ax, ex)-F(x, ,),

(O,x)=o(X),

as well as with the stationary equation

(1.2) A-1/2Tr(Sexx)-(Ax, ,,)+ F(x, ) 0, A>0.

Here A is the infinitesimal generator of a strongly continuous semi-group in H, F a
mapping from H H into , a mapping from [0, T] x H into (t and ,, denote
derivatives with respect to and x).

Equations (1.1) and (1.2) are relevant in the study of dynamic programming in
the control of stochastic differential equations (see for instance [3], [7]). In [1] (1.1)
is studied in the particular case

(1.3) F(x, ) 1/2112- g(x).

In this case it is possible to prove the existence and uniqueness of if o and g are
convex (with polynomial growth to infinity). In applications to control theory, the
hypothesis of convexity is fulfilled if the state equation is linear and the cost functional
is convex. In this paper we give an approach to (1.1) and (1.2) without convexity
hypotheses.

We remark that, using abstract Gauss measure, some results have been proved in
[9] in the particular case when A 0.

Our method consists first in solving the linear problem

(1.4)
(O,x)=o(X),

then in considering the nonlinear term as a perturbation of the linear one. Section 2
is devoted to problem (2.4) and 3 to (1.1), (1.2) (using the theory of nonlinear
semigroups). Finally in 4 we present an application of our results to a problem of
stochastic control.

2. The linear problem. We are here concerned with the problem

(2.1)
6(0, x) bo(X).

Let us list the following hypotheses"
HI) S is a self-adjoint, positive nuclear operator in a separable Hilbert space H.

* Received by the editors October 13, 1983.
f Scuola Normale Superiore, 56100, Pisa, Italy.

61



62 G. DA PRATO

S is given by

(2.2) Sx ., X,{x, e,)e,
i=I

where {ei} is a complete orthonormal system in H and hi>0, i= 1,2,..- ((.) denotes
the inner product and[. [the norm in H).

H2) A: DA c H + H is the infinitesimal generator of a strongly continuous, linear
semi-group e tA in H. Moreover [etA[<_-- and {ei}c DA.

We shall denote by Cb(H) the set of all mappings p: H-R uniformly continuous
and bounded. Cb(H), endowed with the norm

(2.3) IIll= sup
xH

is a Banach space. By C(H), h 1, 2,. , we mean the set of all mappings : H --> R
uniformly continuous and bounded, with all derivatives of order less than or equal
to h.

Let {/3i} be a sequence of mutually independent real Brownian motions in a
probability space (f, e, P). Set

(2.4) W x//3i(t)ei
i=1

then it is well known (see for instance [5]) that W is a H-valued Brownian motion
with covariance operator S.

To solve (2.1) we consider the following approximating problem:

b7 =1/2 Tr (S.6") +(A,,x, 6,),

"(0, x) 6o(X), xeH.

where H, P,(H), P,x i=1 (x, ei}ei, S, SP,, A, P,AP,. Note that A, is bounded
by virtue of hypothesis H2b.

The following lemma is standard (since problem (2.5) is finite dimensional).
LEMMA 2.1. Assume that boe C2b(H). Then problem (2.5) has a unique solution

qb" given by

(2.6)

where

"(t, x)= Eo(etA"x +X’) lx H,,,

E means expectation).
In the sequel we set

(2.8) (TTO)(x) E(e’A"x +XT)
for any Cb(H). It is easy to check that T’ is a strongly continuous semi-group of
contractions in Cb(H,) whose infinitesimal generator s, is given by

(2.9) 4", =1/2 Tr (S.,xx) +(A,x, d/x) V@ C2b(H.).
Note now that X’ is a Gaussian random variable in H, whose covariance X’ is given

(2.7) XT= e(t-s)A"dWns, Wns=PnWs
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by

(2.10)

It follows:

E ’x eSA s,, esA"x ds tx H,,.

(2.11)

(T’dq,)(x)=(27r)-’/ det ()-1/2 I exp (-1/2((E’)-y., y,,))q.,(e’A"x+y) dy

Vt# e Cb(H,).

Observe that, due to the hypothesis that Ai > 0, we have det (Z’) 0.
We will compute now the derivative of T’.
LEMMA 2.2. For any Cb(H,), t> 0 and x H, the derivative of T’ with respect

to x exists and is given by

(2.12)
d
dx(T, dd)(x)= E(e,A*.(y,, -, ,A.x,) X,g,(e +X’)).

Proof Setting in (2.11) z etA"x + y, we get

(2.13t

(T’q,)(x) (27r) -n/2 det (E)-I/2 I exp (-1/2((p)-(g- e’A"x), Z-- e’A"x))(Z) dz
H.

from which

dTTg’](x)=(2rr)-"/2 det (y..,)-/2f exp (--1/2((E’)-’(z--e’A"x) z--e’A"x))
dx] ,.

(2.14) e’a*"(Y_.’)-’(z e’a.x)O(z) dz

f e’A*.(Z’)-’yq,(e’a.x +y)f.(y) dy
dHn

where f, is the n-dimensional density of X’. Thus (2.12) follows.
For any q Cb(H) we now set

(2.15) Tt)(x) E(etAx + X), > O, x H,

where

(2.16) Xt e(’-S)a dWs.

LEMMA 2.3. Let k C(H), q"(x)= 0(P,x); then the following statements hold:
a) (T7 q,")(x) T,q,(x) Vx H;
b) T,O Cb(H);
c) T, is a semi-group of contractions in Cb(H).
Proof. We have

T,q,(x) T’q"(x)l <= Elg,(e’Ax + Xt)- O(e’a"P.x + XT)l.

Now e’A"p.x- e’ax by the Trotter-Kato theorem; moreover X’ X, in probability
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since

E]X, X’I:: A, le(’-s)Aeil ds
i=n+l

+ Ai le(’-s)Aei- e(’-)A.e[ ds
i=l

<=t
i=n+l

1i + E ii le(’-s)a,,ei e(’-s)a"ei]2 ds -+ 0
i=1

as n -> o. (Recall that i=1 /i Tr (S) < +c.) Conclusion a) follows from the Lebesgue
theorem. The statements b) and c) are straightforward, l-1

We will study now the differentiability of T,. From (2.12) it appears (for n-->
that we have no chance to define (d/dx)(Ttp) for every , Cb(H). To this end we
need some additional hypotheses and a new definition of differentiality. The situation
is similar to the Gross theory for the heat equation in Hilbert spaces (when A 0, see
[81).

We set

(2.17) A7 S. e’a*-( ",)-
and assume"

H3) a) There exists the limit

lim A’ P,,x A,x Vx H.

b) There exists a constant 3’ > 0 such that

IATI Vt>0.

Let us give an example in which H3 is fulfilled.
Example 2.4. Assume that

(2.18) Aei txiei, tzi >= 0,

Then

(2.19)

so that

ei e-2t’tA dt el,

2
(2.20) Aei

e-20z, e,,

i-- 1,2,....

i=1,2,...,

i= 1,2,.’..

Now the limit in H3a exists; in fact

(2.21)

where

(2.22)

+p n.?+IA, P,+pX- At P,,xl2=
i=n+l

2/xi e-
e-2txit

i=n+l

-a/2ae
y=sup

>o 1-e
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H3a, b follow easily from (2.21).
Let us now define ditterentiability.
DEFINITION 2.5. We assume that q Cb(H) is S-ditterentiable if:
a) For any x, y H there exists the limit

(2.23) limo -((x + hSy) (x)) Lx(y);

b) Lx(y) is linear, continuous in y.
If q is S-ditterentiable we denote by Sq, the element of H defined by

(.4) Lx(y) (Sq,(x), y).

We shall denote by Cs(H) the set of all mappings q in Cb(H) such that
i) q is S-ditterentiable,
ii) Sq e Cb(H),

and Cs(H), endowed with the norm

is a Banach space.
We are ready now to prove the main result of this section.
PROPOSITION 2.6. Assume that HI, H2 and H3 are fulfilled. Let d/ C,(H) and

> 0; then T,d/ cls(H) and

(2.26) S(Tfl/),(x)= F_,(AtXtO(etax +Xt)) lim S,(TTd/),(P,,x).

Moreover

(2.27)

< Y /Tr (S)

y
IIS(T,q) IIo <-- tdTr (S),

where y is the constant in H3b.
Proof For any x, y H we set

(2.28) F(h) Ttb)(x + hSy),

(2.29) F,,(h) T’O)(P,x + hS,,y).

Clearly F, (h) F(h) uniformly in [0, ]. Moreover from Lemma 2.2 we have

(2.30) F’,(h) (E(ATX’ q(e’A"(p,,x + hS,y) + X’)), y)

so that, as h- 0,

(2.31) F’,,(h)-(E(A,X(e’A(x+hSy)+Xt)),y) uniformly in [0, 1].

Thus F(h) is differentiable in h and equality (2.26) follows. Concerning (2.27) we have

3 1/2IIs( T,q,)xll<-llq, llo(E(IX, 2)
(2.32)

Ai le(t-)Aei[ 2 dt <- S. [3
i=l
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We remark now that the semi-group T, on Cb(H) is not strongly continuous (when
H is infinite-dimensional and A is unbounded). Since we cannot use the Hille-Yosida
theorem, we use the following procedure to define the "infinitesimal generator" of T,.

We set

(2.33)
(Fxd/)(x) e-X’( TtO)(x) dt

e-"’E(e"x +X) dt V4e Cb(H),xe H.

Clearly there exists a linear operator in Cb(H) such that

(2.34) R(A, M), Fxp VA > 0;

moreover

<1 VA>0(2.35) IIR(A, )11oo=
so that M is m-dissipative in Cb(H). M can be viewed as the abstract realization of
the linear operator

1/2 Tr (Sq,,) +(Ax, ).

The following corollary is straightforward:
COROLLARY 2.7. Assume that H1, H2 and H3 are fulfilled. Let 4’ Cb(H) and

A > O. Then R(A, )d/ Cs(H) and

(2.36) S(R(A, ))x(x)= lim S.(R(A, ,)d/n)x(P,x),

where the operators M, and M are defined by (2.9) and (2.34) respectively. Moreover,

(2.37) IIS(R(A, ))11
yF(1/2)4Tr (S)

3. The nonlinear problem. We consider here the problem.

b, =1/2 Tr (Sqbxx) +(Ax, qb)- F(Sbx),
(3.1)

b(0, x) bo(X).

Denote by Lip (H) the set of all mappings @" H --> R Lipschitz continuous and set

(3.2) ]]FllL sup { ]f(x) f(y)l
Ix-yl

,x, y6H, xCy

Let F Lip (H, H) and 3 be the mapping in Cb(H) defined by

(3.3) -F(Sdpx) b CS(H).

We are going to prove that + is m-dissipative, and then we shall invoke the
Crandall-Ligget theorem [4] to solve (3.1).

Let us also introduce the approximating operator

(3.4) ,, -F(S,ckx) Vck C(H,).
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LEMMA 3.1. Assume that the hypotheses H1, H2 and H3 hold. Let FLip (H);
then M,, + ,, is m-dissipative. Moreover, if
(3.5) A > 4(V’IIFII,.)
we have

(3.6)

and

(3.7) (A Mn ,)-lg R(A, M,)(1 ,(R(A, M,)))-’g Vg Cb(H,).

Proof The dissipativity of, +, can be easily checked (it is a finite-dimensional
operator). For m-dissipativity it suffices to show (see for instance [6]) that
is surjective for some h > 0. To this purpose choose g C,(H,,) and consider the
equation

(3.8) hb M.4 .b g, h>0.

If we set q h4- .4, (3.8) is equivalent to

(3.9)

where

(3.10) E,q =-F(S,(R(A,

Recalling (2.27) we have

(3.11) lIE. IlL <-

and the conclusion follows from the contraction principle.
The proof of the following lemma is quite similar so it will be omitted.
LEMMA 3.2. Under the same hypotheses of Lemma 3.1, if (3.5) holds then

(A- M- )- exists and is given by

(3.12) (A M- )-’g R(A, M)(1 R(A, M))-’g Vg Cb(H).

Note that at this stage we cannot assert that M + is m-dissipative (we did not
prove that M / is dissipative). This will be proved by the following proposition.

PROPOSITION 3.3. Assume that hypotheses H1, H2, H3 hold. Let F Lip (H); then
s + d is m-dissipative. Moreover, for any g Cb(H) we have

(3.13) ((A-se-)-g)(x) lim ((A-s,-n)-g,)(x) xH,

(3.14) S((A-C-N)-’g),(x)= lim Sn((A-,n-n)-lgn)x(X) VxeH,

where

(3.15) g,(x)=g(P,x).

Proof Set

(3.16)
. (1 .R(A, M.))-lg.,

q (1 R(A, M))-’g.
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By virtue of Corollary 2.7, in order to prove (3.13) and (3.14) it suffices to prove that

(3.17) O(x) lim 0x(X) Vx H.

By the contraction principle we have

(3.18)
ft. lim q" in Cb(H.)

q lim in Cb(H)

where

(3.19)
om+l_.g+.,(om).

However, since g, does not go to g in Cb(H) (as n0), the conclusion (3.17) does
not follow immediately.

Fix now x H; then we have

(3.20)
q,(x)- q,. (P.x)l <--I q,.(x)- q, (x)l + q, (x)-

The first and the third term of the right-hand side of (3.20) go to zero (as m-o)
uniformly in n; moreover, for any fixed m we have I@"(x)-d/"(P,x)lO as n-o;
thus (3.17) is proved. Now dissipativity of M + follows from (3.13), and m-dissipa-
tivity from Lemma 3.2.

Let now p Lip (H, H) and set

(3.21)
c4 (p(x), Sdpx) Yd Cls(H),

.4 (S.p(x), 6) v6 c’(I-I.).

Then by similar arguments we can prove the following.
PROPOSrrION 3.4. Assume that hypotheses HI, H2, H3 hold. Let F Lip (H),

pc Lip (H, H); then M+ + c is m-dissipative. Moreover, for any g Cb(H) we have

(3.22) ((A M- c)-lg)(x) lim ((A , , c,)-’g,)(x) Vx H,

(3.23) S((A M- Y3 c)-g)x(X lim S((A M. Yd, c.)-l gn)x(X /x H,

where g, is given by (3.15).
Remark 3.5. Under the hypotheses of Proposition 3.4 we draw the following

conclusions.
a) For any A > O, g Cb(H) the equations

(3.24) Ab -1/2 Tr (Sbxx)-(ax, Ckx) + F(Sckx)-(p(x), Sdpx)= g,

(3.25) Ab" -1/2 Tr (S,ch,x)-(A,x, 49,) + F(S,qb,)-(S,p(x), b,)= g

have unique solutions 4) and 4)"; moreover

(3.26) qb"(P,x) dp(x), (S,d,)(P,x)-(Sdpx)(x) Vx n.
b) M+ + c verifies the hypotheses of the Crandall-Liggett theorem; thus we
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can conclude that the problem

b, =1/2 Tr (Sb,,x) +(Ax, qbx)- F(Sqb,) +(p(x), S() g,
(3.27)

qb(O, x) d)oE Cb(n)

has a unique weak solution.

4. An application to control theory. We shall study the following control problem.
Minimize

(4.1) J(x, u)= E e-a’(g(y(s) +1/21u(s)l=)) as, x > 0 fixed,

over all u E U subject to the state equation

(4.2)
dy (Ay + Sp(y) + Su) at + dw,,

y(0)=x.

U (the control space) is the set of all stochastic processes u adapted to W, and such
that lu(t)l--< R where R > 0 is fixed. We shall assume in the whole of this section that
hypotheses HI, H2, H3 hold and moreover that p e Lip (H).

Let J(x) infu u J(x, u) be the value function ofproblem (4.1). The corresponding
Bellman equation is see for instance [3]:

Ab -1/2 Tr (Sqbx)-(Ax, x)-(p(x), Sr) + F(Stpx) g(x),(4.3)

-where

(4.4) F(x) I1/21xl= iflxlR,
R2

[. Rlxl---f if Ixl >- R.

Clearly F e Lip (H), so that by Proposition (3.4) (see also Remark 3.5a), (4.3) has a
unique solution b Cs(H). Moreover, by (3.26) b can be approximated by the solution
b" to the equation

(4.5) Ab" -1/2 Tr (Sb,x)-(A.x, c,)-(S.p(x), b,) + F(S.b,) g(x), x H..

Let us also consider the approximating state equations

(4.6)
dy,, (A,y, + S,p(y,) + S,,i) dt + dW’,

y.(O)=xEH,,.

LEMMA 4.1. Let x H, u U, y be the corresponding solution of (4.2) and the
solution of (4.3). Then the following identity holds,

(4.7)

where

6(x) +1/2E [lu +S,xl=-x(IS6xl- R)] ds

E (g(y(s) +-I u(s)l=) ds + e-X’(y(t)),

(4.8) X(a) { Oa 2 ifa-<O’ifa ->0.
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Proof Let y, be the solution of (4.6) and b" the solution of (4.5). By the It6
formula we have

(4.9)

(4.10)

d e-Xtqb"(y,) {F(S,b) +(S,u, b,)- g(y,)} at +(qb,, dWt).

By integrating and taking expectations, we get

6"(x.) +1/2E [lu,, + S.(;b x([S,,6,I- R)] ds

E (g(y,) +1/21u.(s)l =) as + e-X’b"(y,(t)),

where u, P,u, and (4.9) follows by letting n go to infinity.
PROPOSITION 4.2. The solution dp to (4.3) coincides with the value function J of

problem (4.1). Moreover, there exists a unique optimal control u* for problem (4.1) which
is related to the optimal state by the synthesis formula:
(4.11) ,*(t)=-h(Schx(y*(t)), t>-O,

where
[z] iflzl-<R,

(4.12) h(z) z

R iflzl>-R.

Proof First of all we remark that the following inequality holds

(4.13)

the equality being fulfilled if

(4.14) u -h(Sqb,).

Thus, from (4.7) it follows that b(x) -< J(x). To prove the converse let )7 be the solution
of the closed loop equation

d37 (A37 + Sp(y)- h(S6(y))) dt + dW,,
(4.15)

37(0) x.

The existence and uniqueness of Eq. (4.15) are standard because hE Lip (H) and
$4,, E Cb(H). By setting u t, y )7 in (4.7), and letting A go to infinity, we obtain

(4.16) oh(x) E (g(fi(s)) +1/2lfi(s)l 2) ds

so that (a, 37) is an optimal couple for problem (4.1). Finally let (j,)7) be another
optimal couple; again by (4.7) we get

(4.17) E [[a /s4()lZ-x(Is4,x()l-e)l ds--O

which implies a=-h(Sb,()7)); due to the uniqueness of (4.15) we have if= tT. l-1
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A CONTINUOUSLY DIFFERENTIABLE EXACT PENALTY FUNCTION
FOR NONLINEAR PROGRAMMING PROBLEMS WITH

INEQUALITY CONSTRAINTS*

G. DI PILL0? AND L. GRIPPO:I:

Abstract. In this paper it is shown that, given a nonlinear programming problem with inequality
constraints, it is possible to construct a continuously differentiable exact penalty function whose global or

local unconstrained minimizers correspond to global or local solutions of the constrained problem.

Key words, constrained optimization, nonlinear programming, exact penalty function methods

1. Introduction. A potential attractive idea in the field of nonlinear programming
is that of constructing an exact penalty function; that is a function whose minimizing
points are also solutions of the constrained problem.

Nondifferentiable exact penalty functions which possess such a property have
been widely investigated in recent years (see, e.g. ]-[5]). However, in order to enable
conventional unconstrained techniques to be employed, it is necessary that the exact
penalty function is sufficiently smooth, particularly in that the gradient exists and is
continuous everywhere.

For problems involving only equality constraints it has been shown [6]-[8] that a
continuously differentiable exact penalty function can actually be constructed, by
replacing the Lagrange multiplier in the augmented Lagrangian of Hestenes and Powell
with a multiplier which is a continuously differentiable function of the problem
variables.

An extension of this approach to inequality constraints has been proposed in [9]
by defining the multiplier function as the vector of Kuhn-Tucker multipliers associated
with a quadratic programming subproblem. In this way, however, the resulting exact
penalty function has still first derivative discontinuities that might affect the efficiency
of the unconstrained minimization method employed.

A different approach has been considered in [10]-[11], by replacing the search
for a saddle point of the ordinary Lagrangian with the search for an unconstrained
minimum of a continuously differentiable exact augmented Lagrangian in the extended
space of the problem variables and the associated multipliers. Extensions and computa-
tional applications of this technique have been investigated in [12]-[16].

In this paper we show that a continuously differentiable exact penalty function
which depends only on the problem variables can be constructed also for the inequality
constrained case. More specifically, we prove that, under mild regularity assumptions
the augmented Lagrangian obtained by employing the multiplier function introduced
by Glad and Polak in [17], turns out to be an exact penalty function.

The paper is organized as follows. Section 2 contains the problem formulation
and the definition of the exact penalty function. In 3 we investigate the relationships
between stationary points of this function and Kuhn-Tucker pairs of the original
problem. The main results are given in 4 and 5, where the equivalence between the
unconstrained minimization of the exact penalty function and the solution of the
constrained problem is established, respectively, for global and local solutions.

* Received by the editors January 27, 1983, and in revised form September 20, 1983.
f Dipartimento di Informatica e Sistemistica, Universith di Roma La Sapienza, Via Eudossiana 18,

00184 Roma, Italy.
: Istituto di Analisi dei Sistemi ed Informatica del C.N.R., Viale Manzoni 30, 00185 Roma, Italy..
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2. Problem formulation. We consider the general nonlinear programming
problem:

Problem P.
minimize f(x), x R
subject to g(x) <- 0,

where f: R" --> R and g: R" R’. We assume, unless otherwise stated, that f and g
are two times continuously ditterentiable on R".

We denote by L(x, h) the Lagrangian function for problem P:

L(x,A)=f(x)+A’g(x)

and by VxL(x, A) the gradient of L(x, A) with respect to x.
A Kuhn-Tucker (K-T) pair for problem P is a pair (g, ) R" R which satisfies

the conditions
Vx(, ) 0,

where

g() =<0,

>_--0,

G(x) a_ diag (g,(x)).

Given any x R", let Io(x), I(x) and/(x) be the index sets defined by

Io(x) a--{i: g,(x) 0},

I(x) __a { i: g,(x) _>-- 0},

Iv(x) a__ {i: gi(x) < 0}.

We assume that the following hypothesis is satisfied:
Assumption A. For any xR", the gradients Vgi(x), iIo(x) are linearly

independent.
Moreover, we shall make use, when needed, of the following assumption, where

X is a given subset of R".
Assumption B. At any point x X where, Vgi(x)gi(x)-O,

iX(x)

we have gi(x)= 0 for all i I(x).
Note that Assumption A reduces, over the feasible set, to a well-known regularity

condition. Assumption B is much weaker than the assumption considered in [17],
where it is assumed that

Y Vg(x),X =0
iIr(X)

with Ai >- 0 for all i/(x) implies that Ai =0 for all i/(x).
As regards Assumption B, we can state the following proposition:
PROPOSITION 1. Let be a feasible point for problem P. Then there exists a

neighbourhood X of, where Assumption B is satisfied.
Proof. Recalling Assumption A, we have that there must exist a neighbourhood

X of such that the gradients Vg(x), Io() are linearly independent for all x XI.
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On the other hand, by continuity we can find a neighbourhood X of , X _
X

such that/(x)_ Io() for all x X. Therefore, for all x X,, Vg,(x)g,(x) =0
i(x)

implies g(x) 0 for all I(x). [3

In order to define an exact penalty function for problem P, we first introduce, by
means of the following proposition, the multiplier function (x) proposed in [17].

PROPOSITION 2. For any given x R and "r’ > 0 there exists a unique minimizer

A(x) R ofthe quadraticfunction in ,, p(A x)_a II  L(x,  )11 = /  )-II )-
oer Rm,

given by

(1) , (x) -M-l(x) Og(x) Vf(x)
ox

where

Og(x) Og(x)’
M(x) a_ . 3,2G2(x).

Ox cgx

Moreover, if (2, ) is a K-T pair for problem P, then
Proof. Let

Io.(X) a_ { i, <= <= m,
_

Io(x)},

Ao(x) (Ogi(x)/Ox), lo(x),

A,,(x) (cggi(x)/Ox),

G(x) - diag (g,(x)),

Then, by Assumption A, we have

[Og x
rank

cgx
[ Ao(x) 0

yG(x) rank
LA,(x) 0

so that the matrix

is nonsingular and positive definite. This implies that the vector h (x) given by (1) is
the unique minimizer of the quadratic function o(h x).

Finally, if (2, ) is a K-T pair for problem P, then 0(; ) 0 and hence

We consider now an equality constrained problem, equivalent to Problem P, which
is obtained by employing squared slack variables.

Problem Q.

minimize f(x), z (x’, y’)’,

x R ", y (Yl, ", Y,,)’

subject to gi(x) + y2 =0, i= 1,..., m.
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The augmented Lagrangian function for Problem Q is given by"

La(z , =f(x) + A’(g(x) + Yy) +-IIg(x) + Yyll 2

where e > 0 and Y diag (yi).
By substituting for A the multiplier function A (x) defined by (1) and minimizing

La(z, A (x)) with respect to y, we obtain the function

(2),

where

and

U(x; e)--a min La(z,A(x))=f(x)+A(x)’(g(x)+ Y(x; e)y(x; e))
y

+-IIg(x) + g(x,, e)y(x; e)ll

2g,(x) +eA,(x)]y2(x; e) a___min O,
2

Y(x; e)A diag (y,(x; e)).

We note that function U can be rewritten, after simple calculations, in the form
of the augmented Lagrangian function considered in [17].

As a consequence of (2), we have
PROPOSITION 3. Let x be a feasible point for problem P; then for any e > O,

U(x; e) <-f(x).

Proof. Let x be such that g(x)<=O. Suppose first that y2(x; e)=O; this implies,
by definition of y2, that

2g,(x)+eA,(x)>-_O

so that, since g(x)-<0, we have:

1 g(x) + Ai(x)gi(x) <- O.

Now assume that y2(x; e)> 0; in this case

whence

gi(x) +y(x; e) - E 2l(g’(x)+y2(X;e e))2+A’(x)(g’(x)+y2(x; e))= A,(x)_--<O.

Therefore, recalling (2), we have U(x; e) <=f(x). U
PROPOSITION 4. The function U(x; e) defined by (2) is continuously differentiable

at any x R and its gradient V U(x; e) is given by

VU(x; e)=Vf(x)+Og(x)’A(x)+OA(x)’(g(x)+ Y(x; e)y(x; e))
Ox Ox

(3)
20g(x)’

(g(x) + Y(x; e)y(x; e))
e Ox
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where

(4)

with

(x) =_-,x)gx vxi-,,, ,x))ax L ax

+ E e.iVxL(x, A(x))’+2yA(x)G(x)
OX2

VxL(x, A (x)) [VxL(x, A )] =ao,),

VL(x, Z (x)) & [V2L(x, A )]a =o,),
A(x) diag (A(x)),

ej the jth column of the m x m identity matrix.

oof it can be easily verified that

U(x; )=I(x) +(x)’g(x) +-II(x)ll-- rain 0,
e e= 2

which, together with the assumptions made on the problem functions, implies that U
is continuously differentiable.

Noting that, by the definition of U, we have:

Oy(x; e)’
VU(x; e) =[vxL(z, )] + [v(z, )]

a =a(x) OX
y=y(X; e) y=y(x; e)

OX x =x(x)
y=y(x; e)

and that, by definition of y(x; e),

[vo(z, )] =0,
x =a(x)
y=y(x" e)

we obtain (3).
As regards (4), we observe first that, by (1), we have

Og(x)
Ox

Vx(X, x (x)) + eOe(x)x (x) o.

Making use of a dyadic expansion, we can write

,,.: es -!s(X)ox vx(x, (x)) +O:(x)(x)=O,

whence, by differentiation, we obtain

OA(x)])0x
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Since

02L(x,A)] _Og(x)’

(4) follows directly from (5).
In the sequel we shall investigate to which extent the function U can be considered

as a (continuously ditterentiable) exact penalty function for the inequality constrained
problem P.

3. Preliminary results. We establish here the relationships between stationary
points of U and K-T pairs of problem P.

THEOREM 1. Let (2, ) be a K-T pair of Problem P. Then, for any e > 0:
(a) is a stationary point of U,
(b) A (),
(c) U(; e)=f().
Proof (b) has already been proved in Proposition 2. Moreover (b), the K-T

conditions and the definition of y(x; e) imply

VxL(, A()) 0

and

g() + Y(; e)y(2; e)=0.

Then, (a) follows from (3) and (c) follows from (2).
The following lemmas are needed in the proof of a converse result.
LEMMA 1. Let be a feasible point for problem P. Then, there exist values

and p > 0 such that the matrix

K(x, e) a Og(x) Og(x)’ y2G(x) Y2(x; e)
Ox Ox

is nonsingular for all e [0, g] and all x: [[x- p.
Proof By definition of y2(x; e) we have that, if is feasible and e =0, it results:

v(; 0) =-().

Therefore K(; 0) M(), which is nonsingular by Proposition 2. The existence of
and p follows from the continuity assumptions,

LEMMA 2. Let be a stationary point of U. Then

(6) [K(; e)+eB()](g()+ Y(; e)y(; e)) 0,

where K(x; e) is the matrix defined in Lemma and

,x [Og(x) OA(x)’ ,),2G(x)A(x)].B(x)= L Ox

Proof It can be easily verified that, by the definition of y(x; e),

(7) y2(x; e)A (x) --2 yE(x e)(g(x)+ Y(x," e)y(x," e)).
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Moreover, by the definition of A(x), we have

Og(x...___) VxL(x, A(x))= -y2G2(x)A(x)
Ox

(s) -72G(x)(G(x)+ Y-(x; e))A(x) + yG(x) Y(x; e)A(x)

=-’),2G(x)A(x)(g(x) + Y(x; e)y(x; e))

+G(x) (x; )x (x).

Therefore, by (7) and (8), we get

Og x_.__.) xL(x, A(x))= _,,/2[ G(x)A(x) +2 G(x) y2(x; e)]
Ox L e 2

(9)
.(g(x) + Y(x; e)y(x; e)).

Finally, since 0g(g)/x V U(g; e)=0, from (3) and (9) we obtain (6).
LEMMA 3..Let g be a stationary point of U and assume that

g(g) + Y(g; e)y(g; e)=0.

Then g, A g is a K-T pair of Problem P.
Proof By (3) and the assumptions made, we have

VL(, ()) O.

On the other hand, by the definition of (x), we have

Og(x__.) V,L(X, A (g)) + ’),G:’(’)A (:) O.
c3x

Hence, we have

o(x)x (z)=0.

Finally, if gi(g)=0 for some i, we have, by assumption, y(; e)=0 and, by the
definition of yi(x; e), hi()>-0. E3

At this point we can state the following result.
THEOREM 2. Let X be a compact subset ofR" and suppose that assumption B holds

on X. Then, there exists an g> 0 such that for all e (0, g], ifg X is a stationary point
of U(x; e), the pair (, h ()) satisfies also the K-T conditions for problem P.

Proof We proceed by contradiction. Assume that the theorem is false. Then, for
any integer k, there exists an ek -< 1! k and a point gk X such that g is a stationary
point of U(x; e) but the pair (, A()) does not satisfy the K-T conditions for
problem P.

By the compactness of X, there exists a subsequence, that we relabel {gk}, such
that limg_ g X.

Moreover, since TU(g; e)=0, recalling (3) and taking into account the con-
tinuity assumptions, we have

OX
(g(:) + Y(:; 0)y(;; 0)) 0,

that is, by definition of y(x; e) ., Vg,(:)g,(;) O.
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Therefore, Assumption B implies gi(;) 0 for all I(), so that is a feasible
point for problem P.

It follows from Lemma that the matrix K(; O) is nonsingular. Then, by the
continuity assumptions, we have that there must exist an g > 0 and a value p > 0 such
that the matrix K(x; e)+ eB(x) is nonsingular for all e [0, g] and x" IIx-;11-<-P-

This implies, by Lemma 2 that, for sufficiently large values of k, say k => k, we
must have,

g(Xk) + Y(gk ek)Y(gk ek) O, k >=

Using Lemma 3 it follows that for k k, (, ()) satisfies the K-T conditions
for problem P, and this establishes the contradiction.

4. Global optimality results. Given a set X R", let us denote by (X) the set
of global minimum points of problem P on X, that is the set of points such that:

f() <-f(x) for all x X, g(x) 0,

and by Z(X) the value off on (X).
Similarly, we denote by R(X; e) the set of global minimum points of U(x;

on X, that is the set of points g such that:

U(;e)U(x,e) for allxX,

and by U(X; e) the value of U(x; e) on R(X, e).
In the sequel we shall investigate the relationships between (X) and R(X; e).
We state first the following lemma.
LEMMA 4. Assume that (X) int (X) then, for any given e > O, 11 (X e

_
(X)

implies R X e X).
Proof. If g (X)___ int(X), Assumption A implies that there exists a multiplier
R such that (g, ) is a K-T pair of problem P. Then, by Theorem we have

U(g; e)=f(X) for all (X).

Since q/(X; e)_ (X) we have O(X; e)=f(X) so that U(g; e)= O(X; e) for all
g (X), which proves that (X) (X; e).

Then we can state"
THEOREM 3. Let X be a compact subset of R and assume that (X) int (X).
Then, there exists an g>0 such that, for all e(0, g] R(X; e)= (X).
Proof. Recalling Lemma 4, it is sufficient to prove that there exists an > 0 such

that, for all e (0, g], R(X; e)___ (X). This will be shown by contradiction. Assume
that the assertion is false; then for any integer k there must exist an e-< 1/k and a
point xk //(X; ek), Xk (X) such that, for all g (X)

(10) U(x ek) <= U(g;

where the first equality follows from Theorem 1.
Since X is compact there exists a convergent subsequence, which we relabel {Xk}

such that limk_o Xk X.
By (10), we have"

lim sup U(Xk ek) = f(X),
koo
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which implies, by (2)"

g() + Y(, 0)y(, 0) 0, and f() -<_ f(X),

so that we must have e (X).
On the other hand, recalling Proposition 1, there exists a closed sphere S()___

int(X), where Assumption B is satisfied and then, by Theorem 2, there exists a value
>0 such that for all ek (0, ], the pair (xk, h(xk)), with xk S(), satisfies the K-T
conditions for problem P. Thus, for ek (0, ], we have by Theorem 1"

U(Xk ek) f(Xk) and g(Xk) <= 0
and, by (lO)" f(Xk) <= f(X). This establishes the contradiction with the assumption that
x (X).

COROLLARY 1. Let X be a compact subset of R and assume that the feasible set

ofproblem P is contained in the interior of X, that is:

{x: g(x) <_- 0}
_

int (X).

Then there exists an > 0 such that for all e (0, g] q/(X; e)= (X).
COROLLARY 2. Let X be a compact subset ofR and assume that int (X) is the

unique global minimum point ofproblem P on X. Then there exists an > 0 such that
for all e (0, gl, is the unique global minimum point of U(x e) on X.

5. Local optimality results. In this section we consider the relationships between
local solutions of problem P and local minimum points of U.

A first result is a direct consequence of Theorem 3.
THEOREM 4. Let be a local minimum point ofproblem P and suppose that there

exists a closed sphere S() such that (S())
_

int (S()). Then there exists an : > 0
such that for all e(O, :], is a local minimum point of U(x; e) and q/(S(); e)=
(s()).

In particular, we have
COROLLARY 3. Let be an isolated local minimum point ofproblem P. Then there

exists an : > 0 such that for all e (0, g], the point is an isolated local minimum point
of U(x;e).

A converse result is stated in the following theorem.
THEOrtEM 5. Let X be a compact subset ofR and suppose that Assumption B holds

on X.
Then there exists an > 0 such that, for all e (0, g], if X is a local unconstrained

minimum point of U(x; e), is a local minimum point of problem P and A () is the
associate K-T multiplier.

Proof. By Theorem 2, there exists an g> 0 such that for all e (0, g], if is a
local unconstrained minimum point of U(x; e), the pair (, A()) satisfies the K-T
conditions for problem P. Therefore, assuming e (0, ] and recalling Theorem 1, we
have:

U(., e)=f()

so that, since " is a local minimum point of U(x; e), there exists a neighbourhood t)
of such that

f() <= U(x; e) for all x e f.

Thus, recalling Proposition 3, we have"

f()_ U(x; e)<-f(x) for all xl’l, g(x)<-O. [-I
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Further local optimality results, based on the consideration of second order
derivatives, can be derived under the assumption that the functions f and g are three
times continuously ditterentiable and that strict complementarity holds at K-T pairs
(:, ); that is: , > 0 if gi() 0.

We introduce first the following notations. Let be a feasible point for Problem
P; we denote"

go(x) a_ (g,(x)), Io(,),

g,,(x) a= (g,(x)), I(g),

Ao(X) __a (Ai(x)), Io(),

A(x) a___ (A,(x)), I(),

yo(x; e) __a (y,(x; e)), Io(),

y(x; e) a__. (y,(x; e)), I(:),

Yo(x; e) a- diag (y,(x; e)), Io(),

Y(x; e) a--diag (y,(x; e)), i/().

We can state:
PROPOSITION 5. Let (,, ) be a K-T pair for problem P and assume that strict

complementarity holds at , ).
Then, for any e > O, the function U(x; e) is twice continuously differentiable in a

neighbourhood of, and the Hessian matrix of U(x; e) evaluated at is given by

0Ao()’ Ogo() Ogo()’ 0Ao()V2U(:; e) V2L(,x A ())+----------
Ox Ox Ox Ox

(11)
20go()’ Ogo(,) e OA(,)’
e Ox Ox 2 Ox Ox

where

V2L(x, (x)) (V2xL(x, A

Proof. Let (, .) be a K-T pair for problem P and let Io(), I() be the correspond-
ing index sets. Then, under the strict complementarity assumption, it follows that there
exists a neighbourhood of such that:

(12)
yo(x; e)=0,

g(x) + Y(x; e)y(x, e/=- A(x),

for all x
As a consequence, recalling Proposition 4, we can write, for x

og(x)’
V U(x; e) Vf(x) +Ogo_x_’ Ao(X) + X,(x)

Ox Ox

0Ao(X)’ +0A(x)’ 20go(x)’
go(x) (g(x) + Y(x; e)y,,(x; e))+-

Ox Ox e Ox

20g,,(x)’
e Ox
(g(x)+ Y(x; e)y(x; e)),

go(x)
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from which, by (12), we get:

V U(x; e) Vf(x) +Ogo(x)’
Ox

(13)
2 0go(x)’
+-go(x).

e c3x

Then, by differentiating (13) and recalling that go(2)=0 and X(2)=0, we obtain
(11). E]

The following lemma is needed in the proof of the next theorem:
LEMMA 5. Let P(x), Q(x) and R(x) be three quadratic forms on R" such that
(i) Q(x) >- O,
(ii) Q(x) 0 and P(x) <-_ 0 imply x O.
Then there exists an g: > 0 such that for all e (0, g]:

P(x) +1 Q(x) + eR(x) > 0 for all x O.

[18].
Proof The proof follows easily from a known result on pairs of quadratic forms

Then we have:
THEOREM 6. Let (2, ) be a K-T pair for problem P and assume that
(i) strict complementarity holds at (2, );
(ii) 2 is an isolated local minimum point for problem P satisfying the second order

sufficiency condition:

x’VL(2, X)x > 0 for all x:
Ogo(2)
OX
x=O, xO.

Then there exists an g > 0 such that for all e (0, g], 2 is an isolated local minimum
point for U(x; e) and the Hessian matrix V2U(2; e) is positive definite.

Proof By Theorem 1, 2 is a stationary point of U(x; e) for any e >0 and by
Proposition 5, V2U(2; e) exists and it is given by (11).

Consider now the quadratic forms"

P(x) x’V2L(2, A(2))x +2x’
OAo(2)’ Ogo(2)

Ox Ox

II ox - ox

so that x’V2U(2; e)x= P(x)+(1/e)Q(x)+eR(x).
Then it can be easily verified that, by (ii) the quadratic forms P(x) and Q(x)

satisfy the assumptions of Lemma 5, so that V2 U(2; e) is positive definite for e (0, g],
where g > 0 is the number considered in Lemma 5. [3

Finally, we have a converse result.
THEOREM 7. Let X be a compact subset of R"; suppose that Assumption B holds

on X and that strict complementarity holds at any K-T pair (2, h) with 2 X.
Then there exists an g > 0 such that, for all e (0, g], if2 X is a local unconstrained

minimum point of U(x; e) with positive definite Hessian vEu(2; e), 2 is an isolated
local minimum point ofproblem P, satisfying the second order sufficiency conditions.

Proof. By Theorem 2, there exists g > 0 such that for all e (0, ], if 2 is a local
unconstrained minimum point of U(x; e), the pair (2, A (2)) satisfies the K-T conditions



EXACT PENALTY FUNCTION FOR NONLINEAR PROBLEMS 83

for problem P. Let e (0, g]; then by Proposition 5, V"U(g; e) exists and it is given
by (l 1). Therefore, by assumption

x’VEU(g;e)x>0 forxR", x#0.

In particular, recalling (l 1), we have"

x’TEL(:, A())x > 0 for all x "" x=0, x0.

6. Conduion. In this paper we have shown that a continuously differentiable
exact penalty function can be constructed for inequality constrained problems. The
properties of this function have been investigated from the theoretical point of view.

Computational aspects are beyond the scope of the present paper and have been
considered in [19]. We observe that, from a computational point of view, the main
difficulty in the minimization of the function U lies in the matrix inversion required
for the evaluation of the multiplier function. For problems with a large number of
constraints the exact augmented Lagrangian approach proposed in 11 ] could be more
advantageous.

Another point which deserves attention is the choice of the penalty coefficient. In
this regard we mention the possibility of employing the procedure for the automatic
selection of the penalty coefficient proposed in [17].

Finally we remark that the results established in 4 could be of interest in the
context of constrained global optimization, since they enable, in principle, the replace-
ment of the constrained problem with a problem whose global solutions can be located
in the interior of" a set defined by simple bounds on the variables.

REFERENCES

W. I. ZANGWILL, Nonlinearprogramming via penaltyfunctions, Management Sci., 13 (1967), pp. 344-358.
[2] T. PIETRZYKOWSKI, An exact potential method for constrained maxima, SIAM J. Numer. Anal., 6

(1969), pp. 299-304.
[3] A. R. CONN, Constrained optimization using a nondifferentiable penaltyfunction, SIAM J. Numer. Anal.,

10 (1973), pp. 760-784.
[4] S. P. HAN AND O. L. MANGASARIAN, Exact penalty functions in nonlinear programming, Math.

Programming, 17 (1979), pp. 251-269.
[5] D. Q. MAYNE AND N. MARATOS, Afirst order, exact penaltyfunction algorithmfor equality constrained

optimization problems, Math. Programming, 16 (1979), pp. 303-324.
[6] R. FLETCHER, A class ofmethodsfor nonlinearprogramming with termination and convergenceproperties,

in Integer and Nonlinear Programming, J. Abadie, ed., North-Holland, Amsterdam, 1970, pp. 157-
175.

[7] H. MUKAI AND E. POLAK, A quadratically convergent primal-dual algorithm with global convergence
properties for solving optimization problems with equality constraints, Math. Programming, 9 (1975),
pp. 336-349.

[8] R. A. TAPIA, Quasi-Newton methodsfor equality constrained optimization: equivalence ofexisting methods
and a new implementation, in Nonlinear Programming 3, O. L. Mangasarian, R. R. Meyer and S.
M. Robinson, eds., Academic Press, New York, 1978, pp. 124-164.

[9] R. FLETCHER, An exactpenaltyfunctionfor nonlinearprogramming with inequalities, Math. Programming,
5 (1973), pp. 129-150.

10] G. DI PILLO AND L. GRIPPO, A new class of augmented Lagrangians in nonlinear programming, this
Journal, 17 (1979), pp. 618-628.

l] A new augmented Lagrangian function for inequality constraints in nonlinear programming, J.
Optim. Theory Appl., 36, n. 4 (1982), pp. 495-519.

[12] G. DI PILLO, L. GRIPPO AND F. LAMPARIELLO, A methodfor solving equality constrained optimization
problems by unconstrained minimization, in Optimization Techniques, 9th IFIP Conference, K.
Iracki, K. Malanowski and S. Walukiewicz, eds., Springer-Verlag, Berlin, 1980.



84 G. DI PILLO AND L. GRIPPO

[13] G. DI PILLO, L. GRIPPO AND F. LAMPARIELLO, A class of algorithms for the solution of optimization
problems with inequalities, in System Modeling and Optimization, 10th IFIP Conference, R. F.
Drenick and F. Kozin, eds., Springer-Verlag, Berlin, 1982.

[14] L. C. W. DIXON, Exact penaltyfunction methods in nonlinearprogramming, NOC, the Hatfield Polytech-
nic, Tech. Rep. 103, February, 1979.

15] D. P. BERTSEKAS, Enlarging the region ofconvergence ofNewton’s methodfor constrained optimization,
J. Optim. Theory Appl., 36, n. 2 (1982), pp. 221-252.

[16], Variable metric methods for constrained optimization using differentiable exact penalty functions,
Proc. Eighteenth Annual Allerton Conference on Communication, Control and Computing, Allerton
Park, IL., Oct. 1980.

[17] T. GLAD AND E. POLAK, A multiplier method with automatic limitation of penalty growth, Math.
Programming, 17 (1979), pp. 140-155.

[18] M. R. HESTENES, Optimization Theory. The Finite Dimensional Case, John Wiley, New York, 1975.
[19] G. DI PILLO AND L. GRIPPO, A class of continuously differentiable exact penaltyfunction algorithmsfor

nonlinear programming problems, lth IFIP Conference on System Modeling and Optimization,
Copenhagen, July, 1983.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 23, No. 1, January 1985

1985 Society for Industrial and Applied Mathematics

008

OPTIMALITY CONDITIONS FOR DISTRIBUTED CONTROL PROBLEMS
WITH NONLINEAR STATE EQUATION*

D. TIBA

Abstract. We develop an abstract approximating process for control problems with convex cost governed
by evolution equations involving monotone operators. Applications are given concerning necessary conditions
of optimality for distributed control problems with hyperbolic, parabolic and delay differential state systems.
These conditions are expressed by means of the Clarke [11] generalized gradient.

Key words, necessary conditions, nonlinear evolution equations, distributed systems

1. Introduction. We consider the following abstract control problem"

(1.1) Minimize L(Sy(t), u(t)) dt

subject to"

(1.2) y’(t) + My(t) + uy(t) Fu(t) a.e. [0, T],

(1.3) y(0) Y0.

Here S: Z X, F: W X are linear continuous operators, M: Z Z is a (multi-
valued) maximal monotone operator, Yo e dom (M) (the domain of M). The mapping
L:X x W ]-oo, +] is convex, lower semicontinuous, proper, with finite Hamiltonian
and u e R. We assume that W, Z, X, Y are Hilbert spaces with Y

___
Z algebraically

and topologically.
By choosing in an appropriate manner the spaces and the operators, various

variational inequalities or nonlinear equations of hyperbolic or parabolic type, nonlinear
differential-delay equations, etc., can be written in the form (1.2), (1.3).

The question of the necessary optimality conditionsin the case of control problems
governed by variational inequalities was asked by F. Mignot in [15]. The elliptic state
systems are considered by F. Mignot [15], F. Mignot and J. P. Puel [16], V. Barbu [5].

An extensive study of parabolic control problems, including free boundary prob-
lems, is due to V. Barbu [4], [6], [7], C. Saguez [21], Z. Meike and D. Tiba [17].

In 3 we give an abstract approximating scheme for problem (1.1)-(1.3) which
generalizes the one used by V. Barbu [4] for M =90, a subdifferential, S L the
identity operator, and Z X Y. This enables us to discuss in 4, 5 the optimization
of systems governed by hyperbolic variational inequalities with unilateral conditions
in the domain or on the boundary. Other applications are given in 6 for certain
nonlinear parabolic equations and in the last section for a nonlinear hereditary system.

Our methods are closely related to those of V. Barbu. They consist in approximat-
ing the given control problem by a family of smooth problems and afterwards in passing
to the limit in the approximate optimality equations. As a major difficulty in the limiting
argument and a main difference from the techniques used in the parabolic case, in the
approximate adjoint equation we have to consider the limit of the product of two
weakly convergent sequences. The problem is very much discussed in the literature
(see for instance the recent survey of B. Dacorogna [12]). In order to identify the
limit, we use a trick based on the subdifferential of a saddle function. The core of the

* Received by the editors December 4, 1981, and in revised form December 12, 1982.

" Department of Mathematics, INCREST, Bucuresti 79622, Bd.Pacii 220, Romania.
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paper consists of Theorems 3.5, 4.7, 4.8, 5.8, 6.6, 7.1 (necessary conditions) and
Theorems 5.1, 6.2 (existence and continuous dependence for the state equation).

2. Some remarks on notation. All spaces are real. If E is a Banach space with
norm I" Iz, then LP(0, T; E), 1 <= p =< oo, is the space of p-integrable, E-valued functions,
C(0, T; E) is the Banach space of continuous, E-valued functions and

W"P(0, T; E) {y LP(0, T; E); y’ Le(0, T; E)}

where y’ is the derivative of y in the sense of E-valued distributions on ]0, T[.
Let q:E -) ]-oc, +oc] be a convex, lower-semicontinuous function. We denote by

Oq(x)c E* (E*-the dual space) the set of all subgradients of q at x:

Oq(x)={x* E*; q(x) <=q(y)+(x*, x- y), lyE}.

When q is Gteaux differentiable, then 0(x) is single valued, 0q(x) V(x), the
Gteaux differential. The regularization of q is defined by:

-------Z + p (z) z e Ep(x)=inf Ix z] 2

2e

and it is Gteaux ditterentiable.
Consider G another Banach space and K: E G- [-00, +o] a closed, proper,

saddle function (see Rockafellar [18]). The subditterential of K is defined by:

OK(e, g)=(-OeK(e, g), OgK(e, g)),

OeK(e, g) {e* e E*; K(u, g) <-_K(e, g)+(u- e, e*), Vu},

OgK(e, g) {g* e G*; K(e, g) <=K(e, v)+(g-v, g*),

and it is a maximal monotone operator.
Here (., .) is an ordered pair and (., is the pairing between Banach spaces and

their duals.
If L is a convex function on a product space X W, then the Hamiltonian of L

is given by

H(x, p) =sup {(p, w)-L(x, w); we W}

and it is a saddle function.
For a general background on convex analysis, see Rockafellar [19], and Barbu-

Precupanu [8].
Let ," R - R be locally Lipschitz. We associate with the generalized gradient

of Clarke [11], denoted also by

O0(y) =Conv {weR"; w= lim V4,(y.)}.
yn--) y

When is convex, 0O is just the subdifferential of . For generalized gradients
see also the survey of Rockafellar [20].

Finally, we denote by HK (l), H:(f), wK’P(I’), w’P(f), HS(F) usual Sobolev
spaces, where f is a bounded domain with sufficiently smooth boundary F of the
Euclidean space R.

3. The abstract control problem. Let M :Z--> Z, e > 0, be a family of maximal
monotone operators. We denote 0 :L2(0, T; Y)-> L2(0, T; Z) the correspondence
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f y given by:

y’(t)+My(t)+ vy(t)=f(t) a.e. [0, T],
(3.1)

y(0) Y0

and similarly we denote by 0 the corresponding map when M is replaced by M.
Applications 0, 0 are well defined according to V. Barbu [3, Thm. 2.1].
Now, we list the main hypotheses:
(a) 0 F" LZ(0, T; W)- C(0, T; Z) is completely continuous, uniformly in e,

that is:

w, - w weakly in L2(0, T; W) implies (0 F)(w,) - (0 F)(w) strongly
in C(0, T; Z), uniformly with respect to e.

(b) S 0" L2(0, T; Y)- LZ(0, T; X) is Gteaux ditterentiable for every e > 0.
(c) 0 approximates 0 uniformly:

IO(f)(t)-O(f)(t)lz <- c" 6(e) Vt[O, T]

where 6(e)0 when e0, fL2(0, T; Y) and c is a constant depending only on
IfIL(O,T;Y).

Consider the following approximate control problem:

(3.2) Minimize L(Sy(t), u(t)) dt
2

lu(t)-u*(t)l dt

subject to:

y’(t)+My(t)+ uy(t)=Fu(t) a.e. [0, T],
(.

y(0) y0,

where L=L( is the regularization of the convex function L and u*, y* are the
optimal control and the optimal state in problem (1.1)-(1.3), which are assumed to exist.

Remark 1. If L satisfies a coercivity assumption with respect to u, it is easy to
infer from properties (a), (c) the existence of u*.

This is supplied, for instance, by quadratic cost functionals or by

LI(y, u) if 1,
L(y, u)= +oo otherwise

when constraints are imposed on the control. Here L is another convex, lower
semicontinuous proper function, with finite Hamiltonian.

However, our main goal is to obtain necessary optimality conditions and we shall
assume the existence of the optimal pair (u*, y*).

LEMMA 3.1. Problem (3.2), (3.3) has a solution (y, Ue) L2(0, T; Z)
LZ(O, T; W) with y O(Fu).

Proof. The functional (3.2) is coercive in u because L can be bounded from
below by an affine function and y O(Fu) admits a good evaluation in (3.3). It also
is weakly lower semicontinuous since S 0 is completely continuous by (a) and L is
convex, lower semicontinuous.

LEMMA 3.2. For every e > 0 there exists p L2(0, T; Y*) such that"

(3.4) p =-[V(S O)(Fu)]*IL(Sy, u),

(3.5) F* oL (Sy, u) + u u*.
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Here F* is the adjoint of F and 01L, 02Le are the components of the ordered
pair VL(Sy, u) X x W.

Proof. L is Fr6chet differentiable and S 0 is Gteaux differentiable. At the
minimum point (y, u), the Gteaux differential vanishes"

(01L(Sy, u), V(S O)(Fu)Fv)xdt

T

+ (02L(Sy, u)+ u- u*, v)wdt =0
o

for every v e L2(0, T; W). Defining p as in (3.4), one obtains at once (3.5).
LEMMA 3.3. We have

(3.6) y - y* strongly in C(O, T; Z),

(3.7) u - u* strongly in L2(0, T; W)

aseO.
Proof. Since (u, y) is a solution of (3.2),

Io’ + -Io Io(3.8) L(Sy, u) dt
2

lug-u*l dt <- L(S O(Fu*), u*) dt.

From the definition of the regularization L it follows that

L(S O(Fu*)(t), u*(t))

L(Sy*(t) u*(t))+C"
[O(Fu*)(t)-O(Fu*)(t)[2

26(e)

From condition (c), 0 approximates 0 uniformly and we obtain

lim up (Sy, u
2

[u*-uldt
(3.9)

for *)L(Sy*, u dr.

Since the cost functional is coercive uniformly in e, we deduce that {u} is bounded
in L2(0, T; W). Therefore for a convenient subsequence we get u Uo weakly.

From assumptions (a) and (c) we deduce the inequality

IO(Fu)- O(Fuo)lo,; I<(Fu)- <(Fuo)lo,;

+1< (Fuo) O(Fuo)l

I<(Fu)- O(FUo)lo,; + (),
hence y O(Fuo) strongly in C(0, T; Z).

Let e0 in (3.8). The properties of the regularization imply

lim inf L Sy, u dt L(S, uo) dr.
eO 0

Therefore, since the norm is weakly lower semicontinuous we obtain from (3.9),

L(S, Uo) dt+ I*-Uol dt L(Sy*, u*) da
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As (y*, u*) is an optimal pair, it follows that Uo u*, )7 O(Fu*) y*.
Since any sequence contains a subsequence for which the limit exists and equals

(u*, y*), the lemma is proved.
LFMMA 3.4. The Gteaux differential of S O satisfies

[[V(S o)(w)v](t)lx <-_ C

for every w, V L2(0, T; Y).
Proof. By definition

V(S O)(w)v lim
x--,0 A

Sy -Sy

strongly in L2(0, T; X), where yx O(w+Av) and y= O(w). By condition (b) this
limit is assumed to exist. We have:

I0" I0(3.10) -ly(t)- y(t)lz+ , ly(s)- y(s)lz ds<- A (v(s), y(s)- y(s))zds.

Multiply by e2t and integrate over [0, t]; after a short computation, we get

(3.11) Iz(s)l 2 ds<= (v(s), z(s)) ds- e(s-t). (v(s), z(s)) ds

where z ya y.
Since the situation u0 is straightforward, we assume u <0, multiply by u in

(3.11) and combine with (3.10) to obtain

io(3.12) Iz(t)l, c Iv(s)lY, IZ(s)lzds.

The Brezis variant of the Gronwall lemma (see H. Brezis [10, p. 157]) ends the
proof.

Remark 2. By Lemma 3.4, the operator V(S O)(w):Le(O, T; Y) L2(0, T; X)
can be extended by continuity to the whole space LI(0, T; Y) and a similar relation
can be written for the adjoint operator V(So O)(w)*’L2(O, T;X)L(O, T; Y*).
We have

Iv(so

(3.13)

T

sup (V(S O)(w)*v, p) ds
[pILI(t,T;y)=-I

sup (v, V(S 0)(w)p) as
[pILI(t,T;y)I

_-< sup Iv(s)[x" IV(S O)(w)Plxds
[plt_l(t,7-; y)-<

<_- c v(s)lx as.

Therefore:
T

[[V(S O)(w)*v](t)[v.<C Iv(s)lxds a.e.,. [0, T].
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THEOREM 3.5. There exist p L(0, T; Y*), q L2(0, T; X) such that, for e - 0:

(3.14) p - p weakly* in L(O, T; Y*),

(3.15) OIL(Sy, u)q weaklyinLl(O, T;X),

(3.16) (q(t),F*p(t))L(Sy*(t),u*(t)) a.e.[O, T].

Proof. By the definition of the subditterential, we get

(O1L(Sy, u), Sy-Sy*-pW)x +(OEL(Sy, u), u- V0)w

and by Lemma 3.3 and Lemma 3.2"

PloL(Sy(t) u(t))lx <-- ([F*p(t)lw +lug(t)- u*(t)lw)
2

(3.17)
(C+[u(t)lw)+C a.e.[O,T].

Here we also use the assumption that L has a finite Hamiltonian" the Hamiltonian
function and its subdifferential are locally bounded on X x W. Therefore we can find
a measurable selection Vo(t) of OzH(y*(t)+pw, O) such that for p sufficiently small
and ]Wlx 1, we have ]v0(t)[ =< C and

L(y*(t) + pw, Vo(t)) -H(y*(t) + pw, O) <= C a.e. [0, T].

But from (3.4), (3.13) we can write

Ip(t)l._-< C IOL(,Sy, u)lxds a.e. [0, T].

The Gronwall lemma gives

Ip(t)ly._-< C a.e. [0, T]

and next

IoaL(Sy(t), u(t))lx <= C(1 +lug(t)- u*(t)lw) (1 +lu*(t)lw).
The Dunford-Pettis theorem shows that 01L(Sy, u) q weakly in L(0, T; X).
We also have p p weakly* in L(0, T; Y*). Relation (3.16) and q L2(0, T; X)

can be derived by standard arguments because y, u converge strongly by Lemma 3.3.
Remark 3. Relation (3.16) stands for the so called "maximum principle".
Remark 4. The same treatment can be carried out in case u* is only a local

minimum for functional (1.1). We have to take instead of (3.2) the approximation

(3.2)’ g(Sy, u) dt+rl lu-u*l at,

where r/is a positive constant.
As r/. 0:r lug-u*lZw dt is bounded, when r/ is large enough we can deduce that

{u} is in the neighborhood of u* considered in the definition of the local minimum.
Remark 5. Taking M Oq, a subditterential, and Z X Y, S =/, the identity

operator, one can obtain the abstract results of V. Barbu [4].
Remark 6. In the next sections we apply the above results to various problems.

To do this we put them in the form (1.1)-(1.3), that is we define the spaces Z, X, Y,
W and the operators M, S, F; next we choose an appropriate approximation M,
which will not coincide with the Yosida approximation of a maximal monotone
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operator. Much effort is needed to check properties (a), (b), (c). For that several
existence and continuous dependence results are obtained for certain hyperbolic and
parabolic equations (see Theorems 5.1, 6.2).

In the last step, we pass to the limit in (3.4). This is not supplied by Theorem 3.5
because it involves the product of two weakly convergent sequences, and has to be
done separately in each application.

4. Hyperbolic control problems. Unilateral conditions in the domain. We shall
be concerned with the control problem:

(4.1) Minimize L y, u) dt

subject to:

(4.2)

(4.3)

(4.4)

y,- Ay + t(y,) Bu a.e. f x ]0, T[,

y(O, x) yo(x), y,(0, x) Vo(X) a.e. f,

y(t,x)=O a.e. Fx]0, T[,

where/3 c_c_ R x R is a maximal monotone graph.
The case/3(y) lylp-1. y is briefly discussed by J. L. Lions [14, p. 344].
We denote V Hol(ll), H L2(I) and we take W {0} x U, U a Hilbert space

of control, Z V xH where V has the inner product induced by --A such that Z can
be identified with its dual. We also define X H, Y {0} x V.

The corresponding operators are F (0, B) with B: U V linear, continuous and
S: V x H H is given by S(y, v) y. Operator M+ vI: Z Z is

M+ vI=
-A

as (4.2) can be put in the form

d 0 -1 Y a.e. [0, T].+
dt - v Bu

We write M instead of M+ I and the approximants M are obtained replacing in
M, the graph by , where

(4.5) (r) f(r-eO)p(O) dO

and (r) B((I + eB)-l(r)) is the Yosida regularization of . Function p is a Friedrichs
mollifier i.e. pe C,7(R), p(r)NO, p(-r)=p(r), p(r) =0 for Ir[ 1 and p(r) dr= 1.

Equation (3.3) becomes

(4.6) y.- ay + (y,) Bu a.e. x ]0, T[.

To begin with, we discuss the existence in the state equation.
THEOREM 4.1. Assume thatf L2(0, T; H(f)), Y0 e H(12), Ay0 e L2(), V0(X) G

dom (/3) a.e. f. Then there exists a unique solution y to

(4.7) Ytt Ay + Yt) f a.e. f x ]0, T[

and (4.3), (4.4) such that y
and y, e L2(O, T; L2(a)).
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This result can be found in the book of V. Barbu [3, p. 279]. Since some of the
techniques will be useful in the sequel, we outline the proof of the following corollary:

COROLLARY 4.2. Let fnf weakly in L2(0, T;H0(f)). Then y"y in
C(0, T; H(f)) and y’/- Yt in C(0, T; L2(f)) strongly where yn denotes the solution

of (4.7), (4.3), (4.4) corresponding to fn.
Proof. Multiplying by y’- v0 and integrating over [0, t], we get {y’}, {yn} bounded

in L(0, T; H), L(0, T; V).
Let A/ denote the realization of --A in H, which is maximal monotone, and A

the Yosida approximation of An.
Multiply by Aay’. Then (AyT,/3(y’))>_-0 since (Aaz,(z))>-O; for all ze

dom (/3) is equivalent with (AHz, fl(z))>--0 for z e dom (An) which is clearly true by:

(z) dx Ia grad z. grad fie (z) dx >_ 0

from the monotonicity of/3 (see V. Barbu [3], p. 183).
We infer

1 1I(AxY’](t)2 y’](t))--(Axvo, Vo)+-(A.y"(t), Axy"(t))

2
(A"Y’ A.yo) <- (L, A.y, ds.

Since f, is bounded in L2(0, T; V), a standard argument gives {A,y"} bounded
in L(0, T; H) and {(I + 1A,)-ay} bounded in L(0, T; V), with respect to , n.

The first yields (I+1A,)-y" y" strongly in C(0, T;H) as 0. As the
operator is linear, we infer the same for the derivative (I + 1A,)-ly y weakly* in
L(O, T; V).

This allows us to make 0 and to get {y7), {AnyT} bounded in L(0, T; V)
and L(0, T; H) respectively.

Multiplying by y and integrating over [0, T], it is easy to see {y} bounded in
L2(0, T; H). From (4.7) we obtain {(yT)} bounded in L2(0, T; H) too.

Since dora (An)c V is compact, from the above boundedness we get y" y in
C(0, T; V) on a convenient subsequence, by the Ascoli-Arzhla theorem. Then

y7 y, strongly in C(0, T; H),

y, y, weakly in L(0, T; H),

Ay Ay weakly* in L(0, T; H),

fl(YT) fl(Y,) weakly in ta(0, T; H)

by the demiclosedness of fl and y is the unique solution of (4.7), (4.3), (4.4). Therefore
the convergence is true on the initial sequence and the proof is finished.

We start to check conditions (a), (b), (c).
LEMMA 4.3. Let L f weakly in L2(O, T; H(O)). Then y O(f) y O(f)

strongly in C(O, T; H(O)) and y Yt strongly in C(O, T; L2(O)).
This is a variant of the above corollary.
LEMMA 4.4. The operator S O L2(O, T; H(O)) L2(O, T; L2()) is Gdteaux

differentiable and r V(S 0) (f)g satisfies in a weak sense:

(4.8) r,-Ar+V((S oO)(f)t).r*=g a.e. Ox]0, T[,
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(4.9) r(0, x) r(0, x)= 0 a.e. ,
(4.10) r(t, x) =0 a.e. F]0, T[

for]’, g L2(0, T; Ho()). Moreover r L(O, T; H(I)) and r L(O, T; L2()), r,
L (0, T; H- ()). The solution to problem (4.8)-(4.1O) is unique.

Proof. Denote y=O(f+g), y=O(f), z=(y-y)/.
Then, by the definition of 0, we get"

1 d A2 1 d

We infer {z} bounded in L(0, T; H()) and {z} bounded in L(0, T; La()).
Besides"

y* y strongly in C(0, T; H()),
y y, strongly in C(0, T; L2()).

As H() La() is compact, we have"

z r strongly in C(0, T; L2()),

z r weakly* in L(0, T; L2()),
z, r, weakly* in L(0, T; H-()).

The nonlinear term ((y)-(y,))/A is bounded in L(0, T; L2()) since is
Lipschitz of constant 1/e. We write it in the form"

fl(y(t, X))--fl(yt(t, X)) fl(y(t, X))--(yt(t, X)) a(t,X).Z
A y(t,x)-y,(t,x)

As fl is differentiable we get"

(y(t, x))-(y,(t, x))
V(y,(t, x)) a.e. x ]0, T[,y(t, x)- y,(t, x)

since y (t, x) y,(t, x) a.e. x ]0, T[. Then we can deduce:

(y)-(y,)
Vfl (y,) r, weakly in LZ(Q).

We conclude that (4.8)-(4.10) are satisfied and the proof is finished.
For further needs we explain the adjoint operator V(SoO)(f)*. Denote

V(SoO)(f)*q=p, where fL2(0, T;H(fl)), qL2(0, T;L2()) and p
U(0, T; H-’()).

We define the adjoint state p by:

(4.11) p=-m,,

(4.12) m,-m-V(y), m q a.e. O,

(4.13) re(T, x)= m,(T, x)=0 a.e. a,
(4.14) re(t, x)=0 a.e. Fx]0, r[.

Remark 1. The existence and uniqueness in (4.12)-(4.14) can be established, for
instance, by approximating function V(y,) by a CL mapping.
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It is easy to obtain a priori estimates and to pass to the limit. We shall give a
more detailed motivation, although by another method, in the next section.

We pass to condition (c) now.
LEMMA 4.5. Let y O(f) and y O(f). Then

(4.15) }y(t)-y(t)lv+[y;(t)-yt(t)ln<-C e/.

Proof. Denote y" 0. (f). The following equality is true:

(4.16)

(4.17)

1 d 1 d yX 2
(,+ [V(y-2 dt

[yT-ytl2

+ fn ((Y)-(Y))(Y;-Y) dx=O.

We recall the inequality"

((u)-(v))(u-v)

=> [((u-)-(-)). ((.-)-(-))() a
J-oo

+(e-A) I_(fl(u-e’)-flx(v-AT"))’p(’)d
Combining (4.16), (4.17) and integrating over [0, t], as {/3(y)} is bounded in

L2(O) (see the proof of Corollary 4.2), we get

(4.18) 1/21y; t) Y t)12H +1/2lye(t) ya t)i2v <- C e + A).

Then y y strongly in C(0, T; Hol()) and yT- y, strongly in C(0, T; L2(-))
and it can be deduced easily y= O(f). So, for A 0 in (4.18), we obtain (4.15).

Now, we are able to use the abstract results of 3. We write the approximate
control problem"

(4.19) LMinimize L
2

lu(t)- u*(t)]2 dt

with state equation:

(4.20) y,,-Ay+/3(y,)=Bu a.e.D,x]O, T[,

(4.21) y(0, x) yo(x), yt(O, x) Vo(X) a.e. f,

(4.22) y(t, x) 0 a.e. r x ]0, T[.

PROPOSITION 4.6. Problem (4.19)-(4.22) has solution (y, u> in
W2’2(0, T; L2())X L2(0, T; U) and there exists me C(O, T; L2()) such that the
approximating optimality system

(4.23) yTt-Ay+B(y)=Bu a.e.lx]0, T[,

(4.24) m]-Am’-V/3"(yT) m=- q a.e. ax]0, r[,

(4.25) y’(0, x)= yo(x), yT(0, x)= Vo(X) a.e. a,
(4.26) m(T,x) =0, roT(T, x)=0 a.e. f,

(4.27) y(t,x)=O, m’(t,x)=O a.e. rx]0, r[,
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(4.28) (q(t),-B*m;(t)+u(t)-u*(t))eOL(y(t),u(t)) a.e.[0, T].

is satisfied. Moreover, we have y y* strongly in C(O, T; H(f))y7 y* strongly in
C(0, T;L2(f)), u u* strongly in L2(O, T; U), p =-mT p weakly* in
L(0, T; L2()) and q q weakly in LI(0, T; L2(fl)) where

(4.29) (q(t), B*p(t)) OL(y*(t), u*(t)) a.e, [0, T].

To pass to the limit in (4.24) we make the additional assumption that fl is locally
Lipschitz and

(4.30) IVy(y). ylf(l(Y)l+y2+l) a.e.R.

From (4.30) it is easy to obtain:

(4.31) [V(y) ylC(l(y)l+yZ+l) Vy

with C a positive constant, independent of e.
We have:
TEOREM 4.7. Let (y*, u*) We’2(0, T; L2(O)) x L2(0, T; U) be an optimal pair

for problem (4.1)-(4.4) and satisfy (4.30). There exist functions m in
L(0, T; H()) WI’(0, T; L()), q L2(Q) and h L(Q) which satisfy"

y$- ay* + (y?) Bu* a.e. x ]0, T[,

m-m-h=- q a.e. ax]0, T[,

y*(O, x)= yo(x), y(O, x)= vo(x) a.e. a,
re(T, x)=0, m,(T, x)=0 a.e. a,
(q(t),-B*m(t))eOL(y*(t), u*(t)) a.e. [0, T].

Pro@ Multiplying (4.24) by m, we get {m} bounded in L(0, T; H(a)) and
{m} bounded in L(0, T; L(a)).

Fix n a natural number and consider N {(x, t) e O; lye(x, t)l n}, e > 0.
Then:

V(y(t,x))NC a.e. (t,x)eE

with C independent of e as is locally Lipschitz. Let N be a measurable subset of
Q a x ]0, T[.

feVfl(y;) mr dxdt f V(yr).lmT[dxdt+J V(y;)[mldxdt
EnE E-E

C" f [fl(y:)[. m: dxdt+C. +C, f dx dt
E-E

+C f ly71" ImTI dx dt.

Taking into account that {m} is bounded in L(0, T; L2(O)) and fl(y) bounded
in L2(Q), we obtain:

Vfl (y) m, dxdt NC (E)I/2c,+c ( )/.-+c [yTI
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Since {yT} is bounded in L(0, T; H(F)), by the Sobolev embedding theorem it
yields {yT} bounded in LS(O) with some s> 2. Then the last term of the sum is
equicontinuous too. The Dunford-Pettis criterion gives:

7/3(y;) m; h weaklyinL’(O).

Remark 2. In some important cases more information concerning the function h
can be deduced.

Example 1. The convex case. We shall suppose that

(4.32)

where s, are convex, real functions on R.
THEOREM 4.8. Under the assumptions of Theorem 4.7 and also (4.32), there exist

functions m L(O, T; H(f)) f3 WI’(0, T; L2()) and q L2(Q) which satisfy"

Yt*t- Ay* +/3(yt*) Bu* a.e. Q,

m,-Am-o(y*t )m, - q a.e. Q,

y*(O, x)= yo(x), y,*(O, x)= Vo(X) a.e. 12,

m( T, x) mt( T, x) O a.e. f,

(q(t), -B*mt(t))e OL(y*(t), u*(t)) a.e. [0, T],

in a weak sense. Here Off is the generalized gradient of the locally Lipschitz mapping ft.
Proof. For the sake of simplicity we take/3 convex.
Write mt= m/- m_, where m+, m_ denote the positive and the negative part of

roT. Extracting more subsequences we can obtain"

rn-, v+ rn

_ - v- weakly in L2(Q),

(4.33) m, v+- v-
and (adding a constant if necessary) m_, mL are strict positive a.e.

We give now a more precise calculation of V/3(y), yR, available for locally
Lipschitz functions/3. As ]3 can be written in the form

I I-(I + el3)-l(y e0)
(y) p(O) dO,

we infer

(4.34)
vt((I + /3)-’(y 0))

From the Egorov theorem, for every r/> 0, there is Q, Q with mes (Q- Q,) < r/
and y7 yt* uniformly on Q,. Then Vfl (yT) g weakly* in L(Q,) and by a lemma
due to Barbu [6], we have

(4.35) g(t, x)

We are interested in the weak convergence of V/3(y) m_ in L2(Q). Consider
any f in L2(Q,):

Vile(y;) m_. fdx dt= O(r) dr m_. f. 0(
Qn Qn

dx dr.
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We omit (i + eft) -1 in order to shorten the notation.
On O7 1 + e0/3(. --> 1 uniformly for e -, 0, so we have to study only the integral:

(4.36) [_ m 03(" )" fdx dt, 0 [-1, 1] fixed.

Consider the saddle function:

K(m, y) [m./3(y), m -> 0,
(4.37)

X3, m < 0,

which is proper, closed. The maximal monotone operator K in Rex Re is given by

(4.38) K(m, y)= (-/3(y), mfl(y)).

Take the realization of ‘9K in L2(O,) L2(O,)
(4.39) Og(m, y)(t, x)=‘gK(m(t, x), y(t, x)) a.e. O,

for every m, y L2(O,), m _-> 0 a.e. Q,.
Operator / is maximal monotone. We have:

(4.40) (-(.),mO(.))oI(m,(I+e)-’(y-eO)).
We remark that

(4.41) (-fl(.),m_. ‘9/3(.))(-/3(y*),/) weakly in

(4.42) (m_, (I + e/3)-l(y e0))- (v+, y*)

weakly in L2(O7) L2(O7) and

lim ((m+, (I + e/3)-’(y, eO))-(m+, (I + ZB)-’(y
A,e-O

(4.43)
(-/(.), m;/(. ))-(-/(.), m*+/(.)))={ 0

since/3((1 + s/)-(y )) -,/ (y,) and (I + efl)-(y ) --> y uniformly on
Applying a well-known property of monotone operators (Barbu [3, p. 42]) we get:

(4.44)
(-(y*), ft)e OI(v+, y*) so

ft(t, x) e v+(t, x) O(y*, (t, x)) a.e.O.
In a similar way, we derive"

lim rag. ,9/3(.)=.h weakly in L2(O,) and
e-->0

(4.45)
.h(t, x) e v-(t, x) ,9(y*, (t, x)) a.e.O.

We have"

h(t, x)= (t, x)- h. (t,.x)e v+(t, x) ,9(y* (t, x))- v-(t, x) ,9(y*t (t, x)).

We write that h(t, x)= m,. ,gB(y*,(t, x))a.e. O by convention since it is possible that
/, .h result by using different selections of the (multivalued) subditterential ,9/3(y,*).

When (4.32) is satisfied, we can prove in the same conventional sense h(t, x)
m,. ,9(y*,(t, x)) since/3e= :- and by Barbu [6, Lemma 3] we have

Vfl(y)Ofl(y*) weakly in L2(Q.)
where ,9/3 is the generalized gradient of/3.
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Example 2. The differentiable case. Here we assume that fl is a differentiable
function. Then

V/3(y(t, x)) --> V/3(yt*(t, x)) a.e. Q,,
V/3(y)X7/3(y*) weakly* in L(Q,)

with Q, defined in (4.35). I follows Vfl(yT)V/3(y*) strongly in Le(Q,) by the
Lebesgue theorem. In this case we have

V/3"(yT) m-->V(y*t).m, weakly in LI(Q,)
and a result similar to Theorem 4.8 can be stated.

Of course, a more direct approach could be carried out in this situation.

5. Hyperbolic control problems. Unilateral conditions on the boundary. Now,
we consider the problem

(5.1) Minimize L( y, u) dt

subject to

(5.2) y,- Ay Bu a.e. a x ]0, T[,

(5.3) y(0, x)= yo(x), yt(O, x)= Vo(X) a.e. a,
Oy

(5.4) --- (Yt) a.e. F x]0, T[.
On

First we deal with the existence in equation:

Y,t- Ay f a.e. 1) x ]0, T[

and (5.3), (5.4), where f e Le(0, T; Hi(O)). In Brezis [9] existence of strong solutions
is established for f e W1’1(0, T; L2(f)). The following theorem is a variant of his result
and can be compared with Theorem 4.1.

THEOREM 5.1. Assume that yoH2(), /)oG’HI(),-Oyo/Onefl(Vo) and fe
L2(0, T; HX(O)). Then there exists a unique solution to (5.3)-(5.5) which satisfies
y e L(O, T; He(O)) CI C(O, T; Hl(f)), y, L(O, T; H’(fD) f3 C(O, T; Le(O)) and
y. e L(0, T;

Proof. Let f, WI’(0, T; La(a)) and f, f strongly in La(0, T; Hl(fl)). The
approximate problem:

(5.6) y,- Ay" f a.e. O x ]0, T[

and (5.3)-(5.4) has a unique solution by Brezis [9, Thm. 1II.5] which verifies the above
regularity.

Multiply (5.6) by yT, use Green’s formula and (5.4) to obtain {y"} bounded in
L(0, T; Hi(o)) and {y’} bounded in L(0, T; L2(O)). Next integrate over [t, + h]c
[0, T], multiply by -z[y,(t+ h)-y,(t)] and divide by h2; then from (5.4) we get:

1 d
2 dt

grad
y"(t+ h)- y"(t)

h L2(a)

1 ft+h y L2(n)

1 Itt+h<__--
y"(t+h)-y"(t)

Ldr. A dx.
h
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We integrate over [0, t] to get

vYn(t+h)-yn(t)
h

1 t+h

LZ(n)

1

L2(n)

fds .a y (r+h)-y(r)
h

dx dr.

Letting h--> 0, which is possible in our assumptions, we get:

1/217y,12 2 2 2+1/21ay"l 1/2Iv +1/21 yo[ L" ay, d,L2()L2()

The integral in the right-hand side is in fact the duality between Hl(fl) and
(Hi(n))*.

As A:H(fl)(HI(fl))* is linear continuous and {y} is bounded in
L(0, T; L2(fl)) we can estimate:

By a variant of Gronwall’s lemma we have that {y2} is bounded in L(0, T; Hl(f)),
{Ayn} is bounded in L(0, T; L2(12)) and {y} is bounded in LZ(O, T; Lz(f)).

To prove the regularity in x of the solution we use the method of translations
parallel to the boundary due to Agmon, Douglis, Nirenberg [2]. For the sake of
simplicity we follow Brezis [9] and suppose 1 {x (x’, XN); XN > 0}. We denote

By(x)
y(x + hej)- y(x)

8*y(x)
y(x- hej)- y(x)

h h

where 1 _<- j -< N- 1.
Multiply (3.7) by 6"6(y’) and use Green’s formula to obtain

2 dt
16yTI2 dx

2 - IV6y"l2 dx <-- f,," 6*6(YT)dx.

Now integrate over [0, t] and let h-* 0 to infer

dx +- i=1

dx <=
Ox Ox

dxdr.

2

strongly in L2(0, T; H5/3()).

As {y’}, {y} are bounded, we get {y"} bounded in L2(0, T; H2()).
By the Aubin [1] compactness result, as H2(I)) is compactly embedded in H5/3(12),

by taking a convenient subsequence if necessary, we get
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Then the trace theorem gives

coy coy L2M stronglyin (0, T; L2(F)).con con
Similarly, we have

y’; yt strongly in L2(0, T, H2/3()),

Y’lr- Y,[r strongly in L2(0, T; L2(F)).

A well-known property of maximal monotone operators shows that -coy
/3 (y,) a.e. F ]0, T[. Then obviously y satisfies (5.3)-(5.5). Uniqueness is easy to prove
and it implies that y y without extracting subsequences.

COROLLARY 5.2. Let f of weakly in L2(0, T; HI()). Then y y strongly in
C(0, T; nl()) and y2 y, strongly in C(O, T; LZ(O)).

Now we are in position to apply the abstract scheme developed in 3. We take
the spaces W {0} x U, Z Ha(O) x L2(), X L2(), Y HI(). The correspond-
ing operators are F (0, B), B: U H(O) linear, continuous, S: Ha(O) x L2(O)
L2() is given by S(y, v)=y also linear, continuous. The nonlinear operator M is
defined by

where :H()]-, +m] is the convex, lower semicontinuous function:

(5.7) (u) r j(u) dF

with ]: R ]-, +] being the convex, lower semicontinuous function such that 0j.
Throughout this section will be assumed strongly monotone:

(5.8) 7 + nI
with y maximal monotone in R x R and > 0.

Operator M is obtained replacing by fl y + I where y is given by (4.5).
Let us verify conditions (a), (b), (c) of 3.
LEMMA 5.3. Let L f weakly in L2(0, T; HI()). Then y O(L) y O(f)

strongly in C(0, T; H(fl)) and y7 y strongly in C(O, T; L2()).
This is a variant of Corollary 5.2.
LEMMA 5.4. The operator S 0e:L2(0, T; HI()) L2(0, T; LE(fl)) is Gdteaux

differentiable and r V(S 0) (f)g satisfies in a weak sense:

(5.9) rt- Ar g a.e. flx ]0, T[,

(5.10) r(0, x) r(0, x) 0 a.e. O,

Or
-V(y,) .r, a.e. rx]0 T[(5.11)

On

where y O(f). Moreover rL(O, T; H()) and rtL(O, T; L()), rtt
L(0, T; H()*). The solution to problem (5.9)-(5.11) is unique.

The proof follows the same steps as for Lemma 4.4 (see also the next proposition).
We describe some facts about the adjoint (So 0)(f)*: LZ(0, T;L())

LZ(0, T; (H())*). Denote V(S O)(f)*q =p where fLe(0, T; H()), q
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L2(0, T; L2(O)) and pc L2(0, T; Hi(o)*). We have p=-mt, where

(5.12) m,--Am- q a.e. OX]0, T[,

(5.13) re(T, x)= m(T, x)=0 a.e. O,

0m
(5.14) =Vfl(y,).m a.e. Fx]0, r[.

On

For the existence and uniqueness in (5.12)-(5.14) we state"
PRoPosrro 5.5. Assume fl to be a strongly monotone graph in R x R. Then the

problem

(5.12’) mt-Am- w a.e. Ox]0, r[,

(5.13’) m(0, x) m(0, x) =0 a.e. 12,

(5.14’) --c)m=vfl(yt)’m a.e. Fx]0, T[,
On

where wL2(0, T; L2()), has a unique weak solution m eL(O, T; HI(o)) with
m, L(O, T; L2(f)).

Proof. We point out only that the weak solution is well defined as the limit of
strong solutions when function V/3 (Yt) is replaced by more regular mappings such
that the Kato-Tanabe [13] existence results for time-dependent evolution problems
hold.

Let f,, gn C(Q) fq L(Q) be such that

gn --> Vfl(yt) strongly in L(0, T; L(F)),

f, --> Vfl(yt) strongly in L(0, T; L(F)).

We denote the corresponding solutions of (5.12’)-(5.14’) by u ", v". Then

1 d I vL2n) "-- V’]) dx 0;
2 dt lu’-v’12 A(u"- )(ut

hence, integrating over [0, t] and using Green’s formula, we obtain

L2(,O,)L2(n) 22lu,(t)-v,(t)12 IV(u"(tl-v"(t))l 2

(5.15)
+ (g.uT-LvT)" (uT-vT) dr &=O.

It is easy to verify that {u"}, {v"} are bounded in L(0, T; HI()), {u}, {vT}
are bounded in L*(0, T; L2()) and {u’lr}, {v’]r} are bounded in L(0, T; L2(1-’)).
By taking convenient subsequences we have weak convergence towards u (respectively
v) in the above spaces. By (4.5) we see that/3 are strongly monotone, uniformly in
e; therefore one can assume that f,, g, are bounded from below by a positive constant

The last integral in (5.15) can be written as

’Ir
(g"" uT-L" vT)(uT-vT) dr dr
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g.(u,-v, dr" d-+ (g.-f.)v’/(u’/-v’;) dr" cl-

>- rl u ’] v dF d’r + g,, f v ’] u ’] v ’] dF dT".

We have also

(g,,-L)v (u v’) dF dr

(5.16) --< lg,,-- f,,IL IV’IlL [U’]-- V’[L <= C" [g,-- f,[L.
Now, by (5.15), (5.16) and the weak lower semicontinuity of the norm, we conclude

u v and this ends the proof.
LEPTA 5.6. Denote y O (f) and y 0 (f). Then

]y(t)-y(t)l.<)+lyT(t)-y,(t)lL<) C. E 1/2.

The proof uses estimates similar to (4.17), (4.16).
We can write the system (3.4), (3.5) for the approximate control problem

(5.17) Minimize L(y, u)+ lu-u* dt

subject to

(5.18)

(5.19)

Yt,- Ay Bu a.e. fl x ]0, T[,

y(O, x)= yo(x), y,(0, x) Vo(X) a.e. f,

Oy
(Yt) a.e.F]0 T[.(5.20) -0--

PROPOSITION 5.7. Let fl be strongly maximal monotone. Theproblem (5.17)-(5.20)
has a solution (y,u) in W2’2(0, T;L2(12))L2(O, T; U) and there exists m’
C(O, T; L2(1)) such that"

(5.21) yt]-Ay=Bu a.e.fx]0, T[,

fiT(5.22) raft-Am q a.e. 1]0, T[,

(5.23) y(0, x)= yo(x), y(0, x)

(5.24) m(T, x)= m(T, x)=0 a.e.

Oy
(5.25) -=/3(y) a.e. F ]0, T[,

c)m
(5.26) -V/3(y;) m; a.e.F]0, T[,

On

(5.27) (q(t),-B*m;(t)+u(t)-u*(t))=OL(y(t), u(t)) a.e.[0, T].

Moreover, we have y-->y* strongly in C(0, T;HI()), YTY*t strongly in
C(0, T;L2(I))), u--> u* strongly in L2(0, T; U), p =-mT-->p weakly* in
L(0, T; L2(f)) and q --> q weakly in LI(0, T; L2(f)) where"

(5.28) (q(t), B*p(t)) OL(y*(t), u*(t)) a.e. [0, T].
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To pass to the limit in (5.22), (5.26), (5.24) we again have to make the additional
assumptions (4.30), (4.32).

THEOREM 5.8. Let (y*, u*) we’2(O, T; L2(fl)) L2(O, T; U) be an optimal pair
for problem (5.1)-(5.4) where is a strongly maximal monotone graph in R R
satisfying (4.30) and (4.32). Then there exist functions m
L(0, T; Hl(fl)) f’l WI"(O, T; L2(I))), q L2(O, T; L(fl)) which satisfy in a weak
sense

y- Ay* Bu* a.e. Q,

T

mtt- Am q a.e. Q,

y*(O,x)=yo(x), y*t (O, x)= Vo(X) a.e. 1),

m(T, x)= mr(T, x)=0 a.e. ,
Oy*
-/3(y*) a.e. F ]0, T[,
On

Om
O(y*t)" m, a.e. F x ]0, T[,

On

(q(t),-B*mt(t))e OL(y*(t), u*(t)) a.e. [0, T].

Proof. Multiply (5.22) by m and use Gronwall’s lemma to deduce that {m} is
bounded in L(0, T; Hl(f)) and {mT} is bounded in L(0, T; L2()) as {q} is bounded
in LI(0, T; L2()). We also get that 7/3(y7) Iml2 is bounded in L(0, T; LI(F)).

From (4.30) by taking into account the cases lyT(t,x)l<-ct., [yT(t,x)[>=ct., it is
easy to infer that {V/3(yT)} is bounded in L2(0, T; LZ(F)). A standard procedure
involving Young’s inequality gives that {7/3(y7) m} is bounded in L(0, T; L(F))
for some a>l (see Theorem 6.2). Therefore V(yT).mTz weakly in
L(0, T; L(F)), a > 1.

A variant of [6, Lemma 3] shows that

(5.29) V/3(y;)-Ofl(y*) weakly* in L2(O, T; L2(F)).

By (4.34) for every rt > 0 we find Fn F with mes (F- Fr/) < 7 such that V/3 (yT) ->

Cn > 0 on F, as/3 is strongly monotone. Then we obtain that {roT} is bounded in L2(Fn).
Next, by using a concave-convex function, we can prove as in 4 that in a

generalized sense:

V/3(y;) m;- a/3(yt*) m,

weakly in L(0, T; L2(F,)), that is,

z(t,x)Ofi(y*(t,x)), mt(t,x) a.e.F]0, T[

and the proof is finished.
Remark. A similar result can be stated when/3 is a differentiable function.

6. Parabolic control problems. We consider the problem

(6.1) Minimize L(y( t), u( t)) dt
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subject to

N

(6.2) y,- (ai(Yx,))x, Bu a.e. 11 ]0, T[,
i=1

(6.3) y(O,x)=yo(x) a.e.l), y(t,x)=O a.e.F]0, T[.

For the functions ai we assume

(6.4) ai(y) y>= wlylP+C, w>O, p>=2,

(6.5) (ai(y)- ai(z))(y- z) >= wly- zl 2, w > 0.

(6.6) ai are locally Lipschitz and 7ai(y) <= CI[ylp-2 + C2 a.e.R.

Remark 1. By (6.6) it is obvious that

la(y)[ =< Cl[ylp-1 + C,

where Ci denote different constants. Then using (6.4) we obtain existence and unique-
ness in problem (6.2), (6.3) when the right-hand side is in Zp’(O, T; W-I’P’()) (see
Barbu [3]).

To apply the abstract scheme of 3 we take the spaces W U; Z, X, Y L2(fl),
S: L2(f) L2(II) is the identity and F B. The operator M" L2(I)) L2(II) is the
realization in L2(I)) of the generalized divergence operator induced by the functions

ai in W’P(I)) W-I’p’(I)). The family of operators M is obtained similarly, replacing
ai by their regularizations"

(6.7) a(y) Io ai(y- eO)p( O) dO

with p Cff(R), p(-O)=p(O), p(O)>-O, supp p= [-1, 1] and J_p(O) dO= 1.
An elementary calculation shows that functions a7 verify (6.4)-(6.6) with modified

constants, uniformly in e in a neighbourhood of 0.
We check conditions (a), (b), (c).
LEMMA 6.1. Let fe f weakly in L2(0, T; L2(I))). Then Oe(fe) ye y O(f)

strongly in C(O, T; L2(f)) as e 0.
Proof. We have, after multiplication by y"

lye 2
z(m dx dt [yol(m+ ft. y dx dt.21 (t)l + ai(Yxi)" Yx, -i=1

By (6.4) we get that {y} is bounded in L(0, T; L2(I)))["ILP(O, T’, W’P(I))).
From (6.6) we conclude that {aT(y,)} is bounded in LP’(0, T; LP’(-)), that is from
(6.2) that {yT} is bounded in LP’(O, T; W-’P’()).

The Aubin theorem gives y --> y strongly in LP(O, T; L2(-)).
Now, a standard argument (see Barbu [3, p. 140]) gives y= O(f) and ye__> y

strongly in C(0, T; LZ(f))f"l L2(0, T; H(f)).
In order to make condition (b) clearer, we give the following existence result for

a parabolic linear partial differential equation:
THEOREM 6.2. The problem

N

(6.8) P,- E (ai(x, t)p,)x, q a.e. fl x ]0, T[,
i=1

(6.9) p(t, x)=0 a.e. Fx]0, T[,
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(6.10) p(0, x)= po(x) a.e. 1),

where

(6.11) aiL(O), a> 1,

(6.12) ai >- rt > 0, a.e. O
and q LZ(O), Po LZ(l)) has a unique solution p Lz(O, T; H(I))) with Pt
L (0, T; W-a,, (12)) with some > 1.

Proof. We take the approximating equation
N

(6.13) p- Y (a(x, t). P,)x, q a.e. Q,
i=1

where the functions a are determined by:

(6.14) aT(t, x)= IR,+I ai(t--eO, x--ey)p(O, y) dOdy

and p is a Friedrichs mollifier with support in the unit ball. The functions a satisfy
(6.12) and

(6.15) aT a as e-0, strongly in L(Q),

(6.16) a7 L(Q) f) C(RN+).
It is well known that problem (6.13), (6.9), (6.10) has a unique solution. We

multiply (6.13) by p and use Green’s formula:

1 d pZ ,21 pL2(I)(6.17)
2 dt

/ a [p,l2 dx= q. dx.

From (6.12), (6.17), by Gronwall’s lemma, we infer that {p} is bounded in
L(0, T" L2(12))fl L2(0, T; H(I))), and {a, 2" Px,[ } is bounded in LI(Q).

We use Young’s inequality to estimate a’px,

la px,[<-aT(l +[px,[ 1+ ), v>0,

a-[p,la+= (aT)a-’((aT)"
1 1 ],--<--(a) (x-g) +--[(aT)-Ip,[ +

where we choose v, Ix, 8, ’ such that

1 1 1
l>/z>, l<(1-/z)6<a, 6>2, l+v=2/z, +=1.

The above inequalities show that {a.pi} is bounded in U(O) with some r> 1
since {aT} is bounded in L’(Q). Then (a’’p,,)x, is bounded in L(0, T; W-a’(f))
and by (6.13) we see that {pT} is bounded in L’(0, T; W-1"(12)). By the Aubin
compactness result we have:

p - p strongly in LZ(Q),

Px, - Px, weakly in L2(Q),

p7 pt weakly in L’(0, T; w-l"r(-)),

aT p,, h weakly in L’(Q).
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From (6.15), by Egorov’s theorem, for every r/>0 there is Q,c Q such that
mes (Q-Q,)< r/and a7 ai uniformly on Q,r Then

aT pxi ai" Pxi weakly in L2(Q,).
When r/0 we deduce that h(t,x)=ai(t,x).px,(t,x)a.e. Q that is p satisfies

(6.8)-(6.10).
LEMMA 6.3. The application O is Gdteaux differentiable in L2(Q) and r V O(f)g

satisfies
N

(6.18) rt- , (VaT(y,)" rx,)x,=g a.e. Q,
i=1

(6.19) r(0, x) 0 a.e. FI,

(6.20) r(t,x)=O a.e.F]0, T[,

where f, g L2(Q) and y O(f). Moreover r L(O, T; L2()) {’) L2(0, T; H01(fU) and
rt L(0, T; W-I"(II)) for some -> 1.

For later use we describe the adjoint of V0(f). We denote V O(f)*q =p where
f, p, q L2(Q). Then p is a solution of

N

(6.21) Pt + (VaT(yx,) Px,), =-q a.e. Q,
i=1

(6.22) p(T, x) 0 a.e.

(6.23) p(t,x)=O a.e. F x ]0, T[.

The existence and uniqueness for problem (6.21)-(6.23) is contained in Theorem

LEMMA 6.4. Denote y O f), y 0 f). Then

[y(t)-y(t)lm<-C 61/2 Vt[0, T].

The proofs of these statements follow the same lines as in the previous sections
and we omit them.

We recall the approximate control problem

(6.24) Minimize L(y, u) dt+- lu-u dt

subject to

N

(6.25) Y,- E (aT(yx,))x, Bu a.e. O,
i=1

(6.26) y(0, x)= yo(x) a.e. O,

(6.27) y(t, x) 0 a.e. F x ]0, T[.

The results of 3 enable us to state:
PROPOSITION 6.5. Problem (6.24)-(6.27) has a solution (y, u) e

L2(0, T; L2(f))L2(0, T; U) and for every e >0 there exists the adjoint arc p6
L2(0, T; L2()) such that:

N

Y;- 2 (aT(y,))x, Bu a.e. Q,
i=1
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(6.28)

(6.29)

(6.30)

(6.31)

y(0) y0, ylr=0,
N

p + Y [Va(yx,) Px,]x, q a.e. O,
i=1

p(T,x)=O a.e. fl,

p(t,x)=O a.e.F]0, T[,

(q(t),B*p(t)-u(t)+u*(t))=OL(y(t), u(t)) a.e. [0, T].

Moreover, we have y y* strongly in C(0, T;L2()), u-u* strongly in
L2(0, T; U), pe p weakly* in L(O, T; L2()) and q - q weakly in La(O, T; LZ(f))
where

(6.32) (q(t), B*p(t)) OL(y*(t), u*(t)) a.e. [0, T].

Remark 2. Obviously {y} is bounded in L(0, T; L2())OLP(O, T; W’P())
and

Y,--> Yx*, strongly in L2(Q).

We give some more estimates. Multiply (6.28) by pC and use (6.5) to obtain that
{p} is bounded in L(0, T;L2(f))f’IL2(O, T;H(12)). We also deduce that
{Vai(Yx,)" 2p,] } is bounded in La(O). Since {Ta(yx,)} is bounded in LP/(P-2)(Q) by
(6.6), we get that {TaT(y,,). p,,} is bounded in U(O) with some r> 1 as in the proof
of Theorem 6.2. We can see at once that

(6.33) VaT(y,) p,--> h’ weakly in L’(0, T; L(f)),

(6.34) pT- p, weakly in L(0, T; w-l"(f)).
A variant of Barbu [6, Lemma 3] gives

7aT(yx,)->Oai(Y*x,) weakly* in L(Q) for every r>0
(6.35)

and with Q c Q, mes (Q- Q) < o-.

To identify functions h i, we have to make the not restrictive assumption:

(6.36) ai i- ti, 1, N

where :i, ti are real, convex functions.
The same device as in 4 gives VaT(yx,) px,--->Oai(Y*x,) "Px, weakly in LI(Q,).
We can state:
TIJEOREM 6.6. Let (y*, u*) be an optimal pair forproblem (6.1)-(6.3). Then there

exist functions p L(O, T; L2(fl)) f-) L2(0, T; H(fl)) and q L2( Q) such that, in a
weak sense"

N

Y’t- (ai(Y*x,)))q Bu* a.e. Q,
i=1

y*(0, x)= y0(x), p(T, x)= 0 a.e. ,
y*( t, x) O, p( t, x) O a.e.F]0, T[,

N

Pt + (Oai(y*x,)Px,)x, q a.e. O,
i=1

(q(t), B*p(t)) OL(y*(t), u*(t)) a.e. [0, T].
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Remark 3. If L is quadratic, from the maximum principle, we get u*
L2(0, T; H(I))fq L(0, T; L2()), a regularity result for the optimal control.

7. Delay control systems. Consider the problem:

(7.1) Minimize L( y, u dt

subject to

(7.2) y’(t)=A(y(t))+Dy(t-h)+Eu(t) a.e. [0, T],

(7.3) y(O) Yo, y(s) 0(s) a.e. I-h, 0].

We assume that L: RN x R - ]-0, +] is convex, lower semicontinuous, proper,
with finite Hamiltonian, D, E are matrices and yo R, o L2(-h, 0; Rt); A" R tv R
is Lipschitz.

We take the spaces Z RN L2(-h, 0; R) X RN, W R’, Y Ru {0}.
Operator M: Z Z is given by

dom (M) {(x, p) RN H(-h, O; RN); p(O) x},

M(x, o) (A(x) + Dq(-h),
where b denotes the derivative with respect to s [-h, 0]. We keep notation 0’ for
the derivative with respect to [0, T].

Operator F is given by (E, 0) and S is the projection S(y(t), y’)= y(t). Here the
pair (y(t), y’) plays the role of y in 3.

It is known that M is w-maximal dissipative in Z. Then the state equation (7.2),
with condition (7.3) has a unique strong solution such that y’ L2(0, T; Ru).

To obtain M we put instead of A, the regularization A:

(7.4) A(Y) fN A(y- ex)p(x) dx, e > 0
3R

where p is a Friedrichs mollifier as in 6. The family of mappings A are uniformly
Lipschitz and the approximate equation has a strong solution. Then 0 and 0 are well
defined.

The approximate control problem is:

(7.5) Minimize L(y(t), u(t)) dt+- lu(t)-u*(t)l dt

subject to

(7.6) y’(t)=A’(y(t))+Dy(t-h)+Eu(t) a.e.[0, T],

(7.7) y(O) Yo, y(s) 0(s) a.e. I-h, 0].

Now we begin to check conditions (a), (b), (c) from 3. Let u-* u weakly in
L2(0, T; R m).

Multiply (7.6) by y O(Eu) to obtain

1 1
[y(t)12--lyo[2= A(y(t))y(t) dt

+ Dy(t-h)y(t) dr+ Eu(t). y(t) dr.
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As A are uniformly Lipschitz with respect of e, by Gronwall’s lemma we get
{y} bounded in C(0, T, RN) and the same for {A(y)}. From (7.6) it follows that
{y’} is bounded in LZ(0, T; RN) so we can easily pass to the limit and prove y - y
O(Eu) in C(0, T; R).

For (b) we denote O(w)v=r with w, v in LZ(0, T; R). It is immediate to
check that r exists (0 is ditterentiable Gteaux) and satisfies:

(7.8)

(7.9)

r’(t) VA(O(w))r(t)+ Dr(t- h)+ v(t),

r(0) 0, r(s) 0 a.e. I-h, 0].

The adjoint operator VOe(w)*:L2(O, T; RN)- L2(0, T; RN)
70(w)*q p where;

(7.10) -p’( t) 7A O(w))*p(t) + D*p( + h) + q( t),

(7.11) p(T) =0, p(s) =0 a.e. IT, T+ hi.

Here D*, 7A( .)* denote the transposed matrices.
Condition (c) can be easily obtained with 6(e)= e:

[O(f)(t)-O(f)(t)l<-C. e Vt[-h, T].

Then L=L, the Yosida regularization of function L.
The approximate optimality system provided by 3 is

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

We know that:

and

(7.17)

y’(t)=A(y(t))+Dy(t-h)+Eu(t) a.e.[0, T],

-p’(t)=VA(y(t))*p(t)+D*p(t+h)-q(t) a.e. [0, T],

y(O) Yo, y(s) q(s) a.e. I-h, 0],

p(T) =0, p(s)=0 a.e. [T, T+h],

(q(t), B*p(t)- u(t) + u*(t))= OL(y(t), u(t))

y y* strongly in C(0, T; RN),

y’ y*’ strongly in L2(0, T; RU),

u u* strongly in L2(0, T; Rm),

pp weakly* in L(0, T; R),
q q weakly in LI(0, T; R)

is given by

a.e. [0, T].

(q(t), B*p(t)) OL(y*(t), u*(t)) a.e. [0, T].

From (7.13) one can see that p’ - p’ weakly in LI(0, T; RN) as all the right-hand
side terms are weakly convergent. The Helly compactness principle shows in connection
with the Lebesgue convergence theorem that p- p strongly in LZ(O, T; R) on a
convenient subsequence.

Since VA(y)* is bounded in L(0, T;R), we get VA(y)*-OA(y*)
weakly* in L(0, T; RuN) by a variant of Barbu [6, Lemma 3].

We can state the theorem:
THEOREM 7.1. Let (y*, u*) be an optimal pair for problem (7.1)-(7.3). Then there
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exist functions p W1’1(0, T; RN) and q LI(0, T; RN) such that"

(y*)’(t)=A(y*(t))+Dy*(t-h)+Eu*(t) a.e.[0, T],

-p’(t) =OA(y*(t))*. p(t)+ D*p(t+ h)-q(t) a.e. [0, T],

y*(0) Yo, y*(s)= o(s) a.e. [-h, 0],

p(T)=0, p(s)=O a.e.[T, T+h],

(q(t), B*p(t))e OL(y*(t), u*(t)) a.e. [0, T].
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BOUNDARY CONTROL AND STABILITY OF LINEAR WATER WAVES*

RUSSELL M. REID" AND DAVID L. RUSSELL

Abstract. This paper is the first of two parts which study controllability and stabilizability properties
of small amplitude waves on a fluid surface. We first derive an evolution equation describing these waves,
and then discuss a suitable form of boundary control.

We show that, for a simple domain geometry, the system is null controllable (can be steered to the zero
state) only on an infinite time interval. (The second part of this paper extends the result to finite, irregular
domains.) We actually construct the Laplace transform of the open loop null control for infinite time, and
show that no null control exists for finite time. We give sufficient conditions for convergence of the series
describing the control.

Key words, surface waves, small amplitude waves, linear waves, boundary control

1. Introduction. In this paper we examine controllability properties of a fluid in
a two-dimensional region fl. We assume fl has a boundary in two parts" F a fixed
boundary (walls and bottom) and S a free surface. We begin with the case where II
is semi-infinite, (bottomless) with vertical straight sides.

z/
S x=’rr

FIG. I.

We later discuss the case where fl is a bounded domain, requiring that it have
finite arclength and no "beaches"; it must have vertical walls of positive length (see
fig. 1).

In 2 we develop the problem. We show that the system is governed by equations
of the form Aox and give existence and uniqueness results for solutions. We then
show that a reasonable controlled equation is of the form : Aox + bu.

In 3 we look at the controlled system using eigenfunction expansions. We show
that the problem of steering the system to zero is equivalent to a moment problem
involving the expansion coefficients. The system cannot be steered to zero in finite time.

In 4 we construct a solution valid in infinite time, and give conditions under
which the series describing the formal solution converge.

2. Formulation of the problem. If we assume an irrotational, incompressible,
inviscid fluid with constant density, and take a small amplitude linearization of the
hydrodynamic equations (dropping second-order terms in amplitude and velocity--see
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[1], [7], [20]), then the fluid motion can be expressed in terms of a velocity potential
4(x, t) defined on 1 R: fluid velocity is -grad 4. At each moment t, this potential
satisfies the Laplace equation in , subject to the boundary conditions

(2.1) 0 on F, on the top z 0.
On On Oz Ot

(Here z--’(., t) is the equation of the actual surface contour, and n is a unit outward
normal; it is a result of the linearization process that conditions are imposed at z 0.)

In addition, 4 must satisfy

(2.2) 04_ . on the top z 0.

It is simplest to work with OchlOt, which is also harmonic in for fixed t. By
(2.1), (2.2), satisfies the boundary conditions

(2.3) 0_0 onF, =sr on the topz=0,

so is well-defined in terms of ’, and is linear in ’. In view of (2.1) we want
which will be We introduce the operator A,

(2.4) A" " --z top

where is harmonic in and satisfies (2.3). Then formally, the evolution equation
for " is

(2.5) ’= -a’.
A necessary condition for existence of is top ’(x)dx--0, SO the range of A

must lie in the space L[0, r]= {f L[0, r]: f(x)dx=0}. This follows formally
from the definition of A, since

fit Adx--- ft OxIl’dx-- fo OItdA----If/V2xI$ A ffV 1 dA:O.
op op 0 0

We complete the definition of A by making it an unbounded operator on L[0, ] with
domain D(A)= H[0, ] L[0, ]. One can see that A is well-defined from standard
results on elliptic operators (see [9]).

LEMMA 2.2. e operator A is an unbounded, positive, self-adjoint operator with
compact resolvent.

Proof First we show A is positive. If c denotes the harmonic function whose
trace is if, (used to define A above), then

If (A, )=0 then 7 =0, i.e. is constant. The requirement o (x)dx =0 forces
that constant to be zero.

Now let , W D(A). Integrating by pas, we have

(A. ,)=/ .,O*at=fr-- *.O*dl-- (because 0.-= OonF)s On s On On

I. 0____ dl (, Arl).
os On
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Thus A* A, but the theorem of traces shows that A is a maximal operator on L2, so
A is self-adjoint.

In order to show that A has compact resolvent, we exhibit A-1 as an integral
operator with weakly singular kernel. Recall that A is defined by the map

C- -Z s= A.
Thus A-It/ will be the boundary values of a harmonic function, specifically that
harmonic function whose normal derivative is zero on F and r/on the surface S. This
harmonic function is therefore the single-layer potential for two space dimensions: if
t F, , then

This potential is continuous in the plane, and its boundary value is A-. Thus
is compact, so the resolvent operator of A is compact.

We now define energy spaces He, Hv either of which may be used in what follows.
Denoting by H the intersection of H with L (see Def. 2.1), we let

equipped with the inner products

v

Using the self-adjointness of A, it may be easily shown that H, Hv are Hilbe spaces,
and that the operator

Ao (-A
is skew adjoint on Hv, He.

Note that He gives the physical energy of the system" Is (x) dx is the potential
energy, and the kinetic energy is

ffaVd lr 0dF ffs(0)A-’(0)dx2 On 2

where we recall =a/at=a&/an on the surface, and since is harmonic,
a-’(a/a) A-l(a/an)= on the surface S.

Both He and Hv norms are energies in the sense that they are constants of the
motion; for either norm

dt

as is easily verified from the dynamic equation (2.5). Hencefoh we use these energy
spaces as the state spaces. We use Hv, but results and proofs are alike for H.
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PROPOSITION 2.3. For initial conditions in Hv, a solution to

0 )()=A()
exists and is unique in Hv on any time interval. If the mapping from initial state o to

final state is denoted by S( t), then S( t) is a strongly continuous semigroup of bounded
operators in Hr.

Proof. If Ao represents the matrix operator, V-skew adjointness of Ao gives

2[[(h -Ao)xllvllxll v-> ((hi-No)x, X)v +(x, (hI-Ao)x)v 2Re h [[xll

for x D(Ao). This shows that for Re(h)> 0

II(xt ao)-’
Re(X)"

So we may use the Hille-Yosida theorem. Existence, uniqueness, and regularity of the
solution S(t)Zo follow from standard semigroups results.

Now consider a controlled wave system of the form

(2.6) Aow + Bu

with w now representing an element of Hv (or He), where B is taken to be a fixed
element of Hr. For brevity in what follows we shall just state that a parallel development
holds for He.

Equation (2.6) reflects a distributed control whose physical form is difficult to
visualize. Boundary control, which is easier to implement, may be reduced to the same
form and an equivalent moment problem.

Suppose we can control a small-amplitude movement of one end of our tank, the
one whose nominal equation is x r. Assume the spatial distribution of control is
fixed as a function of z; denote it by F(z). We require that the integral of F(z) over
the control surface be zeromto ensure conservation of volume--and that F(z) be
sufficiently regular that solutions remain in Hr.

z

S x

f C

FIG. 2.

Suppose F(z) H locally, and denote the controlled boundary by C. Since (See
(2.2), (2.4))
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we proceed by finding the harmonic function -= O/Ot. It clearly must satisfy

(x, o) ’(x), o_-< x_-< -,

=0 on F,
On

F(z) U( t) on C.
0x

It is helpful to split into a sum of two parts; the function used to define
the operator A, and a potential O related only to the control function. In particular
there is a harmonic function O which satisfies

=0 on S,

00
0 on F,

0n

00
=F(z) onC.
Ox

We remark on two properties of 19" it does not depend on sr, and it is linear on C in
the following sense" If we multiply the boundary condition on C by U(t) for fixed t,
i.e.

F(z) U(t) on C,
Ox

then the potential satisfying the new boundary conditions is the multiple" U(t)19.
The sum + U(t)19 is thus the harmonic function we were seeking because"

+U(t)O=" onS,

0
(c+U(t)O)=0 onF all t,

On

0
(; + U(t)19)= F(z)U(t) on C.

Ox

We see then that

_._0( + U(t)O) Ar + U(t) 0___0_0
Oz Oz’

so that our controlled system becomes

ot 7 -A

where
O0

a(x) 0-7 (x, o).

We have now included boundary control in the framework of the inhomogenous
equation (2.6), except that b(x)= 0 for the boundary control. It is interesting to note
that the control function is in fact the local acceleration of the boundary wall or
membrane.
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3. An equivalent moment problem. Since A is self-adjoint with compact resolvent,
we know it has a complete orthonormal system of eigenfunctions Ck(X) in L[0,
with associated eigenvalues Ak. For a particular, very simple geometry we know the
Ak and Ck explicitly: If the tank is infinite depth, with straight sides x 0 and x
then one can see that A has eigenvalues Ak =k, k= 1,2,3,.’’ and eigenvectors
Ck =x//Tr COS kx, because cos kxek is the potential if(x, z) referred to in equation
2.4, i.e. O(x, z) has zero normal derivative at x =0, x , z =-. In this paicular
case, A2 is the Sturm-Liouville operator -d2/dx, restricted so first derivatives vanish
at x 0, x . We can separate variables in the controlled system

(3.1) 0 n -A

by expanding in terms of the Ck(X), giving

(x, t) 2 k( t)dPk(X),

(3.2)
r/(x, t) r/(t)k(X),

b(x) ., bkCk(X),

d(x) E d(x).

Substituting (3.2) into (3.1), we find that for each k,

0 0
+(3.3)

cgt k --hk Tk dk
u(t).

After the substitution

k -- iWk iWk Yk

where Wk X/kk, then (3.3) may be diagonalized to give the system

+ u(t),
Ot Yk 0 --iWk Yk 6k

where the control distribution element is now

Note here that in the boundary control case bk 0 for all k, but that 3’k and 8k are
nonzero provide dk is nonzero.

Let us consider finite time null controllability for this system. From (2.6), we see
that an initial state :o is steered to zero in the interval [0, T] provided, with S(t) the
semigroup generated by Ao,
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In order that this norm be zero, each term in the eigenfunction expansion must be
zero. Expressing

Xo(T))s( 73 :o yo(7")

in a series like 3.2, we have

(3.7)
Xo,k + e-’WkSykU (S) ds O,

Yo,k d- e +iWkStkU(S ds 0 for k= 1, 2, 3,....

If Yk and tk are not zero, we may consider this a moment problem whose solution
gives the control u:

r

e-iWkS ds --Xo,k
U S Ck,

(3.8)
Yk

T

+iWkSu(e s) ds
6k

Now let us restrict our attention to the simple case Wk x/k of the infinite-depth tank.
For T< this set of conditions on u does not, in general, have a solution [8],

since the Wk have infinite density on the real axis. Physically, this reflects the fact that
wave propagation speed nears zero as the wave length nears zero for these (nonviscous)
waves. On an infinite interval (T=c), however, we shall show there is a u
Lfq L2[0, o3] for which the conditions (3.8) hold.

In that case, u will be defined to be a null control provided:

(3.9) lim IIS(T)sCo + S(T-s)Bu(s) dsllv=O.
T

(Note that this is a notion similar to asymptotic stability but, rather than being ettected
by feedback, it is accomplished via the open loop control u.)

The limit is well-defined provided u L[0, ). It will be zero provided the chosen
u L2[0, ) is a solution of (3.8) with T , i.e.

e-iWku (s) ds

(3.10)

e+iWk,u(s) ds _-y,k.
6k

4. Construction of a solution to the moment problem. We shall construct the
required function u by finding a set of functions pk(S) and qk(S) which are biorthogonal
to the exponentials, i.e. which satisfy

eiWkSp,,(s) ds k
(4.1)

e -iwk$ pn(s) ds=O,

’eiwks q,(s) ds =0,

e-iwk$ q,(s) ds 6k
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Using the functions Pk (S), qk (S),

(4.2) U(S) , (c,p,,(S) + d,,q,,(s))

will be a formal solution to (3.10); its convergence will be considered separately.
To find the required functions pk(S), qk(S), we will construct their Laplace

transforms/3,(z), n(z). The properties (4.1) are equivalent to

(4.3)
P, iWk tk, q, (-- iWk 6 k,

,,(--iWk) (1,,( +iWk) O,

for the transforms/3k, 4k" We begin by constructing a function G(z) which has simple
zeros at +iWk and is bounded in the right half-plane. The fig(Z) and k(Z) are then
formed by factoring out (z- iWk) or (Z d-iWk) thereby removing one zero at a time.

LEMMA 4.4. The function of a complex variable z defined by

(4.4) G(z)
r((z+)-)

r(z)[ez+’r(z + )]4

is analytic for Re(z)>_-1 and uniformly bounded in the right half-plane. G(z) has
simple zeros at z + ix/k for k 1, 2, 3, . On the imaginary axis, the values of G( iw)
and its derivatives are asymptotic, as w- oo, to values and derivatives of

(4.5) [l_e-2,’w]G( iw "4qr2e

Proof. Analyticity of G(z) is clear from the fact that F(z) is analytic in the right
half-plane, and 1/F(z) is entire. G has simple zeros where 1/F(z2) has simple zeros,
i.e. +ix/-. (G(z), of course, has other zeros--but not in the right half-plane.) For an
asymptotic estimate of G(z), use Stirling’s formula

F(Z)= e-Zz(Z-1/2)(2.tr)’/2(1 + O(1/lzl))

which is valid as Izl- oo in a sector larg z < r.

We desire an estimate of G(z) in the right half-plane -Tr/2=<arg z<=Tr/2. First
consider the open half-plane -7r/2 <arg z < 7r/2. Then z2, (z + 1), and (z + 1)2 are all
in the sector where Stirling’s estimate is valid, i.e. larg (z2)l < r, larg (z + 1)l < 7r, larg (z +
1)21 < r. Expanding G(z), we find

(4.6) G(z) 147r---5 e-2Z-1 (z + 1)2z2-1[z2z2_ +O(z[) ] 47r2el (1 + O(z))"
On the imaginary axis larg z[= r/2, the terms F(z + 1) and F{(z + 1)2} may be

estimated as before. Stirling’s estimate of F(z2) is no longer valid, so we use the
reflection principle

-z sin 7rz

r(z) r(-z) r

Applied to 1/F(z2), this gives

-z2 sin (Trz2) r(-z).
r(z) r
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On the imaginary axis [arg z zr/2, arg (-z2) =0 and hence Stirling’s formula is valid
for F(--zE). Expanding as in (4.6), we find for 7r/2-e-<_ [arg zl-< 7r/2:

G(z) 47rE

4,tr2e

Written with z iw, this is

e-2Z-l(2 sin z2)(1

G(w) =4zr2e
as [w] o in the sectors noted. Similarly,

(4.7) G’(iw)
d e_2=,w2

4rEe dw

in the same sector.
Combine these results to show that G(z) is bounded in the right half-plane" Let

R be large enough that [G(z)l<2/are= M if Izl> and [arg z[< r/2, and RE be
large enough that IG(z)l<2/are whenever [arg zl= zr/2 and [zl> R2. Then G(z)is
bounded by the larger of M and sup [G(z)l for z-< R in the half-plane.

We now use the function G to construct the Laplace transforms of the desired
function Pk, qk. This is the content of the following lemma.

LEMMA 4.5. The functions pk(Z), k(Z) defined by

i/- G(z) i/- G(z)
(4.8) pk(Z) tk(Z)

Z Z x/- G x/- z z + x/- G’ x/-
are Laplace transforms offunctions in L[0, ) fq L2[0, o3), and satisfy the biorthogonality
properties (4.3).

Proof Since G(z) is uniformly bounded in the right half-plane, and, using 4.7,
the quotient

G(x + iy) /-
(x + iy)(x + iy- i/-) G’( i/-)

is in L2(-cx3, X3) as a function of y, uniformly in x > 0, with estimates independent of
k. Results in Paley and Wiener [10] show that therefore pk(Z) and k(Z) are Laplace
transforms of functions pk(t), qk(t) in L2[0, cx3). The biorthogonality property (4.3)
follows immediately from knowledge of the zeros of G(z) and properties of the Laplace
transform.

To show that pk(t) and qk(t) are in Ltq L2 and not just in L, we note from the
asymptotic exapnsion of G(iw) that the derivatives with respect to y of k(iy) and
k(iy) are in L(-c, c). This forces tpk(t) and tqk(t) to be in L2[0, cx3), and hence
pk(t) and qk(t) are in Lf-) L2[0, c) as desired. [3

We may now use the functions pk(t), qk(t) to construct a null control for an
arbitrary initial state.

Suppose that the initial state o is written

(4.9) 0
akXit k _[_ktt_k

qo
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where

are the eigenvectors of the operator Ao in the x, y coordinate system. Then

(4.10) u(t) - t____k qk( t) + flk
"l"k --k pk

is a formal solution to the null control problem, as we can see by calculating the kth
condition in (3.10). We find, using (4.1), that

and

e-iw u(s) ds-
0lk Xo,k

k "k

e/iwks u(s) ds --k--y-k
/k 8k

as required in (3.10).
It remains to show that under suitable conditions, the series (4.10) converges to

an admissible control, i.e. one which is in LI[0, o)fq L2[0, o). We content ourselves
here with some sufficient conditions for the convergence of (4.10). We do this by
showing that

(4.11) k=,Y IIq(t)ll <

for both the L and L2 norms on qk, and that a similar result holds for the second term
in the series (4.10).

Recall that the coefficients Yk and 8k depend on our choice of control distribution
element.

Let us consider boundary control. It is reasonable to suppose that the control
distribution function was chosen to get as strong a control action as possible, which
means choosing d(x) in equations (2.7), (3.2), so that the ’k, k have as slow a decay
rate as possible (within the constraint that the dk be square summable.) For the
boundary control, this means x/ k and x/ 3k must be square summable (see e.g.
(3.7)). If we suppose that

Iwl--> k’4 In x/ In k’

then an initial state (4.9) may be steered to zero provided its Fourier coefficients ak,

/3k satisfy

kx/ (In k)

with the same estimate for the k SO that (4.11) holds. This is certainly true if, for
example, the coefficient series {ak}, {fig} are dominated by any p-series with p> (a
smoothness condition on the initial state.)
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OPTIMAL REPLACEMENT OF ONE-UNIT SYSTEMS
UNDER PERIODIC INSPECTION*

SI]LEYMAN (ZEKICI"

Abstract. In this paper the optimal replacement problem of a one-unit system under periodic inspection
is analyzed utilizing Markov decision theory. The problem is formulated in a general setting and it is shown
that an age replacement policy is in fact optimal if the component lifetime has monotone failure rate. A
necessary and sufficient condition of optimality together with several characterizations of the optimal policy
are presented.

Key words, optimal replacement, Markov decision theory, age replacement, periodic inspection

1. Introduction. This paper deals with a classical optimization problem concerning
the optimal management of nonrepairable reliability systems. A one-unit system under
periodic inspection is considered and the optimal replacement policy is characterized
using Markov decision theory. It is shown that an age replacement policy is in fact
optimal if the component lifetime has monotone failure rate. In this section we will
state and formulate the problem as a Markov decision chain, and in 2 a necessary
and sufficient condition of optimality will be presented. Furthermore, implications of
this optimality condition will be analyzed in 3.

The optimal replacement problem for nonrepairable reliability systems is analyzed
by many researchers who have generally constructed their models based on the
pioneering papers by Barlow and Proschan [1], [2]. The models constructed vary
basically either in the cost structure or in the replacement or preventive maintenance
structure. For a review of the literature on the subject we refer our reader to Nakagawa
[6] who analyzed various cases by making changes in the model characteristics for
both replacement and preventive maintenance problems. Most of the literature on
replacement models assume that the item under inspection is replaced upon failure or
at a certain age, whichever comes first. Identification of the replacement times as
renewal points in time leads to an expression representing the average expected cost
through a renewal theoretic argument. The optimal solution thus obtained is optimal
within the class of age replacement policies. As we shall see shortly, we will make a
general formulation of the replacement problem that will enable us to utilize Markov
decision theory.

Consider an item which is inspected periodically at prespecified times
{0, to, 2to, 3to,’’ " where to is some positive number. At every inspection a decision is
made to replace the item or not. If the item inspected is found to be in a failed state
it is replaced immediately by an identical one and a failure cost Cs is incurred. On
the other hand, if a functioning item is replaced, a cost of Cp is incurred. We assume
that all replacements are immediate and the lifetimes of the successive items installed
are independent and identically distributed random variables with common distribution
F, and Cf >- Cp >- O. To avoid some technical difficulties in our presentation we assume
that F(0)-0 and F(x)< for all x_->0. The periodic discount rate is c (0< a < l)
and the problem is to find the optimal replacement policy that minimizes the expected
total discounted cost.

* Received by the editors April 14, 1983, and in revised form January 31, 1984.

" Department of Industrial Engineering, Bo,azii University, Bebek, Istanbul, Turkey.
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At each inspection epoch the inspector is to make a decision to replace the item
or not. Thus, letting X, denote the state of the item inspected at time nto for any
integer n >-0, the decision made should be a function of X,. We assume that changes
in physical and technical performance specifications of the item due to deterioration
or aging are undetectable, so what the inspector observes is an item which is either
functioning or not functioning. This enables us to let X {X,;n =0, 1,...} be the
age process associated with the reliability model under study. In other words, if the
item inspected at time nto is functioning, then X, is the total number of inspection
periods that item has survived. Otherwise, the item has failed prior to inspection and
X, is set to be equal to some state A which denotes failure. Without further mention,
we will use discrete time n and nto interchangeably and call X, the age of the item in
use at time n. Letting E be the set of all nonnegative integers and Ea E U {A}, it is
clear that X is a stochastic process with state space Ea.

Since the replacement decision is made by observing the present state of the item,
we define the set of all admissible policies M by

M={r:Ea{O, 1}; r(A)= 1}

where r(x)= (resp. r(x)=0) implies that an item observed to be in state x Ea is
replaced (resp. not replaced) if policy r is used. The following result shows that the
problem formulated above is a Markov decision problem.

THEOREM 1.1. For any policy r M, X {X, n O, 1, .} is a Markov chain with
state space Ea and transition matrix

where

por(
P(i,j)= (1-p,)(1-r(i))+(1-po)r(i),

p,(1-r(i)),

j=l

j=A,
j=i+l

(1.3) p, (1 F((i + l) to))/(1 F(ito))

for all E and pa O.
Proof. The fact that .X is a Markov chain follows trivially since the successive

items installed have independent and identically distributed lifetimes, and the age of
the item at each inspection provides all the information about the past of that particular
item. For any nonnegative integer n and e Ea, letting L, denote the lifetime of the
item inspected at time n, it is clear that

Pr(i, A)= P{Xn+I AIXn i}

_[P{L.<=(i+l)tolL.>/to)} if r(i)=0,
P{ L,+, <-_ tolL,> ito} if r(i)

I pi ifr(i)=0,
1-po ifr(i)=l

(1 -p,)(1 r(i)) +( -po)r(i)

where

p,= P{L.> (i + 1)tolL. > ito} (1-F((i + 1)to))/(1-F(ito))

and Pa 0.
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A similar argument shows that Pr(i, i+ 1) and Pr(i, 1) are as given by (1.2).
The cost structure is such that we pay Cs units whenever state A is visited and Cp

units whenever a preventive replacement is made. Therefore, the expected total dis-
counted cost for any initial state Ea is expressed by

V(i)=E E ang(X,) X0
n=0

where
Cpr(i)if i A,

g(i)
Cf ifi =A.

The optimal control problem is to find V* and r* M such that V* Vr* <= V for
all r M. We end this section by stating a result which characterizes the return function
Vr for all r M. We would also like to remark that since Ea are discrete functions
defined on Ea and Ea Ea are considered as vectors and matrices respectively as in
the statement of the following theorem which follows trivially from tinlar [3, p. 197].

THEOREM 1.4. For any r M, there exists a unique function u defined on Ea which
satisfies

(I-aPr)u=g,.

Furthermore,

u(i) V,(i)= E a"g,(X,) Xo e Ea.
=0

This result simply states that V, is the unique solution of a system of linear
equations given by Theorem 1.4. Note that, V, satisfies

Vr( i) gr(i) + apor( i) V,(1) + a( p,)(1 r( i)) Vr(A)
(1.5)

+ a(1 -po)r(i) Vr(A) + up,( r(i)) V(i + 1)

for all i Ea when expression (1.4) is rewritten in open form.

2. A necessary and suftieient condition of optimality, in this section a necessary
and sufficient condition of optimality will be presented so that some interesting results
that follow from it can be obtained. The role of the transition matrix P, is extremely
important in the discrete time control of Markov chains. Markov decision chains, as
they are frequenly called in the literature, have been studied by many authors who
have obtained necessary and sufficient optimality conditions for general models. We
refer the reader to Derman [4] and Howard [5] for a detailed treatment of these models.

Our interest lies in characterizing the optimal solution of the specific replacement
problem stated and formulated in the previous section. Before we state the main result
of this section we introduce the following notation for simplicity. Let B be the set of
all bounded functions on Ea and define two mappings Fo and F on B by,

(2.1) roY(i) tp,f(i + 1) +ct(1 p,)f(A), i E,

(2.2) Flf(i)=apof(1)+a(1-po)f(lx), icE,

(2.3) roY(a)= FlY(A) apof(1) +a(1 -po)f(A)

for every f B. Furthermore, let I1" denote the usual supremum norm defined on B,
i.e. IlfJ[ sup, If(i){ for anyf B.
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Finally, letting ho(i) 0, h(i) Cp for E, and ho(A) h(A) Cf; this notation
permits us to write

and thus

(2.4)

where Vr is as given by (1.5).

hr(i) (i) gr(i),

Vr( i) hr(i( i) + ’(i) Vr( i)

THEOREM 2.5. There is a unique function V B which satisfies

(2.6) V(i) min {hx(i) +FV(i)}, Ea.
x=0,1

Furthermore, there exists r* M such that V V* V, <-_ V for all r M.
Proof. Define a mapping F on B by

(2.7) Ff(i)- min {hx(i) +Ff(i)}, i Ea
1,0

forf B. To prove (2.6) it suffices to show that F is a contraction mapping since every
contraction mapping on the Banach space B has a unique fixed point in B by Banach’s
contraction mapping theorem. Note that both Fo and F are contraction mappings on
B since (2.1), (2,2) and (2.3) imply

Ilrof-Fogll <-,llf -gll, IIr’,f -t’,gll <-_ ,llf-gll

for all f, g B. Similarly, by (2.7)

min (hx(i) +Fxg(i)}.Ff(i)-Fg(i) min (h,,(i) +Ff(i)}-x=o.x=0,1

Assuming that minimizes hx(i)+ Fxg(i), it is clear that

Ff(i) Fg(i) _-< h(i) +Ff(i) h.(i) rg(i)

<-Fef(i)-Fg(i)

since g- 0 or 1. A similar argument shows that

rg(i) Ff(i) -_< a IIg -fll.
Therefore lifT-Fgll <--allY-gll, and F is a contraction mapping.

To show that V-<_ Vfor all r M, note that for arbitrary r M

V(i)- V,(i) min {{h,,(i)+F,,V(i)}-h,.,(i)-F,Vr(i)}
x=0,1

min {{h,(i)+F,V(i)}-hr,(i)-F,.,V(i)+F,.,V(i)-F,.,V,.(i)}
x=O,l

h(i) + v- v)(i),

where h(i) min=o. {{hx(i) + FV(i)} h(,)(i) F(,) V(i)}. Thus, letting u V- V, it
satisfies

u( i) h( i) + Fr(i)u( i).
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It now follows from (2.4), (1.5) and Theroem 1.4 that

u(i)=E a"h(X,)
=0

and u V-Vr <= 0 since h =< 0.
To complete the proof let r*(i) be the minimizing value of x in expression (2.6)

for i EA. To make sure r*(i) is well-defined, if both x 0 and x minimizes this
expression, we set r*(i)= 1. Clearly r*(i)=0 or and we can let r*(A)= since by
(2.3), roV(a)= r, v(a); thus

(2.8) V(A) min (hx(A) +rxV(A)} h,(A) +r, v(a)= +r, V(A).
x=O,l

Therefore, r* M and V Vr* since by the way r* is defined we have

V(i) hr.(,)(i) + F.,) V(i), Ea.

This result shows that there is a unique optimal return function and an optimal
replacement policy can be found if (2.6) is solved. This could be done by a policy
improvement or successive approximations algorithm if the state space of X is finite
by making slight changes in the definition of P and in the statements of the results
stated thereafter. But, as mentioned earlier, our aim is to characterize V* and r* in
some interesting cases.

3. Characterization of the optimal policy. In all reliability problems, the cases
involving increasing failure rate (IFR) and decreasing failure rate (DFR) distributions
are of special interest. In this section we will analyze these two cases in more detail
and try to find some properties that we intuitively expect V* and r* to satisfy. The
presentation that follows is designed to show that if F has IFR or DFR an age
replacement policy commonly encountered in many reliability problems is in fact
optimal.

Recall that our formulation of the optimal control problem involved a periodic
inspection scheme. Thus, the statistical data required were {p} defined by (1.3)
with no further information on the distribution function F. The following result clarifies
the relationship between F and {p}.

LZMMA 3.1. Let {Pi}i be as defined by (1.3). Then
a) F has IFR implies Pi >-- Pi+ for all E.
b) F has DFR implies p <= p+ for all E.
Proof. To show a) note that F has IFR implies F(x + t))/( 1,- F(t)) is decreas-

ing in for each x>-0. Taking x= to, and t ito<= t2=(i + 1)to, we obtain

1-F((i + 1)to)> 1-F((i +2)to)
F(ito) F((i + )to)’

or equivalently p >= p+ by (1.3). A similar argument can be made to prove b).
Before we state the main result ofthis section we need to prove the following lemma.
LEMMA 3.2. Let V be the optimal return function of Theorem 2.5. Then

(3.3) 0<--_ V(i) <- V(A)<-Cf/(1-a), icE.

Proof. To prove this result we more generally show that if f B satisfies (3.3),
then Ff defined by (2.7) also satisfies (3.3). The fact that Ff(i)=> 0 follows easily since
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f-> 0 implies Fxf -> 0, and hx -> 0 for x 0 or 1. Now, using the definition of Ff,

rf(i) <_- hi(i) + rlf(i) Cp + apof(1) + a(1 po)f(A)

<-- Cf + apof( + a Po)f(A rf(A ).

Finally, if f(i) <=f(A) __< Cy/( a ), then

Ff(A) Ce + apof(1) + a(1 po)f(A)

<= Cf + cf(A) __< Cf +a(Cf/(1-a))= Cf/(1-).
The results stated above actually describes some properties the optimal return

function and periodic survival probabilities are intuitively expected to satisfy. The
following clarifies the structure of the optimal return function and optimal replacement
policy.

THEOREM 3.4. Let Vand r* be as given in Theorem 2.5. IfF has IFR resp. DFR).
Then

a) V is increasing (resp. decreasing) on E,
b) r* is increasing resp. decreasing) on E.
Proof We shall present the proof for the IFR case only to avoid repetition. In

light of Lemma 3.2, to prove a) we need to show that if fe B is increasing on E with
f(i) <=f(A) for all e E, then Ff defined by (2.7) is also increasing on E. For arbitrary

E, note that

Ff(i + 1)-Ff(i)= min {h(i + 1) +Ff(i + 1)}- min {h(i) +Fxf(i)}.
x=O, x=O,l

Now, letting : be the minimizing value of the first minimization on the right-hand
side of this expression we obtain

Ff( + Ff(i) >= h(i + +Ff( + h(i) Ff(i)

>- Ff(i + 1) Ff(i),

since h is constant on E for or 0. Therefore, our assertion is trivially satisfied
if 2 since Ff is constant on E. If 0 however,

Ff(i + 1)- Ff(i) > ap,+,f(i +2)+a(1-p,+)f(A)-ap,f(i + 1)-a(1- p,)f(A)

>-- a(p, -p,+)(f(A) f( + 1))

>-0,

where the second inequality is obtained by noting that f is increasing on E, and the
third inequality follows trivially since p is decreasing on E by Lemma 3.1 and
f(j) =<f(A) for all j e E.

To prove b) we will show that if r*(i) for some e E, then r*(i + 1) 1. Noting
the way r* is defined in the proof of Theorem 2.5, r*(i)= implies

ho(i) + Fo V(i) _-> h(i) + Ft V(i).

Now, ho(i + 1) ho(i) and it follows similarly as in the proof of part a) that Fo V(i + _->

Fo V(i). Therefore,

ho(i + 1)+FoV(i + 1)->_ ho(i) +FoV(i)

>= h(i) +F V(i)= h(i + 1) +F V(i + 1),

since h and F V are constant on E. This in turn implies that r*(i+ 1)= 1.
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This result characterizes the optimal return function and the optimal replacement
policy. As we shall see next, we can conclude that a periodic age replacement policy
is in fact optimal. Note that for arbitrary F, r*(0)- 0 since by Theorem 2.5,

V(0) min (ho(0) + ro v(o), h,(0) + r, v(0))

=min (apoV(1) +a(1-po) V(A), Cp +apoV(1) +a(1-po) V(A))

apo V(1) + a(1 -Po) V(A),

which in turn implies by the way r* is defined that an item of age 0 should not be
replaced. Now, the characterization given in Theorem 3.4 directly leads to the following
result which we state without proof.

COROLLARY 3.5. If F has DFR, then the optimal replacement policy is to replace
the item upon failure only. However, if F has IFR, then the optimal replacement policy
is a periodic age replacement policy.

In the DFR case the fact that r*(0)= 0 and r* is decreasing on E implies r*(i) 0
for all E. In the IFR case since r is increasing it must have the following structure,

{ --’r*(i)=
O, <n*
1, > n*,

for some integer n*_--> 0 possibly infinite. Thus, the optimal return function V satisfies

in the DFR case, and

V(i) ho(i) + Fo V(i)

ho(i) +Fo V(i), _<- n*,
V(i)

h(i) + F, V(i), > n*,

in the IFR case. Putting these characterizations together the optimal replacement age
n*, and thus V and r* can be obtained either through an algorithmic approach such
as policy improvement or successive approximations, or a renewal theoretic approach
as it is commonly done in the literature.

We would like to mention that the assumption F(x) < for all x -> 0 is not crucial
in our presentation. We could have obtained similar results by dropping this assumption
and defining the state space Ea of X properly, i.e. Ea {0, 1,..., m} t_J {A} where m
is the largest integer satisfying F(mto)< 1. In this paper our aim has been to illustrate
the application of a Markov decision theoretic approach in analyzing the discrete time
control of a simple periodic replacement model. The flavor of the results obtained
suggest that Markov decision theory could be extremely fruitful in analyzing far more
general discrete or continuous time control problems concerning reliability models.
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SOME INFORMATION THEORETIC SADDLEPOINTS*

J. MARTIN BORDEN, DAVID M. MASON AND ROBERT J. McELIECE

Abstract. In order to study communication in the presence ofjamming (or vice-versa), one can formulate
a two person zero sum game with mutual information as the payoff function. Since mutual information is
convex-concave in just the right way, one often finds saddlepoint strategies (which are simultaneously optimal
for both players). In this paper we shall discuss these saddlepoints for four distinct cases: Additive noise,
average power constraints, and any combination of "hard"/"soft" input/output quantization. One of these
cases (soft/soft) has been previously studied (Shannon/Dobrushin/Blachman), but the other three appear
to be new.

,Key words, information theory, game theory, communications, jamming

1. Introduction. Consider a discrete-time additive channel which accepts, during
every unit of time, a real number X. Suppose that this input is garbled in transmission
and instead of X,

Y=X+Z

is transmitted to the receiver, where Z is the "noise" associated with the transmission.
Assume that X and Z are independent random variables. A good measure, perhaps
the best measure, of the average amount of information conveyed by the channel per
unit of time is the mutual information4(X; Y) between X and Y. We define I(X; Y)
as in Pinsker [7] and Gray and Kieffer [4] to be

[ Px,y(A B) ](1) I(X; Y)= sup E 2 Px.g(AXB) log
Px(A)Py(B)1,2 A3al Be2

where the supremum is taken over all finite partitions l and 2 of R, PX, Y is the
probability measure on R2 induced by (X, Y), and Px, PY are the probability measures
induced on R by X, Y respectively.

Let us adopt the viewpoint that this is a game with two players. Player I, also
called the Coder, controls the input X. Player II, which we call the Jammer, controls
the noise. The Coder’s goal is to make I(X; Y) as large as possible, and the Jammer’s
goal is to make it as small as possible. To emphasize the dependence of I(X; Y) on
the independent random variables X and Z, we introduce the notation

(2) b(X, Z) I(X; Y);

and in line with our game theoretic viewpoint we call b the game’s payofffunction.
This game will be meaningless and trivial unless we place restrictions on the

players. We suppose that the Coder’s choice of X must lie in a certain set S, the set
of allowable inputs, and that Z must lie in T, the set of allowable noises. Thus associated
with this game are two programs.

Program I (Coder’s program):

C’= sup inf b(X, Z).
XS ZT

* Received by the editors October 4, 1983, and in final form March 19, 1983. This research was supported
in part by the Air Force Office of Scientific Research under grant AFOSR-83-0296.
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(3)

Program II (Jammer’s program):

C"= inf sup &(X, Z).
ZT XS

A strategy Xo S such that

inf b(Xo, Z)- C’
ZT

is called an optimal strategy for the Coder. The significance is that (3) implies

(4) b(Xo, Z) -_> C’

for all allowable noises Z. Hence, if the Coder chooses the input Xo, he is guaranteed
a payoff of at least C’, regardless of the Jammer’s strategy. Sometimes no such optimal
strategy exists, and the Coder must be satisfied with an e-optimal strategy, i.e. an

Xo S such that for a given choice of e > 0,

(5) 4,(Xo, Z) >- c’- e

for all allowable noises Z.
Similarly, we define optimal strategies and e-optimal strategies for the Jammer,

and in place of (3), (4), and (5), we have for a given Zo T

(6) sup b(X, Zo)= C",
XeS

(7) b(X, Zo)<-- C" for all X S,

(8) b(X, Zo) -<- C" + e for all X S

(depending on whether the strategy Zo is optimal or e-optimal).
If it happens that C’-C", then combining (4) and (7), we have

(9) ck(Xo, Zo)= C’= C",

(10) qS(X, Zo) --< qb (Xo, Zo) --< b (Xo, Z)

for every choice of allowable X and Z. If (9) holds, which is equivalent to (10), the
common value, denoted by C, is called the value of the game. The pair (Xo, Zo) of
optimal strategies is called a saddlepoint. In absence of other information, the Coder
will want to play strategy Xo, and the Jammer will want to play Zo.

In this paper, we will study four closely-related special cases of this problem. In
each case we assume that the "signal-to-noise" ratio

E(X2)/E(Z) A,

where A is a fixed positive number. Without loss of generality we state this assumption
as a pair of restrictions on the players"

(11) E(X2)=A,

(12) E(Z2) 1.

The four cases that we consider are distinguished by whether the input and/or output
are subject to binary quantization.

Binary input quantization.

/ with probability (w.p.)1/2,
(13) X -4 w.p. .
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Binary output quantization.

(14) Y= HD(X +Z),

where HD ("hard decision") is a random variable which equals /l if its argument is
positive, -1 if its argument is negative, and if its argument is zero, is equally likely to
be /l or -1. Our four cases are then as follows:

Case

I(oo/oo)
II(2/2)
III(oo/2)
IV(2/oo)

Restrictions

(ll), (12)
(ll), (12), (13), (14)
(ll), (12), (14)
(11), (12), (13).

In each case, we will show that the game has a value, which we denote by C*(A).
In Cases I, III, and IV, we will identify the optimal strategies. In case II, we will find
that for A>= l, the Jammer has no optimal strategy, but will exhibit an e-optimal
strategy for each e > 0, whereas for 0 < A < the Jammer does have an optimal strategy.

2. Statements of the main results. In this section, we state our results, postponing
the proofs until 3.

In the following,

h(p)=-plogp-(1-p)log(1-p) for p [0, 1]

denotes the binary entropy function.
THEOREM 1. Case I(c/). For every A > 0

(15) C*(A) =1/2 log (1 +a);

and both the Coder and the Jammer have unique optimal strategies given as

(16) Xo= N(O, A),

(17) Z0 N(0, ).

(N(/x, o2) denotes a normal random variable with mean tx and variance r2.)
THEOREM 2. Case II(2/2).

(18) C*(A)=
log2-h frA>--1;

and for A < 1, an optimal strategy for the Jammer is given by

{(19) Zo
-1 w.p. -,

whereas for A >- 1, the Jammer has no optimal strategy. However the Jammer does have,
for each e > O, an e-optimal strategy given by

Io’A+w.p. 1/(2(A/8)),
(20) Zo w.p. 1- 1/(A +6),

-/+6 w.p. 1/(2(A+6)),

for 6 > 0 sufficiently small. (Note that in this case the input random variable is fixed.)
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To describe the optimal strategies in Case 111(oo/2), we introduce the following
class of distribution functions {F,: tz (0, log 2]}: Choose any/x (0, log 2]. Observe
that since h strictly increasing on (0, 1/2], there exists a unique x (0, 1/2] such that h(x) I.
For any tz (0, log 2] define

A A (Ix) 2 h-(y) dy

(21)

2tzx 2 h(t) dt 2/xx x x)2 log x) + X2 log x,

where x h-(/x). For any such choice of/x, let F, be the unique distribution function
symmetric about zero satisfying

h(G(z))=f-Xz+lO if Izl <_-/z/,X,(22)
if Iz[ > x/tz / X.

When/z log 2, F, is ditterentiable everywhere, but for/z < log 2, F, is differenti-
able everywhere except at zero where it has a jump discontinuity of height 2h-(/z).
A simple calculation shows that for each/x (0, log 2]

z aFt(z)= 1.

THEOREM 3. Case III(oo/2).

la(log2-) for a<-_l,

(23) C*(A)
log2- +logx- 2x

where x 1/(2A); and the optimal strategies for the Jammer and the Coder are given by
the following.

ForA < l, Zo has distributionfunction Go F, with/x log 2, andXo has distribution

function Fo satisfying

A
F(z) AG(z) for z O, Fo(0) --;

and for A >- 1, Zo has distribution function Go F, with I h 1/(2A), and Xo has
distribution function Fo satisfying

F(z) AG(z) for z O, Fo is continuous at z O.

It is easy to show that EX2= A.
In the final case, we do not present closed forms for the value of the game C*(A)

and the distribution of the optimal strategy for the Jammer. It is doubtful that such
closed forms exist. Rather, we demonstrate that for each power constraint A > 0 there
exists an optimal Jammer strategy Zo, and describe the type of random variable that
Zo must be.

THEOREM 4. Case IV(2/oo). For each A > 0 there exists a constant a and an optimal
Jammer strategy Zo such that Zo is a discrete random variable taking on values a +2kx/
for every integer -oo < k < oo and only these values, each with positive probability.

(For each A>0, C*(A), the choice of a, and the distribution of Zo must be
determined numerically.)
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3. Proofs of the theorems. If a random variable Y has a density f, let h(Y)=
--oof(Y) log f(y) dy denote the differentiable entropy of Y.

Proof of Theorem 1. We require the following lemma.
LEMMA 1. Let X, Z, and Wl, W2," ", be random variables such thatfor each n >=

X, Z, and Wn are independent. Assume that X +Z + Wn converges in distribution to
X + Z. Then

(24)

and for each n >-1

lim I(X +Z + W.; X)= I(X +Z; X),

I(X +Z + W,; X) <= I(X +Z; X).

_Proof. Gel’fand and Yaglom [3, item II, p. 206] show

(26) lim inf I(X +Z + W,; X) >- I(X +Z; X).

Applying an identity due to Dobrushin [2] (see Pinsker [7, p. 45]) we have for
each n >_-

I((X + Z, W); X) + I(X +Z; W,) I( Wn; (X + Z, X)) + I(S +Z; X).

Since by assumption for each n-> Wn is independent of X and X +Z, we have, in
addition, that

I(X +Z; W,)= I(W,; (X +Z, X)) 0.

Hence for each n->

(27) I(X+Z;X)=I((X+Z, W,);X)>-I(X+Z+ W,,;X).

(For the appropriate facts refer to Pinsker [7, items (1) and (4), p. 11].) (26) and (27)
complete the proof of the lemma.

Let Xo and Zo be as in (16) and (17). Choose any A> 0 and X such that EX-< A.
Also choose a N(0, 1) random variable V independent of X, Xo and Zo; and set
W,, n-/V for each n _>- 1.

Observe that by [3, item II]

4(X, Zo) I(X X + Zo) <- lim inf I(X + W, X + Zo + W,).

Now for each n->_

(28) I(X + W, X +Zo + W,)=/(X +Zo+ W,) f(Zo + W,,).

(28) follows from [6, problem 1.27, p. 44] and the well-known fact that both X +Zo + W,
and X + Wn have bounded continuous densities. (See, for instance, Breiman [1, Thm.
8.29, p. 178].) According to [6, Thm. 1.11] if W is a random variable with density such
that E W2) <- B then

/(W) <= 1/2 log (2reB),

with equality if and only if W is N(0, B). Since

E(X +Zo + W,,)-= EXE + E(Zo + W,,)E<- A + + n-’,
and Zo + W, is N(0, + n-) it follows from (28) that

b(X, Zo) --< 1/2 log +A) b(Xo, Zo).
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To prove the opposite inequality, let Z satisfy EZ2= 1, but otherwise be arbitrary;
and let W, for n-> be defined as above independent of Xo and Z. By Lemma 1,

(29) 4(Xo, Z)= lim b(Xo, Z + W,),

and as above for each n =>
(30) e(Xo, Z + w.) f,(Xo +Z + w.) f,(z + w.).

Now a theorem of Shannon (see [8]) says that if X and Y are independent random
variables having differential entropies, then

(31) exp (2/7(X + Y)) >_- exp (2/7(X)) +exp (2/(Y)),
with equality if and only if X and Y are both normal. Applying this to the term
/7(Xo +Z + W,) in (30), we get that

(32) (Xo+(Z+ W,,))>-1/21og(2errA+e2r’z+w")).
(Note that since Xo is normal, h(Xo)= 1/2 log (2rreA).) Hence combining (30) and (32),
we have for each n >-1

4(Xo, a + W,)_->1/2 log (2rreA + e2a{z+w-)) -/7(Z + W,).

Since/7(Z + W,) _-< - log (2rre( + n-)), it is not difficult to show that this last expression
is

--> 1/2 [log (A + + n -1) -log +

(29) completes the proof.
Before we prove Theorem 2, we need some additional definitions.
If X is a discrete random variable taking on values in a countable set S, we define

the entropy ofX to be

(33) H(X) Y log (P(X x))P(X x);

and if (X, Y) is a bivariate random variable taking on values in a countable set S*,
we define the expected conditional entropy ofX given Y to be

(34) H(XIY)= Y Iog(P(X=x, Y=y)/P(Y=y))P(X=x, Y=y).
(x, y)eS*

It can be shown that H(X)= I(X;X). In fact for general random variables X,
H(X) is defined in this way. (Refer to Pinsker [7].) In the proof of Theorem 4 we
use the more general definition of H(X Y) given in [7].

Proof of Theorem 2. Let Xo and Y be given as in (13) and (14). Then

I(Xo; Y) H(Xo) H(Xo] Y)
(see [6, p. 25]), which

=log2-H(XolY).

By Fano’s inequality [6, p. 23] this last expression is

(35) <_-log 2- h(p),

where p P(Xo Y).
Now

(36) P( r Xo) 1/2P(x/ Y XoIXo x/-) +1/2P(/- Y XoIXo -x/-).
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(37)

(38)

But since Y HD(Xo + Z),

P(/ Y# XolX 4) 1/2P(Z -/) + P(Z < -/),
P(/ Y# XolX -/) 1/2P(Z /) +P(Z > A).

Combining (36), (37), and (38) we have

(39) P(/ Y # Xo) 1/4P(Z2 A) +1/2P(Z2 > A) <-_ 1/2P(Z- >- a),

with equality if and only if P(Z= A)= O.
By Markov’s equality

(40) P(Z >- A) <-,
(recall that we assume that EZ= 1). It is easy to see that we have equality in (40)
only when both A-> and P(Z= A) P(Z O) 1/A. Thus (39) and (40) imply that

(41) p P( Y # Xo) < --.
The inequality is strict because the conditions for equality in (39) and (40) cannot be
satisfied simultaneously.

Now for O<-p<=1/2, h(p) is monotone increasing. Thus for A -> 1, (35) and (41)
together imply that

(42)

Hence for A >-1, we see that

I(Xo;Y)>log2-h( )

C*(A)-> log 2- h(A).
On the other hand for Zo as described in (20)

(43) (1)I(Xo; Yo)=log2-h
2(A+6)

where Yo HD(Xo + Zo). Since (43) can be made arbitrarily close to the right side of
(42), this completes the proof of the A_-> part of Theorem 2.

Suppose A < 1; then for Zo as described in (19) I(Xo; Yo)= 0.

Proof of Theorem 3. Choose any A > 0, and let Xo and Zo be as described in the
statement of Theorem 3. We begin by showing that

4(X, Zo) <= 4(Xo, Zo)

for any X satisfying EX<- A. The payoff function can be written as

&(X, Zo) I(X Y) H( Y)- H(YIX),

where the expected conditional entropy H(YIX) is the expectation with respect to X
of the quantity

(44) H( YIX x)= h(P( Y= -llX x)).
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But

P( Y lX x) P(X +Zo < olx x) +1/2P(X + Zo olx x),

P(Zo<-X) +1/2P(Zo= x).

So

Go(-X)
(45) P( Y= -llx x)-

It follows from (44), (45) and (22) that

for x # 0,
for x =0.

(46) H( Y[X x)
f -hx2 + for X 0,
log 2 for x 0.

Since/z _-< log 2, we have (denoting the distribution of X by F) that

(47) H(YIx) >- f (-Xx + g) dF(x) >-_ -hA +

Also observe that since Y HD(X + Zo) assumes only two values, we have

(48) H(Y)_-< log 2.

Hence we have in combination with (47) that

(49) b(X, Zo) <-- log 2 +AA-

with equality if and only if

(50a)

and

(50b)

the distribution ofX is symmetric about zero, which is the condition for equality
in (48);

P(X=0)=0 if/x <log2, P([XI>=/p,/A)=O, EX2=A, which are the condi-
tions for equality in (47).

The random variable Xo has all these properties. Thus we have shown that

(51) 6(x, Zo) _-< 6(Xo, Zo)

for all random variables satisfying EX2 <= A. This completes the first half of the proof
of optimality of the pair (Xo, Zo). Incidentally, elementary calculations show that
r(Xo, Zo) C*(A).

To finish the proof of optimality, we need to establish that

(52) ,(Xo, Zo) <- (Xo, Z)

for all Z satisfying EZ2-- 1.
We indicate the dependence of b (Xo, Z) on the distribution G (say) ofZ by writing

(G) r(Xo, Z) H( Y)- H( Y[Xo) h(I G*(-x) dFo(x)) f h(G*(-x)) dFo(x),

where G*(x)=1/2[G(x)+G(x-)]. We will show that

(53) r(Xo, Zo) min {o( Go + O )"
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where M denotes the class of all real valued functions ofbounded variation on (-,
such that

(53a) I drl(x) O,

(53b) f x drl(x) <-_ O,

(53c) 0 <- Go(x) + r/(x) -< for -m < x < m.

Observe that M is convex. Any r/ satisfying these conditions will be called
admissible. Once (53) is proven we will have (52) since r/= G-Go is in M.

Note that the admissible r/’s may be assumed to have support in (-4/z/A, x/tz/A).
Consider a distribution function G Go + r/, whose support does not lie entirely in
(-x//x/A, x//x/A). Define

G(x)
G(x)= 0 forx<_-

for x _->

Since F(x) =0 when ]x]>x//z/h, it is easy to see that to(G) to(Gl). Moreover, we
can write G Go+r/i, where r/l has support in

The Ggteaux derivative of to at Go in any admissible direction r/, Dnto(Go), splits
naturally into the difference of two terms. The first term is

However, the argument of h’ is P(Y =-1) =1/2 (by symmetry of Go about zero) and
thus this term vanishes. Therefore,

Dnto(Go) f h’(G*o (-x))rl(-x) dFo(x).

By the remarks about F just given, this integral can be restricted to the interval
[-4, x/--t]. Also note that by symmetry of Go for x 0 Go(-X)= 1-Go(x) so
that G’o(-X)= G’o(X). Hence by the properties of Go and G given in the statement of
Theorem 3 for x 0

Thus for x 0

d
-2Ax x h(G*o(-X))=-h’(Go(-X))G(-x)

-h’(Go(-x))G’o(X) --7 h’(G*o(-x))F’o(X).

h’( G*o (-X)) dFo(x) 2Ahx dx.

On the other hand when x 0, either G*o(-X) 1/2 or Fo(x) is continuously ditterentiable,
so that the integral for D,to(Go) receives no contribution at x =0. We have thus
deduced that

D,,O( Go) .- 4-dTZ
n(-x)2AXx dx.
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Applying integration by parts and (53a) we see that this last expression equals

-AA y2 d/(y),

which by the fact that -AA _-< 0 along with (53b) is nonnegative. This proves that Go
is a local minimizer of to. However, since to is a convex function of G Go + /, Go is
in fact a global minimizer of to on . This completes the proof of Theorem 3.

Proof of eorem 4. As in Theorem 2, the input Xo is fixed and only Z is allowed
to vary; accordingly, we find it advantageous to view the solution of the Jammer’s
problem as a function of the noise-to-signal ratio E 1/A. Hence, instead of (1 l) and
(12), we take

(54) E(X2) 1,

(55) E(Z)E,

and prove that for each E > 0 there exists a discrete optimal Jammer strategy Zo which
has suppo {a +2klk is integral} for some real constant a.

Let us outline the approach. The Jammer wishes to choose Z so as to minimize
(Xo, Z)= H(Xo)-H(Xo[Y), or what is the same, maximize the concave function
J(Z) defined by

(56) (z) n(Xol Y)

(a precise description of J follows). Thus we wish to solve the concave program

(57) (E)=supJ(Z) such that E(Z2)E.

Although Z is allowed to be any measurable function, we use linear programming
ideas to prove

LEMMA 2. If Z satisfies E (Z2) and e 0 then there exists a discrete random
variable W having J(W) J(Z), E( W2) E(Z2) + e, and such that the support of W is

contained in {xlx al or a2 mod 2} for some real constants a, a.
Using a limiting argument, we obtain
LEMMA 3. For any E > 0 there exists a discrete optimal Jammer density p having

second moment not exceeding E which is a convex combination of two lattice densities of
span 2.

We next wish to show that the suppo of an optimal p is precisely one lattice set.
To facilitate a Lagrangian analysis, we introduce, for any discrete set C, an ancillary
function

(58) c(E)=maxJ(p)

where the maximum is taken over all nonnegative discrete functions p with suppo
in C, total mass 1, and second moment not exceedin E. We record a number of
observations:

(i) ff is a strictly increasing function of E.
(ii) If c(E) > 0 is attained by p then there exists Lagrange multipliers (E)

and X A (E) 0 such that p maximizes

(59) L(r,,A)=J(r)-(Mo(r)-I)-A(M2(r)-E)

among all admissible functions r. (Here Mo(r) and M(r) are respectively the total
mass and second moment of r.) Also, if A (E)> 0 then M2(r)= E.
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(60)

(iii) In the same situation as in (ii), p satisfies the necessary condition

J’(p)c tz(E) + A (E)c2.

where

(61) J’(p)c=1/21og(1 +p(c+2)/p(c))(1 +p(c-2)/p(c)),

for each c C such that p(c) > 0.
(iv) The support of any optimal solution to (57) is closed under translation by +2.
(v) Suppose Pi attains ’(Ei) and E1 < E2. Take C to be the union of the supports

of Pl and P2 in (58). Then any choices of corresponding Lagrange multipliers from
(ii) satisfy A(E)> X(E2).

With these observations established we can complete the proof of the theorem.
Suppose that the theorem is false, that is, for some Eo> 0 the value of r(Eo) cannot
be attained by a lattice density. From Lemma 2, there exists a P0 of the form Po
apl + (1 a)p2, 0 < a < 1, where Pl places its mass on a lattice A and P2 places its mass
on a lattice B (necessarily Af’) B =) and such that J(Po)= ’(Eo). Observe that each
of the quantities E M2(Pl), E2= M2(P2) and Eo aEl +(1-a)E2 must be distinct
for otherwise it would be possible to use Pl or P2 to attain ’(Eo). Of course, J(p)=
A(E) and J(P2)= ’B(E2). Using the concavity of " we have that

sr(Eo) >- rest(E,) +(1 cr)sr(E2)
> CrA(E,) +(1 cr)’B(E2)

aJ(p,) +(1 a)J(p2)

=J(p)=(Eo).

Equality must hold throughout so that in fact J(p)= ’(El) and J(P2)= ’(E2).
Let C --A t.J B be the support of Po. By observations (iii) and (iv) we have

and

J’(p,)=tx(E,)+A(E,)a foraA,

J’(Po)c tz(Eo) +A(Eo)c2 for c C.

Observe however that (61) shows that J’(Po)c is homogeneous of degree zero, meaning
that for all a>0, J’(aPo)c=J(Po)c. Since po(a+ 1)=apl(a+ 1) whenever aA, we
thus find that J’(po),=J’(apl),,=J’(p), for all aA. Therefore tZ(El)+A(E)a2=
tz(Eo)+A(Eo)a2 for all aA. Since the set A is infinite we must have A(EI) A(Eo).
This contradiction to (v) will complete the proof of the theorem.

We turn now to establishing all of the claims above. Recall that Xo has support
{-1, +1}, so that by a straightforward calculation, (1) and (2) become

(62) b(Xo, Z)=log2-inf logR(1/2Pz(B-1),1/2Pz(B+I)),
B

where

R(x, y)=(x +y)X+Y/x’yY=(1 +y/x)X(1 +x/y)y

for x >-0, y >-0 (and 0 1). We define, for any finite partition of ,
(63) Je,(Z) log R(1/2Pz(B- 1), 1/2Pz(B + 1)),

B

and

(64) J(Z) inf Je,(Z),
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where the infimum is taken over all finite partitions of R. J(Z) is the expected
conditional entropy of Xo given Y. When Z has a discrete density p, we can write

(65) J(p) J(Z) log g(1/2p(y 1), 1/2p(y / 1)),
y

where the sum is taken over all possible values of Z +Xo. Notice that the right-hand
side of (65) remains meaningful, although possibly infinite, when p is an arbitrary
nonnegative discrete function. Making use of the inequality

R(x, yl)g(x2, y2)--< R(x /x2, y +Y2),

which is readily established using the inequality of the arithmetic and geometric means,
and the fact that J is homogeneous of degree one, we obtain the important inequality

(66) J(Pl) / CeEJ(P2) =< J(ap + o2P2)

valid whenever Pl and P2 are nonnegative discrete functions and a and a2 are
nonnegative constants. In particular, J is concave.

Proof of Lemma 2. For arbitrary integers k and integer m_-> let Ira,k=
[2(k )/m, 2k/m). Let , be the partition ,, { I,,,k: -- < k < }. Clearly , can
be obtained asa limit of refinements of finite partitions of R so that, from (62),

(67) J(Z) <- Je,m(Z).

It is routine to show that for all integers m sufficiently large

E Pz(I,,,k)=M2(Z) +e.
k=

Choose any such m and let U be the discrete random variable that places mass
Pu(2k/m) := Pz(I,,,,k) at the point 2k/m for each integer k. Thus M2(U) M2(Z)+ e.

Now, since Pu(2k/m+ 1)= Pz(I,,,,k + 1), we have

))s(u)-- E logR P---1 ,1/2P--+1
k---

E IogR(1/2Pz(I,,,,,-),1/2P(I,,,,,+I))=S(Z)-S(Z)
k’=

by virtue of (67).
U is a lattice random variable with span 2/m which is not quite what is desired.

For each integer j, 0=j < m, consider the mass placed by U on the set of points
{j/m + 2k" k 7/}. Clearly we can choose a discrete density pj whose support is a subset
of this set, and a nonnegative constant % such that Pu(j/m +2k) oopj(j/m + 2k) for
all k. In this way we view Pts as a convex combination of lattice densities, each having
span 2"

m--I m--I

Pu= %Pj, where0aj-l and %=1.
=o j--o

Observe that equality holds in (66) whenever p and P2 have disjoint supports. Hence

m--I m--I

J( U) Z %J(Pj) and M:(U) Z ooM:(Pj).
j=o j=o

Consider the following linear program.



INFORMATION THEORETIC SADDLEPOINTS 141

Maximize
m-I

E YJ(Pj) such that
j=0

m-I m-I

E yj=l, E Y.iM2(p.)<-M2(U), y.>-O.
j=o j=0

Since the feasible region of this program is nonempty (it contains (ao, , am-l)) and
is obviously bounded, there exists a finite optimal solution to the program. Moreover,
there exists a basic optimal solution (see for example [5]), which means here that there
is an optimal solution (yo*," ", Y*-l) having at most two nonzero components (corre-
sponding to the two constraints). Define p lyp and let W have density p. Then
W is a discrete random variable of the desired form, M2(W) <-M2(U)-< M2(Z)+ e,
and J(W) >= J( U) >- J(Z).

We wish to let e 0 in Lemma and the appropriate device is that of convergence
in distribution. We require some basic facts, all of which can be found in Breiman [ ].
Let {Fm} be a sequence of distributions on R. If the F, have uniformly bounded second
moments then {F,} is mass-preserving, that is, for each y > 0 there exists a constant
c such that F,(c)-F,(-c)> 1-% independently of m. This implies that there exists
a distribution F and a subsequence mi such that F,, converges to F in distribution.
We can also assert that for an open interval I and continuous function g,

(68) f g(x) dF(x) <- lim inf f g(x) dF.,(x).
.I

Finally, suppose that F. is a discrete distribution placing mass p.(a.k) on a.k
(-c< k < o) and that F. converges in distribution to F, where F concentrates mass
p(ak) at ak. Then if a.k--ak as m- we also have that p.(a.k)-p(ak) (see, for
example, [1, problem 8.3]).

Proof of Lemma 3. Choose any sequence e.0 and let Z. be chosen so that
ME(Z.) ----< E and J(Z.) + e. >-_ (E). According to Lemma 1, we can choose a discrete
density p. of the form p.=a.p. +(1--O.)pE., where 0_-<a.-< 1, Pl. places all its
mass on A.={a.+2k;k7/}, PEru places all its mass on
ME(p.) -< E + e., and J(p.) >- J(Z.). Without loss of generality am, b. [0, 2] so that
by passing to a subsequence if necessary, we assume that a. -> a, b. - b, and t. -as

Case 0< a < 1. For m sufficiently large a. -> a/2 and ME(a.pl.) <- ME(p.)<-2E,
so that ME(pl.)<-4E/t. Therefore distributions Fl. (say) of the Pl. have uniformly
bounded second moments and by passing to a subsequence we may assume that the
Fl. converge in distribution to Fl (say). Let A {a +2k: k ’} and let I be any open
interval whose closure contains no points of A. For all m sufficiently large I f’) A.
so that from (68),

I dFl X <- lim inf l dF’ X

This is enough to prove that the density Pl of Fl places all its mass on A. By further
thinning the sequence and following the same procedure, we may assume that
converges (in this same sense) to a density P2 placing mass only on B {b +2k: k Z}.
Hence p. converges (in this sense) to p=ap+(1-a)p2. Using g(x)=x2 in (68) we
see that

M2(p) _-< lim inf M2 p. <= lim inf E + e. E.
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From our comments above pro(am + kd)- p(a + kd) for each k as rn- . Thus, for
any K,

K

log R(1/2Pl,.(a,. +2k- 1). 1/2PE,.(a,. +2k + 1))

K- E log R(1/2p,(a +2k- 1),1/2p,(a +2k+l)).
k=-K

We use the easily established inequality

(69) log R(x, y) <-<_ (x + y) log 2

to bound the contribution to J(Pl) made by the terms where k falls outside of [-K, K]
by

(log2) 1/2Plm(am+Zk-1)+1/2p,,(a,,+Zk+l).

Since {Fl,,} is mass-preserving, by taking K sufficiently large this contribution can be
made arbitrarily small and we deduce that J(Pl) J(Pl) as m . Similarly J(Pzm)
J(p) and we have (E) N J(p) lim J(p) lim J(Z) (E). Thus, p satisfies the
conditions of the lemma.

Case a 0 or a 1. By a straightforward modification of the above argument one
shows that there exists a lattice density p with Mz(p) N E and J(p) (E).

Proof of assertions (i)-(v).
(i) It is plain from (57) that ff is increasing. Suppose however that is constant

on an interval. From the fact that a local maximum of a concave function is a global
maximum, we infer that there exists a finite E such that if(El)= sup if(E)= log 2. If
the discrete random variable Z attains if(El), then (Xo, Z) I(Xo; Xo +Z) =0, that
is, Xo and Xo +Z are independent. But this is impossible: choose any constant c such
that P(Z=c)P(Z=c+I) to see that P(Xo=I, Xo+Z=c+I)=P(Z=c)
{P(Z c) +P(Z c + 1)} P(Xo 1)P(Xo +Z c + 1). Thus ff must be strictly
increasing.

(ii) Given a discrete set C let c denote the class of nonnegative functions r
defined on C having second moment Mz(r) < m. (56) is equivalent to c(E) =max J(r)
such that

r c,

(r) .
crc is concave, c is a convex set, o and ac linear and (ii) follows by
applyin fo example, cstcncs , Thin. 3.1].

(iii) Fix c C such that p(c) 0 and conside any function r that
with p only at c. By (ii), p maximizes (59) over c so that the fiht-hand tcaux
derivative

(70)
o

By a outinc calculation this

Since r(c) 0 is arbitrary, this implies (60).
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(iv) It suffices to argue that if p(c)=0, then p(c+ 2)=0. Suppose p(c)=0. Again
choose r to disagree with p only at c. By applying the mean value theorem to the
left-hand side of (70), we see that J’(p)c =, which violates (61), unless p(c+2) =0
and p(c 2) 0.

(v) From (ii), we have

so that

J(p) max L(r, kt(E), A(E,)),
rc

J(p,) >- J(p2)- tZ(El)(Mo(P2)- 1)- A(EI)(M2(P2)- E,).

Necessarily Mo(P2)= 1, so that we can rewrite this to give

’( El)- ’(Eu) J(Pl)- J(P:O >- A (E,)(E,- Eu).

Reversing the roles of Pl and p_ in the argument yields the inequality

A (E2)(E, E2) (El) (E2).

By (i), (EI)-(E2) <0, which entails that A(E)> A(E2).
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ON STABILIZABILITY OF LINEAR SPECTRAL SYSTEMS
VIA STATE BOUNDARY FEEDBACK*

RUTH F. CURTAINt

Alstraet. This paper gives conditions under which a class of linear-distributed systems may be stabilized
by state boundary feedback control. The system operator is assumed to be spectral with a discrete spectrum,
but it may have infinitely many unstable eigenvalues.

Key words, spectral operators, stabilizability state boundary feedback, distributed systems

1. Introduction. It is well known that in finite dimensional state problems con-
trollability of a linear system implies arbitrary spectrum assignability by state feedback.
In infinite dimensions this is not in general true, although several authors [1], [7], [8],
[10] have established sufficient conditions for spectrum assignability for certain classes
of infinite dimensional systems by state feedback.

In [10] Sun considered the following control system on a Hilbert space H:

(1.1) Az + bu( t), z(O) Zo

under the state feedback

(1.2) u(t)=(a(t),g>,

where g, b e H and (.,. denotes the inner product in H. He assumed further that A
satisfies the condition F:

(F1) A is an unbounded spectral operator with discrete spectrum,
{Ak; k 1, 2," "). and normalized eigenvectors {k; k 1, 2," "). The eigenvalues are
distinct and the eigenspaces are one-dimensional.

(F2) infi#j IAi- Ajl > 0.

(F3) sup
i<--k<oo j=l Ij = <

j#k

His main result was"

THEOREM 1. Suppose that A satisfies condition F and b H. Then for all g H,
the closed operator A + (., g)b is spectral. Furthermore for a given sequence of complex
numbers A {’t, ’2,"" "}, in order that there should exist a g H so that the spectrum
of the closed loop operator A +(., g)b satisfies

tr(A +(., g}b) crp(A +(’, g})= A,

a necessary and sufficient condition is that

(1.3) bk (bk, b} # 0, k >_- l,

ak__,)tk
2

(1.4) . <oo.
k= bk

In his proof Sun assumes "without loss of generality" that the {(k} can be taken
to be orthonormal. While this is correct, the expression (1.3) for bk is only valid for

* Received by the editors June 7, 1983, and in revised form March 2, 1984.
f Rijksuniversiteit Groningen Mathematisch Instituut, Postbus 800, 9700 AV Groningen, the Nether-

lands.
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the orthogonal case (A normal): we give a modified result later. Then (1.3) is seen to
be a controllability condition on (A, b) [2] and (1.4) a restriction on the separation of
Ak and Yk- Since k= Ibkl2< and since {Ak; k--> 1} have no finite limit point (A has
compact resolvent), this means that if you try to shift infinitely many eigenvalues, as
k--> , the most by which you can separate lag--Ykl is of the order of Ibkl2 and this
tends to zero as k--> .

The class of distributed systems generated by spectral operators is an important
one and includes the many differential operators arising in boundary-value problems
involving nonsymmetric linear differential operators, whose eigenfunction expansions
converge is much the same way as Fourier series [5], [9]. Thus they enjoy many of the
properties of systems generated by self-adjoint operators. Because of their importance
in applications, we devote 2 to a discussion of the properties of spectral systems.

In 3 we derive our main result: conditions for stabilizability of linear spectral
systems via boundary state feedback. The type of boundary control action is of integral
type such as was introduced in [3] and further discussed in [4]. Although this does
not lead to a precise generalization of the nice finite-dimensional form, it could be
argued that it is a more practical control implementation for boundary controlled
systems. It is an alternative to the method proposed in 11 ], for example. An illustrative
example of a class of hyperbolic systems is included.

2. Spectral systems. We consider the following system in a separate Hilbert
space H

(2.1) Az + Bu, z(O) Zo,

where A is a regular spectral operator on H, U is a Hilbert space, B ( U, H) and

Zo H. Following Schwarz in [9] we define:
DEFINITION 1. A regular spectral operator, A, is an operator with compact resolvent

whose spectrum is not the entire plane and whose spectral measures E(Ai) for Ai tr(A)
generate a uniformly bounded Boolean algebra. We remark that if C is a closed curve
surrounding only the eigenvalue A, then we have

f (A-A)-’(2.2) E (I) 2r--- .c d.

The above definition agrees with the one used by Sun in [10], but in order to
discuss the semigroup, we need to assume further the completeness property"

(2.3) E(A,)= I,
i=1

where the convergence is in the strong topology.
We quote the following result from [9].
THEOREM 2. If A is a regular spectral operator with only finitely many multiple

eigenvalues and (2.3) holds, then for every function f which is uniformly bounded on

tr(A) and which is C ki near Ai (ki is the multiplicity of Ai), the following operator f(A)
is well-defined:
(2.4) f(A)= f(A,)E(A,)

i=l

where the convergence is in the strong topology and moreover,

(2.5) IIf(m)ll -< K max If(A)
,x r(A)

where K is a constant independent off.
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An easy consequence of this theorem is that A is the infinitesimal generator of a
strongly continuous semigroup.

THEOREM 3. If A is a regular spectral operator with all but finitely many simple
eigenvalues and (2.3) holds, then A generates a strongly continuous semigroup Tt provided
that to sup {Re h h tr(A)} < oo. Moreover we have

(2.6) Tt= E e’tE(h,)
i=1

and

(2.7) T, Ke"t.

Proof From Theorem 2 it follows that the resolvent R(A, A) is given by

E(A,)(2.8) R(, A) =X A ,
and for all A not within a radius e of any multiple pole of the resolvent,

(2.9) IIR(A, A)ll--< K max I(A -/)-], r 2,....
pe er(A)

Thus we obtain the estimate for real A > to

K
]]R(A, A)[[ <-

-,o)

which by the Hille-Yosida theorem [2] proves that A generates a strongly continuous
semigroup Tt and

(2.10) I[Ttl]<-_Ke’’.

It remains to establish (2.6). From Theorem 2, we have that eAt is well-defined and is
given by

(2.11) eAt-- Y ea’tE(h,).
i=1

We can take the Laplace transform for Re > to

e-XteAtz dt Y’, e(x’-x)t E(h)z dt
0 0

,=,E
R(A, A)z also by Theorem 2.

But for Re h > to, we also know that

e-XtTtz R(A, A)z ([2, p. 17]).dt

Thus we have for Re A > to that

e at Tt)z dt=O,(e

and (2.6) now follows from the uniqueness ofthe Laplace transform.
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We remark that the estimate (2.7) means that the spectrum of A determines the
decay constant of the semigroup; this is commonly called the spectrum determined
growth assumption, and is not automatically satisfied (see [2, p. 74]).

We also remark that if we know that the resolvent of A contains the sector
S {A C: [arg A[ < w; r/2 < w < zr}, then it follows from the proof that A generates
an analytic semigroup (see [2, p. 40]).

It is of course useful to know when perturbations of a spectral operator retain
the spectral property and in this respect we quote the following from [9].

THEOREM 4. !fA is a regular spectral operator and (2.3) holds and all but finitely
many E(h) are one-dimensional, then A + B is a regular spectral operatorfor all bounded
perturbations B provided that

(2.12) where d, inf IA-A, and = tr(A)-{A,}.

We see that these bounded perturbations retain the spectrum determined growth
assumption, which is useful in applications.

Finally it is of interest to speculate on the nature of the projections E(Ai) and we
take that simplest case where dim E(Ai) for all i. If A is normal, then the projections
are orthogonal and we have

(2.13) E(A,) (.,

where b are the normalized eigenfunctions of A.
From Young 12], we know that if (2.3) holds there exists a biorthogonal sequence

q, such that (b,, q,)= 6,,, and

(2.14) E(A,) =(., tk,) th,.

Finally it is interesting to mention that any uniform Boolean algebra of projections
in a Hilbert space can be reduced to a Boolean algebra of orthogonal projections by
an inner automorphism E D-ED, where D and D- ?(H) (Schwarz [9, p. 424]).
The system theoretic interpretation of this is that we can replace (2.1) by the equivalent
system

(2.15) =,+/u, (0) o
where = D-z, ;= D-B and *= D-AD. * is a regular spectral operator with
orthogonal eigenprojections. It is easily proved that it generates the semigroup T,
D- T,D and that the growth constants of , and T, are identical. This fact has already
been exploited by Sun in [10].

3. Main result. We consider the following linear system on a Hilbert space Z.

(3.1) =z,
(3.2) ’z u,

where 1 is a closed operator on Z and r is a linear operator with D()c_G_ D(-) and
the restriction of - to D(’) is continuous with respect to the graph norm of 4.
Typically is a partial differential operator and " is a boundary operator. We suppose
that u(t) is the scalar control. We define the associated operator A on Z by

(3.3) D(A) ={z D(sg)/rz=O} and Az=z in D(A)

and we assume that A is the infinitesimal generator of a strongly continuous semigroup
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T(t) on Z. Our final assumption is that there exists a b D() so that

(3.4) -(bu) u for all u R.

Under these assumptions q sob Z, and the following inhomogeneous system is
well-defined

(3.5) t Av- bfi + qu, v(O) Vo

and has the unique solution

(3.6) v(t)= T(t)vo+ r(t-s)qu(s) ds- r(t-s)bi(s) ds,

provided vo D(A) and i(s) is continuously ditterentiable. It is then easily verified that

(37) z( t) v( t) + bu( t)

is a solution of (3.1), (3.2), and conversely, with of course Vo Zo-bu(O). (We shall
choose u(0) 0.)

The above was first used by Fattorini in [6] and was recently utilized in [3] together
with the following idea of an extended system on the state space R0)Z:

q

where

Then we have that

and

(3.9) z=(bI)=.
We remark that (3.8) is now of the form (1.1) considered by Sun in [10] and we can
apply his Theorem to obtain conditions for feedback spectral assignability for (3.3).
In his proof, however, he has assumed that the eigenprojections are orthogonal and
we do not wish to do this. Following the remarks at the end of 2 it is clear that the
assumptions on A in Theorem remain unchanged, but that bk should actually read

(3.10) bk (b, k)

where I]/k is the biorthogonal vector such that (bm, @.)= 6,...
With this modification we proceed to apply Theorem 1. The assumptions needed

are F on A or equivalently F on A and the following

(F4) 0 or(a), inf IAil > 0,

together with (1.3) and (1.4) for (, (Jb)). The eigenvectors of A are

and tk
0

k_>-= h k
where tk are the eigenvectors of A and h is the solution of the boundary value problem

(3.11) q+Ah=O, hD(A).



ON STABILIZABILITY OF LINEAR SPECTRAL SYSTEMS 149

The biorthogonal system for tk is given by

I0 Ik
Itk

where Xk -k q’ I]Ik)’ k >-_

and so

(3.12) /k-((/b) Ik) {Xk-bk’ k>---l’
1, k=0

where the inner product is in R O)Z. We remark that if q 0, then h 0 and /o 1,
/k =-bk. We now state our main result.

THEOREM 5. If the operator A satisfies assumptions (F1)-(F4) and the completeness
assumption (2.3), and there exists an index set J such that Re Ak >- O, k J and Re Ak < 0

for k : J, then the system (3.1), (3.2) can be stabilized by integral state feedback if and
only if

(i) k O, k J,
(3.13)

IRe hkl2(ii) y 1------- < 0%

where bk is defined by (3.12).
Proof. We apply Theorem to our system (3.8). Under (F1)-(F4) and (3.13) there

exists a () in R Z such that with the state feedback control

(3.14, t(,) ((a)(u(,))g v(t)/
=au(t)+(g’v(t))

the eigenvalues of the closed loop system operator will be at Ak, k J and for k J,
Yk--ak- Re ’k- Ekl)kl, where k is given by (3.12). Provided ek > 0 and
we have that Re Ak --ek[)kl < 0 Vk J and

I1]k--Akl2 - ReAk 2

It is clear that such a form for vk is also necessary.
The completeness assumption (2.3) on A implies the same on and so by Theorem

4 the closed loop operator

"+(/b)((:)"} onRZ

satisfies the spectrum determined growth assumption and thus (3.8) is stabilized under
the state feedback law (3.14) (the growth rate is zero). Since z(t)=(b I), we can say
the same for the solution of (3.1), (3.2). It remains to interpret the control law (3.14)
in terms of the original system. Writing it in terms of u(t), we obtain

du
(3.15) m-au(t)=(g, v(t))=(g, z(t))-(g, b)u(t),

dt

which has the solution

(3.16) u( t) C e3‘ + e3(’-S)(g, z(s)} ds

where/3 a -(g, b}.
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The obvious solution is to choose C 0 and so we have an integral feedback of
the state z:

(3.17) u(t) et(t-S)(g, z(s)) ds. [3

We remark that this stabilizability result does not guarantee exponential stabiliza-
bility with arbitrary decay rate. This will only be possible in the case that J is finite,
since Y oo. we do have the following result, however.

COROLLARY 1. If the operator A satisfies the assumptions (F1)-(F4) and the
completeness assumption (2.3) and Re Ak >------a 2 for k J, a finite set, and Re Ak <--a2

for h : J, then the system (3.1), (3.2) can be stabilized by integral state feedback with
decay rate -a2 provided that

(3.18) bk O for k J.

If one is prepared to choose b as well as g and a, then the following result is a
direct consequence of a result in Sun [10].

THEOREM 6. If the operator A satisfies conditions (F1)-(F4) and the completeness
assumption (2.3) and there exists an index set J such that Re Ak > 0, k J and Re Ak 0,
k J, k l, then in order that there should exist g, b Z and a R such that the system
(3.1), (3.2) under the integralfeedback (3.17) be stable, a necessary and sufficient condition
is that

ReAk <cO.
kJ

As an illustration of the usefulness of the preceding results we examine a class
of hyperbolic systems studied in [2, Example 2.16]. They have spectral operators whose
eigenvectors are not orthogonal.

Example. Consider the following second order system;

(3.19) ?z" + a. +Az O, z(O) Zo, (0) z,

where a is a real constant, A is a positive, self-adjoint operator on a real Hilbert space,
H, with compact resolvent. Then A has positive eigenvalues {/z.}.= with/x.--> az and
orthonormal eigenvectors {e.}= which form a basis for H. We suppose that the
eigenvalues are distinct and the eigenspaces one-dimensional. Following [2], we
reformulate (3.19) on the product space X D(A/2)H with the inner product

(3.20)

where

(x, X)x (Ax,, X,)n +(x2,

X2 22
Then (3.19) becomes the following system on X

9 Ax, x(O) x0,(3.21)

where

-A -aI

/ has eigenvalues A, =-a/2+ 1/2x/32-4/,, n 1,. . For convenience we suppose
that all A, are complex and we write

(3.22) A, -a/2 + i/2/41x, ce 2 and h_, ,.
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The corresponding eigenvectors are

’= h.e. A_.e.

and since {e.}.__l is complete in H the set {(h.} is complete in X. The eigenvectors
of the adjoint operator/*-( --x) are

e
and 1_

--Anen
respectively, and we have the following relations:

Choosing 6, 1/x//x, 4, and , 1/’,/-tx, ,, we obtain the biorthogonal pair (6.,
with (6,, 6,,) 6,,,,.

To establish that A is a regular spectral operator it only remains to show that the
spectral measures, E(A,), are uniformly bounded in n. Since/,, is simple, so is A, and

(3.24) E(A,) =(., 0.)xb, and so ]lE(h,)[]-<_ ][q,[] []th.[[ 1.

So/ is a regular spectral operator and assumption (F1) is satisfied. For (F2) and (F3)
we note that

(3.25) ]h, h,,[ 1/21x/a/x, a 2 4/x, a2

and this yields readily verifiable conditions for (F2) and (F3) in terms ofthe eigenvalues
of A. (F4) will be satisfied if

(3.26) a(a2-4/x,) # 0 for all n, <

Condition (3.3) of Theorem reduces to the controllability condition / # 0 and (ii)
reduces to

(3.27) E 1/[/12 < oo.

Since 2 [/7[2< oo, (3.27) will only hold if J is a finite set.
The formulation of the extended bounded system depends on the particular A

operator and some examples of this are to be found in [3] and [4]. Here we consider
the special case

02z Oz
cgtZ -k- oe

Ol OX2 0 on H L2(0, 1),

(3.28)
z(0: t) 0, z( 1, t) u(t).

Define

d2

M=
dx2

d 2

A=
dx2

with D(M)= {h H: Mh H; h(O)=O},

with D(A)={heH" MhH; h(O)=O=h(1)}.

Then (3.28) can be written as the system on H0)H:

(3.29) 2 sx, "rx u
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where

0 I
and "r x(1).

-M -aI x2

Then and z satisfy our assumptions and the following b and q in X D(A/2)O)H
suffice

(0).
Condition (3.13) reduces here to Io :sin krd=O, which is always satisfied. So the
essential condition for the theory is that there be finitely many unstable eigenvalues
for this class of second order systems.

A similar analysis works for parabolic systems and for the flexible beam example
of [3].
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APPROXIMATE STABILIZABILITY VIA THE
ALGEBRAIC RICCATI EQUATION*

N. LEVANt

Abstract. This note will study stabilizability of Hilbert space Co semigroups by means of a state feedback
involving a solution of the algebraic Riccati equation. The notion of "approximate" stability is introduced
and it is shown that stabilizability in this case is, in general, only approximate in the sense that the feedback
semigroup is stable on a dense subspaceminstead of on the whole space.

Key words, stabilizability, algebraic Riccati equation, quasi-affine transforms of contraction semigroups

1. Introduction. In this note we will be dealing with complex Hilbert spaces. Inner
product and norm are denoted by [.,. ] and I1" [[, respectively.

Let A be the generator of a Co semigroup T(t), t-> 0, over a Hilbert space H. The
algebraic Riccati equation (A.R.E.) [1] associated with the semigroup is the inner
product equation"

(1.1) [Ax, Px] +[Px, Ax]-[PBB*Px, x] +[Rx, x] 0

for x in the domain (A) of A. Here B is a bounded linear operator from another
Hilbert space to H, B* is the adjoint of B, R is bounded linear, self-adjoint and
nonnegative on H, R >-0, and so is the operator solution P, P_-> 0.

Now, since P is self-adjoint, (1.1) can be written as

(1.2) 2 Re [Pax, x]= Iln*Pxlla-[Rx, x] for x in (a),

from which it follows that, for x in (A)"

(1.3) 2 Re [P(A- BB*P)x, x]= -[[B*PxlI=-ERx, x3<-_ o.
Thus if P is the identity operator I then A-BB* is dissipative; therefore, since A is
a generator and -BB* is bounded linear, it generates a Co semigroup of contractions
on H. This, of course, need not be the case when P # L

Denote by S(t), t>=O, the semigroup generated by A-BB*P, then, as we shall
see, for x in H"

(1.4) [PS(t)x, S(t)x] =< [Px, x] for ->_ 0.

Now if P is boundedly invertible then (1.4) implies that S(t), t-> 0, is similar to a
contraction semigroup on H. If P is only quasi-invertible (or quasi-affine), i.e., it has
dense range and trivial kernel, then it follows from (1.4) that S(t), ->_ 0, is a quasi-affine
transform [2] of a contraction semigroup.

This note will study stability of the semigroup IS(t), >_- 0] and hence stabilizability
of the original semigroup T(t), t>=O, using the state feedback -B’P, where P is a
solution of the A.R.E. The main results are given in 2. First we obtain a condition
for a solution P of the A.R.E. to be quasi-affine. Then we find sufficient conditions
for a quasi-affine transform of a contraction semigroup to be weakly stable on a dense
subspace. This is shown to be the "weakest" type of Lyapunov stability. Stabilizability

* Received by the editors April 12, 1983, and in revised form September 15, 1983. This research was
supported by the U.S. Air Force Office of Scientific Research, Directorate of Mathematical and Information
Sciences, under grant AFOSR 79-0053C.

t Department of System Science, University of California, Los Angeles, California 90024.
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via the A.R.E. is then studied in some detail. The key result is that stabilizability via
the A.R.E. is, in general, only weakly on a dense subspace, hence it is called "approxi-
mate stabilizability."

2. The main results. To begin with, we obtain from (1.3) the following important
relation, for x in H and t-_> 0"

(2.1) [PS(t)x, S(t)x]-[Px, x]=- I]B*PS(tr)x]] 2 dtr- INS(it)x, S(tr)x] do-.

Therefore

(2.2) [PS(t)x,S(t)x]<-[Px, x] forxinHandt>-O.

To proceed, we define the set

(2.3) M(S) {x in H: [PS(t)x, S(t)x] [Px, x], >_- 0}.

Then, since [P- S( t)*PS( t)]>- O, t>-O, by (2.2), it is plain that x belongs to M(S) if
and only if it belongs to ker [P- S(t)*PS(t)], -> 0. Therefore M(S) is a closed subspace
and it is clearly invariant for S(t), t>-O. More is true; we have from (2.1)

(2.4) xin M(S) B*PS(t)x-O= RS(t)xfor t>-_O.

It follows from this

for x in M(S) f3 (A): Ax- (A- BB*P)x.

Therefore, since M(S)(3 (A) is dense in M(S) by the fact that M(S) is invariant
for S(t), t_>-0,

(2.5) forxinM(S): T(t)x=S(t)x, t>-O.

This implies that M(S) is also invariant for T(t), ->_ 0, and from (2.4) it is evident that

(2.6) M(S)_{xinH: RT(t)x-O, t>-O}=Muc(A*,R) (say).

We note that ker P is a subspace of M(S) and it is also invariant for S(t), >=0, by
(2.2), hence for T(t), >_- 0, by (2.5).

We summarize the above in
LEMMA 1. Let P >-0 be a solution of the algebraic Riccati equation and let M(S)

be as defined by (2.3). Then

ker P
_
M(S)

_
Muc(A*, R)

_
ker R.

Moreover, ker P and M(S) are invariant subspaces of S(t), t_>-0, and T(t), t>-O.
The subspace Muc(A*, R) is the uncontrollable subspace of the pair (A*, R) [1].

Therefore if (A*, R) is approximately controllable, i.e., Muc(A*, R)= {0}, then ker P
and M(S) are trivial. In finite dimension this will result in stability of the semigroup
S(t), t_-> 0: [[S( t)x[I -> 0, t->c, for each x in H. This is easily seen from (1.3) since, if
(A-BB*P)dp= Ab then Re A <_-0. But Re A =0 implies that [PS(t)dp, S(t)4,]=[Pd,
which contradicts the fact that M(S) is trivial. Thus we only have eigenvalues with
negative real part. Let Q2__ p; then since Q- exists as soon as P>0min finite
dimension, (2.2) becomes

IIQS(t)Q-lxll<-IIxll forxinHandt->_0.

This shows that S(t), t->0, is similar to the contraction semigroup QS(t)Q-, t>-O.
We summarize the above in
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PROPOSITION 1. Let H be a finite dimensional Hilbert space and S( t), >-0, be the
semigroup generated by A-BB*P, where P satisfies the A.R.E. (1.1). If (A*, R) is
controllable then P > 0 and S(t), >- O, is stable. Moreover, S(t), >- O, is similar to the
contraction semigroup QS( t) Q-, >- o, where Q2 p.

If H is infinite dimensional and P> 0 then it does not necessarily follow that
S(t), -> 0, is similar to a contraction semigroup. However we can still have M(S) {0}
as soon as the pair (A*, R) is controllable. This is the key idea in the following
development.

We must note that if the semigroup S(t), t>-O, is similar to the contraction
semigroup QS(t)Q-= w(t) (say), t->_0, then the subspace M(S) becomes

(2.7) M(W) {x in H" w(t)xll Ilxll, >--_ O}

which is invariant for W(t), t->0, and W(t)IM(W) is isometric. Hence requiring
M(W) to be trivial is equivalent to saying that the contraction semigroup W(t), => 0,
is completely nonisometric, and hence completely nonunitary also. The notion of a
completely nonunitary contraction was introduced by Nagy and Foias in their study
of model theory of Hilbert space contractions [2].

We recall that a Co semigroup Z(t), t>=O, on H is e(exponentially)-stable if

IIZ(t)l[ <- M e-’ for some M -> and a > 0; s(strongly)-stable if for x in H: Ilz(t)xll
0, t-; and w(weakly)-stable if for x and y in H: [Z(t)x, y]- 0, t-.

We define
DEFINITION. A Co semigroup over H is approximately s-stable (resp. w-stable)

if it is s-stable (resp. w-stable) on a dense subspace of H.
Let Z(t), => 0, be a Co semigroup on H and suppose that there exists a bounded

linear, self-adjoint and positive operator P on H, P > 0, such that

(2.8) [PZ(t)x,Z(t)x]<-[Px, x] forxinH and t>_-0.

Then, since the function [PZ(t)x, Z(t)x] is nonincreasing, lim,_. [PZ(t)x, Z(t)x]
always exists. We then have, for x in H and s >-0:

lim [PZ( + s)x, Z( + s)x] lim [PZ( t)x, Z( t)x],

or,

lim [(P- Z(s)*PZ(s))Z( t)x, Z( t)x] O.

This, by the fact that P-Z(s)*PZ(s)>=O for s->_0, is equivalent to:

(2.9) lim II(P-Z(s)*PZ(s))Z(t)x[I =0, forxin H and s=>0.
t--

Using (2.9) in the inequality

I[z(t)*(P- Z(s)*PZ(s))x, y]l--< Ilxll, II(P- Z(s)*PZ(s))Z(t)y [I,
we have

(2.10) foranyxand yinH: lim[Z(t)*(P-Z(s)*PZ(s))x,y]=O.

To proceed, we define

(2.11) H. {x in H" lim [Z(t)*x, y] O, y in H},
t--

which is a subspace of H and need not be closed. It then follows from (2.10) and
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(2.11 that

for s -> 0:

This is equivalent to

[P- Z(s)*PZ(s)]H c H. (the closure of H.).

H c fq ker [P- Z(s)*PZ(s)] M(Z),
s>--_O

where H is the orthogonal complement in H of .. We conclude that M(Z) {0}:=>
H. H, and ofcourse, for any x and y in H,: lim,_oo [Z(t)*x, y] 0 lim,_oo [Z(t)y, x].

Let Q2 p then (2.8) becomes

(2.12)

(2.13)

Oz(t)xll =< Qxll for x in H and _-> 0.

QZ(t)x C(t)Qx for each x in H and => 0.

Then it is evident from (2.12), and since (Q) is dense, that C(t), => 0, is a well-defined
semigroup of contractions on H. The semigroup Z(t), t-> 0, is therefore a quasi-affine
transform of the contraction semigroup C(t), -> 0.

We conclude from the above that
THEOREM 1. If a Co semigroup Z( t), >- O, on H is a quasi-affine transform of a

contraction semigroup, and its subspace M(Z) is trivial then it is approximately weak
stable.

It follows at once from this theorem that
COROLLARY 1. (i) If the semigroup Z(t), t>-O, is uniformly bounded, IIZ(t)ll <-

M (>- for >- O, then the conditions ofthe theorem are sufficientfor it to be weakly stable.
(ii) The condition M(Z)= {0} of the theorem can be replaced by: there exists to> 0

such that QZ(to)Xll < Qxll for each x in H.
Proof. The proof is all but trivial. For (i) we only have to observe that if Z(t), >- 0,

is uniformly bounded then the subspace H. (see (2.11)) is closed. For (ii) we note
that, by assumption, for each x in H and >- 0: QZ(t + to)xll--< QZ(to)Xll Qxll
M(Z)- {0}. This finishes the proof of the corollary.

The stability result of Theorem can be regarded as a Lyapunov type result.
Indeed, for Hilbert space Co semigroups Datko gives the following extension of
Lyapunov’s stability result--in finite dimension"

THEOREM 2 (Datko [3]). A Co semigroup Z(t), >-0, with generator A in H is

exponentially stable if and only if there exist on H two bounded linear and self-adjoint
operators: (i) W>-kI, k>0, i.e., W is strictly positive, and (ii) P>0, such that:

(2.14) 2 Re[PAx, x]=-[Wx, x] forxin 9(3).

Suppose now that (2.14) holds for some W which is only positive, but is not
strictly positive. Then, of course, the semigroup is not exponentially stable! Returning
to (2.8) we see that it is equivalent to

(2.15) 2 Re [PAx, x]_-<0 for x in (A).

This clearly is "weaker" than (2.14), even when W is only positive--which of course
implies that P> 0. We conclude that if there exists P> 0 satisfying (2.14) in which W
is not strictly positive, then (2.15) also holds and as a consequence the result ofTheorem

applies. Theorem is, perhaps, the "weakest" type of Lyapunov stability.
We are now ready to state our stabilizability results.
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THEOREM 3. Let S(t), >_-0, be the Co semigroup on H with generator A-BB*P,
where A generates a Co semigroup T(t), >- O, on H, and P >- 0 is a solution of the A.R.E.
If R is positive, or (A*, R) is approximately controllable then: (i) P > O, and (ii)
S( t), >- O, is approximately weak stable, i.e., T( t), >- O, is approximately weak
stabilizable.

Proof. The proof is all but trivial. The conditions of the theorem imply that the
subspace M(S) (see (2.3)) is trivial and P is positive, by Lemma 1. Therefore S(t), -> 0,
is approximately weak stable by Theorem 1.

Note that we also have from the A.R.E. (1.1), for t_>-0 and x in H:

[PT( t)x, T( t)x]- [Px, x] [RT(tr)x, T(tr)x] dtr + IIB*PT(r)xll 2 dr.

Therefore

[Pr(t)x, r()x][Px, x]+ II *Pr(  xll
and

(2.16) [Px, x]<=[PT(tr)x, T(tr)x] + [RT(tr)x, T(tr)x] dtr.

It follows from these inequalities that

x belongs to M(A*, R) fq {x in H: B*PT(t)x-O, t>=0}

[Pr(t)x, r(t)x] [Px, x] for -> 0.

This shows that the set M(T) of the semigroup T(t), => 0, i.e.,

(2.17) M(T)= {x in H: [Pr(t)x, r(t)x]=[Px, x], t->0}

(which need not be a subspace) satisfies:

(2.18) M(T)
_
M(A*, R)f’l{x in H: B*Pr(t)x=O, t->0}.

This shows that controllability ofthe pair (A*, R) has no effect on M(T). It is interesting
to observe from (2.5) and (2.17) that M(S) is also a subspace of the set M(T).

We now consider the extreme case in which P I is a solution of the A.R.E. (1.1).
Then, as indicated in the Introduction, the semigroup S(t), => 0, generated by A BB*
is a contraction semigroup, and M(S) becomes

M(S) {x in H: IIs<t)xll- IIx[I, => 0}.

Also, it follows from (2.4) that

(2.19) x in M(S) == B*S(t)x=O= RS(t)x for t_->0.

Then as before we have M(S)_ M,(A*, R). However, more is true in this case. It is
evident from (2.19) and (2.5) that M(S) is also contained in the subspace

{x in H B* T( t)x 0, t>=0}=M,(A*,B) (say),

which is the uncontrollable subspace of the pair (A*, B). We then conclude that

M(S)
_
M(A*, R)f’) M,c(A*, B).

Hence, as a corollary of Theorem 3, we have
COROLLARY 2. Let A generate the Co semigroup T( t), >-O, and

lAx, x] +Ix, Ax]- IIB*xll = +[Rx, x] 0 for x in (A).
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Then A-BB* generates a contraction semigroup S(t), >_-0, which is weakly stable as
soon as (A*, R) or (A*, B) is approximately controllable.

Finally, let us consider a generalization of Corollary 2. Let P I be a solution
of the A.R.E.; what we ask is: "When does A BB*Pgenerate a contraction semigroup ?"
We know that if P is strictly positive" P>-cI for some c> 0, then it is boundedly
invertible. Therefore the semigroup S(t), t->_0 (generated by A- BB*P), is similar to
a contraction semigroup, consequently it is uniformly bounded. This suggests that we
should expect P to be, at least, strictly positive for A- BB*P to generate a contraction
semigroup. But, if P is strictly positive it can be written as

(2.20) P cI + Q for some c > 0, and some Q -> 0.

Substituting this in the A.R.E. we find, for x in (A):

lAx, Qx]+[Qx, Ax]- IIB*QxII 2 +[Rx, x]
(2.21)

+ c{2 Re [(a BB* Q)x, x]- cllB*xll} o.
Therefore if Q also satisfies the A.R.E. then, for x in (A):

2 Re [(A- BB*Q)x, x]= clln*xll
or

(2.22) 2 Re [(A- BB*P)x, x]= -cIIB*xII2<-O,
i.e., A-BB*P i dissipative. Conversely, if (2.22) holds then it is clear from (2.21)
that Q is a solution of the A.R.E. We obtain yet another corollary of Theorem 3.

COROLLARY 3. If the pair (A*, R) is approximately controllable and P is strictly
positive then A-BB*P generates a weakly stable and uniformly bounded semigroup. In
particular, if P cI + Q where c > 0 and Q >= O, then A- BB*P generates a contraction
semigroup if and only if Q also satisfies the algebraic Riccati equation.

We close by noting that if P I then Theorem becomes a special case of the
following result due to Foguel [4]:

THEOREM 4 (Foguel [4]). If T( t), >= O, is a contraction semigroup over H then for
any x and y in H:

lim T(t)x, y] 0 :> lim T(t)*x, y] O.

Therefore
Hw(Z)= {x in H: lim [T(t)x, y]=0, y in H}= Hw(T*)

t--

is a reducing subspace. Moreover, T( t)IHw( T) is unitary.
It follows at once from the above and from the Nagy-Foias canonical decomposi-

tion of contractions [2] that Hw(T)- is a subspace of the maximal unitary subspace
of the semigroup, i.e., the subspace

H, {x in H: Y(t)xll- Ilxll- Y(t)*xll, --> 0}.

This subspace in turn is a subspace of the isometric subspace

M(T) {x in H: ]1T(t)xll- Ilxll, _-> 0},

Therefore if M(T) is trivial then the semigroup is weakly stable. This certainly is
the case when P I in Theorem 1. Indeed the proof of Theorem follows that of
Theorem 4.
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Foguel’s result is the key in stabilizing Hilbert space contraction semigroups [5].
Here we have obtained a method for stabilizing a class of quasi-affine transforms of
contraction semigroups, in which the quasi-affinity comes from an algebraic Riccati
equation. For exponential stabilizability and strong stabilizability via the algebraic
Riccati equation we refer to the work of Zabczyk [6] and Balakrishnan [7].

We now close the note with some examples.
Examples.
1. We begin with a simple example showing that one can find a solution P-> 0

of the A.R.E. such that the semigroup S(t), >_-0, is stable on the range of P.
Let f be such that Af= (iw)f and choose B =f, and R BB*. Then the A.R.E.

becomes

[Ax, Px] +[/:k, Ax]-I[f Px]l2 +[[f x]12=0 for x in @(A).

Thus, as in [7], this equation admits the nonnegative solution P given by:

and

We then have

Therefore

Px 0 for all x orthogonal to f,

(A- BB*P)f ioo -Ilfll)f.

S t)f e-Ilfll2t e itoc_.> O, --> .
Hence the semigroup S(t), >-0, is stable on the range (P) of P.

2. To generalize the above example we now consider the case in which A is
self-adjoint, and suppose that

Afk hl,f,, k O, 1, 2," ,
where the hk’S are real and nonnegative, and the sequence {fk} is an orthonormal basis.

Next, we define, for each x in H:

Bx E bk[X, fk]fk,
k

and

Rx E r[x,A]fk,
k

where bk’S and rk’S are scalars. The A.R.E. now becomes, for x in @(A):

lAx, Px] +[Px, Ax]-2 Ibl=lEex, All= +E rlEx, A]l=-- 0.
k k

To solve for P we set

Px E PkEX, fk]fk,
k

where the pk’S are to be determined. Substituting this in the A.R.E. we find

[bklPk--2AkPk--rk=O fork=0,1,2,3,....

Hence Pk is the positive root of this equation.
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But

Finally, we have

(A- BB*P)fk (Ak--]bklEpk)fk, k=0, 1,2,....

A -IbklPk r_
Ak < O.

Pk

This shows that the semigroup S(t), >= 0, is stable on the span of {fk} which is dense
in H. It is noted that the pair (A*, R) is controllable in this example.

3. This example illustrates the results of Corollary 2. Consider

H L2[0, 2 7r], A

and

(A) {x in H" x is absolutely continuous, in H and x(0) x(27r)}.

Take B to be an element of H such that [B(z), ei"Z/x/] 0 for all integers n, and
take R BB*. We have, for x in (A)"

lax, x] +[x, ax]- n*xll = +Inn*x, x] 0,

since A =-A*. Moreover, for x in (A):

[(a- nn*)x, x] +[x, (a- nn*)x] -211 n*x =-< 0,

Therefore the semigroup S(t), t-> 0, generated by A-BB* is contractive. Finally, it is
plain that the pair (A*, R) is controllable, since

RT(t)x BIB, T(t)x]= B Y e-’"’[e’"Z/.,/, x][B, e’"Z/4--]

0 for all _-> 0

Thus the semigroup S(t), >-0, is stable as expected.
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VISCOSITY SOLUTIONS FOR THE MONOTONE CONTROL PROBLEM*

EMMANUEL N. BARRON"

Abstract. The value function, V, of the optimal control problem in which the controls must be monotone
nondecreasing is a W’ generalized solution of the quasi-variational inequality (QVI) max {LV, Vy} =0.
Here LV Vt +f. VxV+ h and f, h the dynamics of the control problem. We extend the Crandall, Evans,
Lions definition of viscosity solution for nonlinear first-order p.d.e.s, to systems like (QVI) and prove that
V is the unique viscosity solution of (QVI). Further, V is the smallest function satisfying the inequalities
LVO, VyO.

Key words, monotone control functions, optimal control, Bellman equation, first order quasi-variational
inequalities, viscosity solution

Introduction. In recent years M. G. Crandall and P. L. Lions [8] have mounted a
formidable attack against unresolved problems in the theory of first order partial
differential equations. In particular they have managed to prove the existence of a
unique generalized solution to highly nonlinear first order equations by introducing
the seminal idea of viscosity solutions which, as it turns out, is the same solution
everybody else proved existed [6], [10], [12], [14]. The idea of viscosity solution was
later reformulated and simplified in Crandall, Evans and Lions [9]. This paper presents
an application of the idea of viscosity solution to the QVI arising in the monotone
control problem. This problem is currently receiving renewed interest because of
variational inequalities.

The central result of this paper is that the value function, V(t, x, y), associated
with the optimal control problem in which the controls must be monotone nondecreas-
ing in [0, 1] is the unique viscosity solution of the quasi-variational inequality

(QVI) max {oV/ot+f. VV+ h, OV/Oy}=O.

This problem was first studied in Barron and Jensen [4] and is motivated by applications
of optimal control.in which one is controlling exhaustible resources (money, trees, oil,
etc.). Accordingly, this problem is of substantial importance in economics and resource
management.

We first extend the Crandall, Evans, Lions definition of "viscosity" solution to
q.v.i.’s of the type (QVI). We prove that the value function then is, in fact, the viscosity
solution. The key idea is the principle of optimality and has been used by Lions [14],
Barron, Evans and Jensen [6] and others 10], 16]. Next we show that viscosity solutions
can also be obtained by classical "vanishing viscosity" techniques for a penalized
equation. Furthermore, using viscosity solution methods, we show that the solution V
of (QVI) is the limit as M- of the viscosity solution V4 of the equation V+
f" V VM + h + M(Vy)/ 0. This result is used in the next theorem where we prove that
V is the smallest function satisfying Vt+f" VxV+ h_-<0, VyO.

Finally, we prove that V is the unique viscosity solution of (QVI) using the
fundamental idea of Crandall, Lions and Evans. The proof is substantially simplified,
however, because of the special nature of the problem at hand.

Similar results can be shown to hold for the control problem with controls of
uniformly bounded variation [4] and the differential game with monotone controls [5].

* Received by the editors October 18, 1983, and in final form March 27, 1984. Part of this paper was
completed while the author was at Bell Laboratories, Naperville, Illinois 60540.

" Department of Mathematical Sciences, Loyola University of Chicago, Chicago, Illinois 60626.
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Also Barles 1] has obtained results for the first order obstacle problem. It is interesting
to note that the value function for a monotone differential game satisfies a system of
quasi-variational inequalities

V:[O, T]x R [0, 1] [0, 1] R’,

max LV, 0,Oz’

max .min LV, =0

a.e. in [0, T) R [0, 1) [0, 1), with

V(T,x,y,z)=g(x), V(t,x,l,z)=ck(t,x,z), V(t,x,y, 1)=d/(t,x,y).

1. The monotone value function. In this section we present the optimal control
problem used as a model for the problems studied in this paper.

Consider the dynamical system defining a trajectory in R’, sc sc(-), on the interval
O<= t<-_ -<- T, < T:

(ODE) d:
d--= f(r, (’), rl(’)), ( t) x e R".

We assume that f: [0, T] x R x [0, - R is a given bounded function, uniformly
Lipschitz continuous in the arguments (t, x, y) in [0, T] x R" x[0, 1].

The system (ODE) is controlled by choosing the control functions r/= r/(-),
r/:[t, T]-> [0, 1], which must be measurable and not decreasing. Given y [0, 1] we
define

Yy[ t, T] { rl: t, T] [0, r/(t) y, r/(. not decreasing on t, T]}.

A function r/in Yy is called a monotone control starting at y. Each control in Yy gives
a unique associated trajectory sc on It, T] as the solution of (ODE).

The functions r/ are chosen from Yy in order to maximize the payoff

Pt,x,y(’O) g((T))+ ItT h(s, (s), rl(s)) ds

where : is the trajectory associated with rt on [t, T].
For the function g:Rm-->R and h:[O,T]R’[O, 1]-->R we assume: g is

bounded and uniformly Lipschitz; h is bounded, Lipschitz continuous uniformly in
(t,x,y).

If we allow the initial conditions (t, x, y) of the problem to vary, we obtain the
value function:

DEFINITION. V:[0, T]XR [0, 1]--> R given by

V(t,x, y)--sup{Pt,x,y(rl); rl Yy[t, T]}

is called the monotone value function. Any control r/* Yy satisfying V(t, x, y)=
Pt,,.y (rl*) is monotone optimal

The following proposition summarizes the major properties of V. (See Barron and
Jensen [4].)
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PROPOSITION 1. (i)

V(T,x,y)=g(x), V(t,x, 1)= g((T))+ fT h(s, ,(s), 1) ds,

where is the trajectory corresponding to rl(’)= 1.
(ii) V(.,., y) is not increasing in y.
(iii) For each (t,x,y) in [0, T]R [0, 1] there is an optimal monotone control

rl* E Yy[t, r]: V(t, x, y)= Pt,x,y(rl*).
(iv) If rl Yy is monotone optimal and rl

+ rl(t+), then V(t, x, y) V(t, x, y) if
y<= yl rl+.

(V) If 0 < 6 < T- and r Yy, 0 <= y <- 1, is monotone optimal then V( t, x, y)
’+ h(s, (s) rl(s)) ds+ V(t+ 6, (t+ 6), (t+ 6)), where is the trajectory correspond-
ing to

(vi) V is bounded and uniformly Lipschitz continuous in t, x, y. Therefore V is

differentiable almost everywhere and in W’.
Finally, using the proof in Barron and Jensen [4] we have
THEOREM 1. The monotone value function satisfies the quasivariational inequality

(QVI) max{LV(t,x,y) OV(t’x’Y)}=O a.e. in[O,T) xR"x[O, 1),
Oy

where

V also satisfies

OV
LV=+f. V,V+ h.

Ot

V(T,x,y)=g(x), (x, y) R" [0, 1]

and
t

V(t,x, 1)= g(,(T))+ h(S, l(S), l) ds on [0, T] x R

where l is the trajectory corresponding to rl(r)= 1.
Throughout this paper we put r(t,x)=g(sC(T))+T h(s, (s), 1) ds on [0, T]

R’. The function r is uniformly Lipschitz and r(T, x)= g(x).

2. Viscosity solutions of (QVI). We will define the notion of a weak solution to
(QVI) stemming from the idea of viscosity solutions to first order p.d.e.s, developed
by Crandall, Evans, Lions [9]. We will prove below that the monotone value function
is the unique viscosity solution of (QVI) and use viscosity methods to develop some
additional results concerning its characterization and asymptotic properties.

Let BUC (Q) be the space of bounded, uniformly continuous functions on Q=
[0, T] R [0, 1].

DEFINITION. A function u in BUC (Q) is a viscosity solution of

(QVI) max{Lu, O--y}=O in O

with Lu Ou/Ot +f. V,u + h, if and only if for each q in C(Q)
(i) if u-0 has a local max at (to, Xo, Yo)e Q, then

max{LO(to, Xo, Yo) Oq(t’x’Y)}>-OOy
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and
(ii) if u-q has a local min at (to, Xo, Yo) Q, then

max { Lq( to, Xo, Yo),
OO( t’ x’ Y)} <= O.

Oy

Finally,

u(r,x,y)=g(x), u(t, x, 1)= r(t, x).

An important property of this definition is that u may not have derivatives of any
sort.

First we show that the monotone value function is, in fact, a viscosity solution.
This will follow from Proposition (v).

THEOgM 2. The monotone value function is a viscosity solution of (QVI) on

[0, T] x R [0, 1].
Proof. We already have V in BUC (Q) and V( T, x, y) g(x), V(t, x, l) r(t, x)

so only (i), (ii) are left to prove.
To prove (i) suppose C(Q) with V-q attaining a max at (to, Xo, Yo) and

y(to, Xo, Yo) < O. We must show that

LO( to, Xo, Yo) q6 +f" Vxqt + h)( to, Xo, Yo) --> 0.

We claim that if qy (to, Xo, Yo) < 0, then if rt Yyo[to, T] is monotone optimal starting
at Yo and (. is the corresponding trajectory on [to, T], sO(to) Xo, then rt

/ r/(t-)=
r/(to) Yo. Indeed, if rt

+ > Yo, then there is e > 0 with Yo < Yo+ e < r/+ and

@(to, Xo, Yo + e) < @(to, Xo, Yo).

Since V-, has a local max at (to, Xo, Yo), we can choose e small enough so that

V( to, Xo, yo+ e) V( to, Xo, Yo) <-- ( to, Xo, yo/ e) ( to, Xo, Yo) < 0.

So
V( to, Xo, Yo + e) < V( to, Xo, Yo).

But by Proposition l(iv) V(to, Xo, Yo) V(to, Xo, yo+ e) V(to, Xo, r/+). Hence r/+= Yo
if y(to, Xo, Yo)< 0 and V- has a local max at (to, Xo, Yo).

Let so+(.) be the trajectory on [to, T] corresponding to the constant monotone
control r/+ in Y,/[to, T] with sc+(to) Xo. Suppose that LO(to, Xo, Yo) -<- -C < 0 for some
constant C > 0. Then for each 0 < 8 < T- to, since r/+ r/(t-) Yo and b C we have
for 8 sufficiently small

@ to+ 8, s+ to + ), r/+) qt to, Xo, Yo)
to+ d

,o
q,(s, (), ds

to+8
(t +f" V,,)(s, sC+(s), r/+) as

dt

Lq(s, (s), rl +) ds- h(s, +(s), rl as
tto ot

<-_-C6- h(s, +(s), r ds.
dto
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Since V-$ has a local max at (to, Xo, Yo), we then have

to+8
V(to+ 8, +(to+ 8), l+)- V(to, Xo, Yo)<--C8 h(s, +(s), +) ds.

dt

By Gronwall’s inequality it readily follows that ll /(s) if to -< s =< to+ 8.
Using the continuity of V and h we get for some constant c independent of 8

$

V(to+8,(to+8), l(to+8))-V(to, Xo, Yo)<--c8 h(s,(s), l(s)) ds.
dt

SO

to+is
V(to+8,(to+8),l(to+8))+ h(s,(s),q(s))ds<V(to, Xo, Yo)

dt

for small 8. This contradicts the principle of optimality (v) and thus LO(to, Xo, Yo) >= 0.
To prove (ii) holds let O C with V-O attaining a local rain at (to, Xo, Yo). We

must show that

Oy(to, Xo, Yo) -< 0, LO( to, Xo, Yo) <- 0.

Suppose that Oy( to, Xo, Yo) > 0. Then for some small e > 0 O(to, Xo, Yo + e) > O(to, Xo, Yo).
Since V-O has a min at (to, Xo, Yo),

V( to, Xo, Yo) V( to, XoYo+ e) <= d/( to, Xo, Yo) d/( to, Xo, Yo + e) < O.

which contradicts the fact that V is not increasing in y. Hence Oy(to, Xo, Yo)=<0.
Now suppose LO(to, Xo, Yo) >- c > 0. Let (. on to, T] be the trajectory correspond-

ing to the constant control Yo in Yyo[ to, T] with (to) Xo. Then for small 0 < 8 < T- to
we have

f to+is d
d/( to + 8, ( to + 8 ), Yo) d/( to, Xo, Yo) | -ds d/( s, (s ), Yo) ds

dto

to+is f to+iS
Ld/(s, (s), Yo) ds- h(s, (s), Yo) ds

dt dt

to+is
>= c8- h(s, (s), Yo) ds.

dto
Since V-0 has local min at (to, Xo, Yo), we have

t+is
V(to+8,(to+8),yo)-V(to, Xo, Yo)>-c8 h(s,-(s),yo)ds

o
for small 8. Thus

to+is
V(to+8,(to+8),yo)+ | h(s,(s),yo)ds> V(to, Xo, Yo)

to

which is a contradiction of the fact that

V(t.,xo, yo)= sup h(s, (s), r(s)) ds+ V(t.+, (to+,), r(.+,))
*1 Yyo[tO, to+is] dt

to+lS
>= h(s, (s), Yo) ds+ V(to+ 8, :(to+ 8), Yo).

to

Hence L,(to, Xo, Yo)-<-0 and our proof is complete.
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3. Viscosity solutions by viscosity methods. In this section we will show that a
viscosity solution of (QVI) can be obtained as the limit of the solution to a second
order "viscous" parabolic equation.

To this end, consider the backward parabolic problem for u u(t, x, y) on Q:

(PDE)

where

Ou (3u+

t-eA,yu+f(t,x,y). Vu+h(t,x,y)+- =0,
ot e \-y /

u(t,x, 1)=T(t,x)

a =max(a, 0), y(t,x)=-Et., g((T))+ h(s,l(S),l)ds

and solves the It6 equation d=f(r,f(r),l)dr+dw(r); w is an m-
dimensional Brownian motion on It, r] and (t)= x.

By standard results there is a unique smooth solution of (PDE) for each e > 0.
LEMMA. ere are constants C, C: independent of e so that

Ue L C1 and Du L C2.
Sketch ofproof Compare the solution u of (PDE) to the solutions ofthe equation

for W= W(t,x)

OW+eAxW+ min {f(t,x,y).VxW+h(t,x,y)}=O
Ot oy

and for Z Z(t, x)

OZ+eZ + max {f(t, x, y). VZ + h(t, x, y)}=O
Ot oy

with O(T, x)= g(x), 0 W, Z. The conclusion o the lemma holds for both W and
Z and we have from the maximum principle that W(t, x) u(t, x, y) Z(t, x). (Note
that y(t,x)r(t,x) and W(t,x)y(t,x)Z(t,x) by standard stochastic control
results (Friedman [11]).)

Hence
For the second pa of the proof, approximate (.)+ by smooth functions and

differentiate (PDE) with respect to x to bound Du. The details are a modification
of those in Barton, Evans and Jensen [6] and are omitted.

By the lemma, there is a subsequence, denoted {u} and a function u in BUC (Q)
so that u u uniformly on [0, T] x R x [0, 1].

THEOREM 3. U is a viscosity solution of (QVI).
Proof Clearly u(T, x, y) g(x) and u(t, x, 1) limo 7(t, x) r(t, x).
Now, let C so that u- has a (strict) local max at (to, Xo, Yo). Since u u

there is a sequence (t, x, y) (to, Xo, Yo) and, if e is small enough, (t, x, y) is a
local max of u-O. Since u is smooth we have Du DO and A,yu N A,y at
t, x, y ). Also, if to, Xo, Yo) < 0 then 0y t, x, y) N 0 for small e. Then / e)(0x)+

0 and, using (PDE) we get

(bt+eAO+f. Vxd/+ h)(t,x, y)>-_O.

Letting e 0 we conclude that

(O,+f VxtO + h)(to, Xo, Yo)>-O
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if qy(to, Xo, Yo)< 0. Hence in any case we have

max {Lq, 0y}(to, Xo, Yo) --> 0.
If q is only C , we approximate by C2 functions and the same conclusion obtains.

Next, let q C2 with u-q attaining a (strict) local min at (to, Xo, Yo). Let
(t, x, y) - (to, Xo, Yo) with u q attaining a local min at (t, x, y) for small e. Then
Due DO and mx,yU mx,y0 at (t, x, y). Since (.)+>_-0, we have then that

(0, + eAq +f" Vx+h)(t,x,y)<=O.

Letting e 0 we get (qt +f" Vxq + h)(to, Xo, Yo) <-- 0.
To see that qy(to, Xo, Yo)--< 0, we have

O,+eAq+f" Vq+h<=,+eAO+f Vxq+- (0y)++ h <=0

at (t,x,y) for small e. Thus limsup(1/e)(Oy)+(t,x,y)<=O so O(to, Xo, Yo)<-O.
Finally, if is only C , approximate by C2 functions.

In the next theorem we will prove that a solution to (QVI) can be obtained as the
limit of a first order p.d.e. This is the penalty method for variational inequalities. The
p.d.e, is here interpreted as the Hamilton-Jacobi-Bellman equation for the optimal
control problem in which the controls must be monotone and Lipschitz with a fixed
Lipschitz constant M. We will use the result obtained here to characterize viscosity
solutions of (QVI) and to prove uniqueness. Define

f’[0, T]R’R’-->R and /’[0, T]xR’xR’R’
by f(t, x, y) f(t, x, Try), h(t, x, y) h(t, x, Try), where 7r is the projection of y on [0, 1].
Then f, h are uniformly Lipschitz with the same Lipschitz constants as f, h respectively.
If V is the value of the monotone problem with f, h replaced by f, h, then V(t, x, y)
V(t, x, y) if y [0, and 17 is an extension of V to all of [0, T] x R X R .

Let M>0 and consider the first order p.d.e, for VM(t,x,y), (t,x,y)
[0, T) R x R "

a V M(a VM)+

+f’at VVa4 + kT+ \--fff-y =0,

(PDE)4
V4(T,x,y)=g(x), xRr", yR’.

Then, by Lions [14], there is a unique viscosity solution of (PDE)a4, say VU;
V4e W’ and V4 satisfies

V4(t, x, y) sup {/st,x.y(u); 0<= u(r) -< M}

(with P the same as P except h h) and on < r <_- T

dr- f(r, , ), (t) x R

d --u(’), "71(t)-yR 1.
dr

Note that V (t, x, l) r(t, x) on [0, T] R". (See Barron and Jensen [4].)
Remark. By "viscosity solution" of (PDE)a4 is meant the following"
(i) VO C if Va4- O has a local max at (to, Xo, Yo) then

qt +f" Vxq +/+ M(qy)+ >_- 0 at to, Xo, Yo)
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and
(ii) ’qO C with VM--O attaining a local min at (to, Xo, Yo) we have, +f. VxO, +/+M(Oy)+ -< 0 at to, Xo, Yo)

and V BUC ([0, T] R" R), V (T, x, y) g(x).
The following lemma follows directly by optimal control methods (Lions [14]) or

by p.d.e, methods (cf. Barron, Evans and Jensen [6]).
LEMMA. ]DtVMI, ]D,VMI, IDyVMI <- K with the constant K independent of M.
THEOREM 4. Let vM(t,X, y) be the unique viscosity solution of (PDE)M. Then

V(t, x, y) limM_o VM t, x, y) is a viscosity solution of
max(LV(t,x,y), Vy(t,x,y))=O on[0, T)Rm[o, 1),

(QVI) V( T, x, y) g(x), V( t, x, 1) r( t, x),

LV=--- V, +f V,V+ h.

Proof. Since VM is bounded and Lipschitz independently of M, there is a sequence
M--> oo and a uniformly bounded and Lipschitz function V such that VM--> V locally
uniformly. Note that if M <- M, VM <- VM’ by Lions [14, Thm. 1.4]. From the equation
which VM satisfies (PDE)M we get

M(vM)+ <-- vMI + If[ IV,vM[ + Ih[
so from the lemma

Co<__

Letting M-->, we must have that Vy(t, x, y)_-<0 a.e.
We will prove that V is a viscosity solution of (QVI),
Suppose V- has a local max at (to, Xo, Yo) and that 0 is C with O(to, Xo, Yo) < O.

In fact, we may assume (to, Xo, Yo) is a strict local max. Since vMj--> V, there is a
sequence (tj, xj, y), so that for large j, vM--O has a local max at (t, x, y) and

tj, x, y) -> (to, Xo, Yo).
Now, V% is the viscosity solution of (PDE)Mj, so, by definition we must have

,+f. VO/M(,y)++h>-0 at(t,x,y).

Also, if ,y to, Xo, Yo) < 0, then tpy tj, x, yy) -_< 0 for large enough j since is C 1. Therefore
(tpy)/ 0 at t, x, y) and we have

tPt +f V,/ h)( to, Xo, Yo) lim Ot +f Vd/ + h )( t, x, yj) >- O.
j->

On the other hand, suppose V- has a (strict) local min at (to, Xo, Yo) with C 1.
Then, for large j, V%-, has a local min at (b, x, y)--> (to, Xo, Yo). Since V% is the
viscosity solution of (PDE)M, this implies that

,+f Tx+Mj(ty)++h=<0 at (t,x, yj).

Since M(0y)+-> 0, we have

Ot +f V,d/ + h )( to, Xo, Yo) <- lim d/t +f V,d/ + h )( tj, xj, y) <= O.

We must also show that Oy(to, Xo, yo)<= 0. To see this, note that

(q,, +f" VxO+ h)(to, Xo, Yo)_<-lira q,, +f VxO + M.( d/y)+ + h )( t, x, y) <= 0.



VISCOSITY SOLUTIONS FOR THE MONOTONE CONTROL PROBLEM 169

Therefore

Mfl,-(tj, xj, y) =< C for large j.

We conclude by letting j--> that JOy(to, Xo, yo)]/ =0 and we are done.
Remark. The proof used here is based on ideas from [6].
Remark. It is easy to prove that limM_, VM (t, x, y) is the monotone value function

(on [0, T] x R x[0, 1]) directly by optimal control methods. See Barron and Jensen
[4, Thm. 4.7].

TEOREM 5. Let u( t, x, y) be a viscosity solution of

max +f. VxU + h, 0

VMand u( T, x, y) g(x). en Q(t, x, y) limo t, x, y) on [0, T] R x R satisfies
Q(t,x,y)u(t,x,y) on [0, T]xRxR.

Proo By definition, u is also a viscosity solution of

+f. Vu+M +h0
Ot

for any M 0. Hence, by the uniqueness result of Crandall and Lions [8, Thm. V.2]
for p.d.e.s, we have

I(V u)+]J 0 (since V T, x, y) u( T, x, y)).

That is V u. Now let M and use the preceding theorem and the fact that Q is
an extension of E

Remark. A viscosity solution of max {Lu, uy} 0 is a viscosity supersolution of
max {Lu, Uy} 0. A viscosity solution of max {Lu, uy} 0 is both a viscosity subsolution
and supersolution.

4. Uniqueness of viseosi solutions to (QVI). In this section we will prove that V,
the monotone value function is the only viscosity solution to (QVI). The proof will be
based on ideas from Crandall and Lions [8] and Crandall, Evans and Lions [9], but
it is substantially simpler due to the linear nature of the operators L O/Ot +f. V + h
and O/Oy, the convex nonlinearity in (QVI) and the ability to draw on the Crandall
and Lions theorem used here in Theorem 5.

THEOREM 6. Let u be any viscosity solution of (QVI) on [0, T) R [0, l) with
terminal condition u T, x, y) g(x) and boundary condition u t, x, r( t, x), t, x)
[0, T]xR. en u(t,x,y) V(t,x,y) on [0, T]xRx[0,1].

Proo First suppose V is a smooth function.
Since u is a viscosity solution, it is also a supersolution. By Theorem 5 we have

u(t, x, y) V(t, x, y) on [0, T] x R x[0, 1]. Suppose

sup { u( t, x, y) V(t,x,y); (t,x,y)[O, T] xR x[0, 1]} >0.

Define F" [0, T] x R x [0, R by

F(t, x, y)= u(t, x, y)- V(t, x, y)-A(T- t)-(1- y)

where A,/x > 0 will be chosen below. Let (tl, x, Yl) be a point for which

F(tl, XI, y) >---- sup F- e

for given r > e > O.
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We claim that t T. Indeed, if t T,

F( T, x,, yl) g(Xl) g(xl) Ia.(1-- y,) --/z(1--Yl).

But F(t, x, Yl) - o" AT- p, e SO that if t T, then 0 >_- cr A T-y e which can
be made positive for A, /z sufficiently small. Similarly y # 1.

Let 0< y< (T- t), (1 -y) and choose a smooth function ’: [0, T] R [0, 1]-
g satisfying the properties

0<_-sr<_-l, ( t, xl, Yl) l, ’<1 if t, x, y) t, x, yl),

st=0 if[t-tll+lX-Xl]+ly-yl]>7/2.

Finally, set

Then, since

and

G(t, x, y)= F(t, x, y)+2e(t, x, y).

G(tl, Xl, y) >- sup F + e

G(t, x, y) <=sup F on It- tll+lx-x,l+)y- y,l> y/2

there exists (to, Xo, Yo), T- to> 7/2, -yo > 7/2 so that

G( to, Xo, Yo) sup G( t, x, y).

Thus u- has a max at (to, Xo, Yo) for

b(t,x,y)= V(t,x,y)+A(T-t)+(1-y)6C .
Since u is a viscosity solution, this implies that

max {, +f. VxO+ h, y}_>-O

But

so that

at (to, Xo, Yo).

Oy(to, Xo, Yo) Vy(to, Xo, Yo) # < 0 (since Vy <-_ O)

0 <- (qt +f" Vxq + h)(to, Xo, Yo) Vt A +f. V,V+ h)(to, Xo, Yo).

Accordingly Vt +f" VV+ h >_- h > 0 at to, Xo, Yo), a contradiction. Finally, if V is only
W’ we approximate V uniformly as follows:

Let Jk =-k be a C mollifier of k. Then V satisfies

and

and

V(T,x,y)=g(x), V(t,x, 1)=r(t,x)

V +f. V,V + h + (f. V,V) -f. VxV <_-0,

<0.Vy--

Since [[k-k[[ <- ce, k= g, r, h, V and

I](f" vv) -f" vvl],.=< c
for some constant C independent of e (see Lions [14, p. 32]), we can readily complete
the proof.



VISCOSITY SOLUTIONS FOR THE MONOTONE CONTROL PROBLEM 171

Acknowledgment. The author is happy to acknowledge L. C. Evans for reading
(and pointing out an error in) an early version of this paper.

REFERENCES

[1] G. BARLES, Thb.se de 3b.me cycle, Paris IX-Dauphine, 1982.
[2] E. N. BARRON, Differential games with Lipschitz controlfunctions and applications to games with partial

differential equations, Trans. Amer. Math. Soc., 219 (1976), pp. 39-76.
[3] ., Differential games with Lipschitz controlfunctions andfixed initial control positions, J. Differential

Equations, 26 (1977), pp. 161-180.
[4] E. N. BARRON AND R. JENSEN, Optimal controlproblems with no turning back, J. Differential Equations,

36 (1980), pp. 223-248.
[5], A nonlinear evolution system with two subdifferentials and monotone differential games, J. Math.

Anal. Appls., 97 (1983), pp. 65-80.
[6] E. N. BARRON, L. C. EVANS AND R. JENSEN, Viscosity solutions of Isaacs’ equations and differential

games with Lipschitz controls, J. Differential Equations, to appear.
[7] I. CAPuZZO DOLCETTA AND L. C. EVANS, Optimal switching for ordinary differential equations, this

Journal, 22 (1984), pp. 143-151.
[8] M. G. CRANDALL AND P. L. LIONS, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer.

Math. Soc., 277 (1983), pp. 1-41.
[9] M. G. CRANDALL, L. C. EVANS AND P. L. LIONS, Some properties of viscosity solutions of Hamilton-

Jacobi equations, Trans. Amer. Math. Soc., 282 (1984), pp. 487-502.
[10] L. C. EVANS AND P. E. SOUGANIDES, .Differential games and representation formulas for solutions of

Hamilton-Jacobi equations, to appear.
I11] A. FRIEDMAN, Stochastic Differential Equations, Vol. I, II, Academic Press, New York, 1976.
[12] The Cauchy problem for first order partial differential equations, Indiana Univ. Math. J., 23

(1973), pp. 27-40.
[13] R. JENSEN AND P. L. LIONS, Some asymptotic problems in fully nonlinear elliptic equations and stochastic

control, unpublished manuscript.
[14] P. L. LIONS, Generalized Solutions of Hamilton-Jacobi Equations, Research Notes in Mathematics, 69,

Pitman, London, 1982.
[15] J. L. MENALDI AND M. ROBIN, On some cheap control problems for diffusion processes, Trans. Amer.

Math. Soc., 278 (1983), pp. 771-802.
[16] P. E. SOUGANIDES, Ph.D. Thesis, Univ. Wisconsin, Madison, 1983.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 23, No. 2, March 1985

1985 Society for Industrial and Applied Mathematics
002

THE EXISTENCE OF VALUE AND SADDLE POINT IN
GAMES OF FIXED DURATION*

LEONARD D. BERKOVITZ"

Abstract. Differential games of fixed duration are defined. The definition of strategy follows that of
Friedman, while the definition of payoff follows that of Krasovskii and Subbotin. It is shown by relatively
elementary methods that games of fixed duration which satisfy the Isaacs condition have values and saddle
points. It is also shown under appropriate hypotheses on the data of the problem that if the Isaacs condition
holds, then the value is uniformly Lipschitz continuous on bounded sets and satisfies the Isaacs equation
at all points of differentiability. The relationship of the value as defined here to other values is studied.

Key words, differential games, strategy, value, saddle point, Isaacs equation

1. Introduction. A somewhat imprecise formulation of a zero-sam two-person
differential game is the following. The state x(t) of the game at time is a vector in
E determined by a system of differential equations

dx
(1.1) -- =f( t, x, y, z), X(to) Xo,

where y y(t) is a vector in E chosen from some set Y at each instant of time by
Player I and z z(t) is a vector in E chosen from some set Z at each instant of time
by Player II. The choice of y(t) is governed by a "strategy" U selected by Player I
prior to the start of play. The choice of z(t) is governed by a strategy V selected by
Player II prior to the start of play. Play proceeds from an initial point (to, Xo) until
the point (t, b(t)), where b is the solution of (1.1), reaches some preassigned terminal
set 3. The point at which (t, b (t)) reaches - is called the terminal point and is denoted
by (tf, dp(ty)) or (ty, xy). The payoff is

(1.2) P(to, Xo, U, V)= g(tf, xf)+ f(s, dp(s), y(s), z(s)) ds.
to

Player I wishes to choose U so as to maximize P while Player II wishes to choose V
so as to minimize P. Following Friedman [5], we call such games, games of survival.

If the terminal set - is the hyperplane T, the game is said to be a game of
fixed duration. The payoff (1.2) then becomes

(1.3) P(to, Xo, U, V): g(xf)+ f(s, dp(s), y(s), z(s)) ds.
to

If we adjoin a new coordinate x to x (x, x") and adjoin the differential
equation

(1.4)
dx

fo( t, x, y, z), x( to) 0
dt

to (1.1), then we can write (1.2) as

(1.2’) P(to, Xo, U, V)= g(tf, xf)+ x.
* Received by the editors September 14, 1983, and in revised form March 16, 1984. This research was

supported by the National Science Foundation under grant 7927137.
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Here ty and xy have the same meaning as before and x}= b(ts), where (b, b) is now
the solution of the system (1.1), (1.4). Note that th is obtained from (1.4) by an
integration, once the solution b of (1.1) is known. Thus there is no loss of generality
in assuming that fo__ 0 and

P(to, Xo, U, V)=g(tf, ch(tf)).
In games of fixed duration, which we shall study in this paper, (1.5) becomes

(1.6) P(to, Xo, U, V)=g(dp(T)).

If

sup inf P( to, Xo, U, V) inf sup P(to, Xo, U, V),
U V V U

then we denote this number by W(to, Xo) and say that the game has value equal to
W(to, Xo). A pair of strategies (U*, V*) is said to be a saddle point if for all U and
V over which the sup and inf are taken,

P(to, Xo, U, V*) -<_ P(to, Xo, U*, V*) <_- P(to, Xo, U*, V).

The strategies U* and V* are called optimal strategies.
The study of differential games was initiated by Rufus Isaacs in a series of RAND

Corporation memoranda [7], which were later expanded into a book [8]. Differential
games originally arose in the study of pursuit and evasion problems and in the study
of military tactical problems. They are models of zero sum conflict in which the state
of the system is governed by differential equations controlled by two antagonists.
Differential games can also be used to model control problems in which the system is
subject to unknown disturbances, and the disturbances are viewed as being chosen by
a malevolent nature, who is assigned the role of Player II. Player I wishes to choose
controls that guarantee the best possible performance in the event of the worst possible
disturbance.

The principal problems associated with differential games are the following:
l) Define the notion of strategy precisely.
2) For the given definition of strategy does the game have a value?
3) If the game has a value, does it have a saddle point?
4) If the game has a saddle point, find the optimal strategies U* and V* that

constitute the saddle point.
The work of Isaacs was concerned with the last question. He assumed that the

game had a twice continuously differentiable value and a saddle point. Under these
assumptions he derived what is now known as the Isaacs equation and developed
solution methods (see [8]). Many interesting examples, however, fail to have twice
continuously differentiable values. Later, this author [1] treated a class of games in
which it was assumed that saddle points of a certain type existed and obtained necessary
conditions that must be satisfied by the saddle points. The assumptions made were
much less restrictive than Isaacs’.

Investigation of questions one and two was begun by Fleming in [3] and [4]. A
more comprehensive investigation of these questions was later carried out by Friedman
[5] and was carried still further by Elliott and Kalton and by Friedman again. This
work is summarized in [6], where complete references to the work are also given. In
this work the direct definition of a game along the lines indicated in the opening
paragraphs of this paper is abandoned. Instead, indirect definitions are used which
involve choices of y and z at discrete times and passage to the limit as the lengths of
the discrete time intervals tend to zero. It is shown that if a certain minimax condition,
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known as the Isaacs condition, is satisfied, and other natural conditions hold, then
the game has a value for all initial points (to, Xo). Moreover, the value is Lipschitz
continuous and satisfies a Hamilton-Jacobi equation almost everywhere (see [6]). These
results are established by adding a small noise term to the right-hand side of (1.1),
obtaining appropriate results for the resulting game, and then passing to the limit as
the noise tends to zero. The arguments are nonelementary and involve probability
theory and the theory of partial differential equations.

Krasovskii and Subbotin [9] have defined the notion of strategy in a way that is
different from that of Friedman. Their definition also involves limiting behavior of
games with choices made at discrete times. Under their definition, games of fixed
duration that satisfy the Isaacs condition have values and saddle points. The proof
in [9] is intuitively appealing and is relatively elementary. It does not involve probabilis-
tic arguments or the use of partial differential equations.

In this paper we shall combine what we consider to be the best features of
Friedman’s approach with the best features of the Krasovskii-Subbotin approach. We
shall adopt the Friedman definition of strategy and the Krasovskii-Subbotin definitions
of payoff and saddle point. We shall show, by relatively elementary methods, that
games of fixed duration which satisfy the Isaacs condition have values and saddle
points. The basic idea of the argument is due to Krasovskii and Subbotin. The details,
however, are different in many important respects, and, we feel, simpler. For the benefit
of readers familiar with the Krasovskii-Subbotin approach and with the Friedman
approach, we have tried to use notations similar to those used by these authors for
related or identical concepts.

We show, again by relatively elementary methods, that under appropriate condi-
tions on the data of theproblem, if the Isaacs condition holds, then the value is
uniformly Lipschitz continuous on bounded sets and satisfies the Isaacs equation at
all points of differentiability. We also show that if the Isaacs condition holds, then the
value in our sense is equal to the values of Friedman, Krasovskii-Subbotin, Fleming
and Elliott- Kalton.

Finally, we point out that except for 13, which compares our upper and lower
values with others, no knowledge of the differential game literature is required to read
this paper.

2. Assumptions and notation. Let denote time, let x=(x 1, x") denote a
vector in n-dimensional real Euclidean space R", let y (yl, yr) denote a vector
in R and let z (z 1, z") denote a vector in R s. We shall use superscripts to denote
components of vectors and we shall use subscripts to distinguish vectors. We shall
denote the inner product of two vectors x and y by (x, y) and the Euclidean norm of
a vector x by Ixl, Thus, Ixl=- <x, x>.

Let Y be a compact subset of R r, let Z be a compact subset of R and let To and
T be two real numbers satisfying To < T1. Let fl,... ,f" be real valued functions of
(t, x, y, z) defined on the set

(2.) -= [To, T,] x"

and let f=(f,... ,f"). Let To< T< T and let be the closed set in (t, x) space,
IT, ee]x R ". Let g be a real valued function of (t, x) defined on [To, T] x R" and
bounded on bounded subsets of its domain.

The function f will govern the dynamics, as suggested by (1.1), and the function
g will enter the payoff as in (1.6). The precise interpretation of (1.1) and (1.3) will be
given in 4.
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Concerning f and g we assume the following.
Assumption I. (i) The function f is continuous on @ To, T1] R" Y Z. (ii)

There exists a function k that is integrable on [To, T1] such that

(2.2) (x, f( t, x, y, z)) _-< k( t)( + Ixl2)
for all (t, x, y, z) in @. (iii) There exists a constant K > 0 such that for all in [To, T],
yin Y, zinZandx,

(2.3) If( t, x, y, z) f( t, x, y, z)l <- KIx l
(iv) The function g is continuous on R".

In some situations we shall need the following slightly stronger version of
Assumption I.

Assumption I’. Statements (i)’ and (ii)’ are as (i) and (ii) in Assumption I. (iii)’
There exists a K > 0 such that for all x, 9 in R" and t, -in [To, T],

(iv)’ There exists a constant K’> 0 such that for x,

(2.4)

Using standard arguments in the theory of ordinary differential equations, we
obtain the following consequences of Assumption I, which will be needed in our
formulation of the differential game and in our analysis. Let T < to < T. Let u and v
be two measurable functions defined on [to, T] and satisfying u(t)
Z a.e. Such functions will be called control functions or controls. Then for any (to, Xo)
with Xo e R", there exists a unique solution b of the differential equation

(2.5) x’ =/( t, x, u(t), v(t)), x(to) Xo,

and this solution is defined for all to <- t-< T. Let X be a compact set in R n. Then there
exists a constant Ko such that any solution q5 of (2.5) with Xo X satisfies [b(t)l -< Ko
for to--< t_-< T, independent of the choice of controls u and v. Since f is continuous,
this implies that there exists a constant K such that all such solutions satisfy

(2.6)
ttb’( t)l -< K a.e. on [to, T],

Ida(t)- Xol <= Kit- tol on [to, T].

From (2.6) it is clear that the set of solutions of (2.5) obtained as Xo ranges over X
and u and v range over all possible controls is uniformly bounded and equi-absolutely
continuous.

Now let u and v be any pair of controls, let To <- to< t_<-T and let Xo and x
belong to X. Let bo denote the solution of (2.5) satisfying the initial condition tho(to) Xo
and let b denote the solution of (2.5) satisfying the initial condition th(tl)= Xl. It
follows from (2.6), the Lipschitz condition (2.3) and Gronwall’s lemma that there exists
a constant K, independent of to, t, Xo, Xl, u, v, such that for > t

[1(t) 49o(t)1 <= K,([tl tol + Ix Xol).

Note that the preceding conclusions remain valid if we replace (iii) by a Lipschitz
condition with Lipschitz constant K > 0, valid for Ix[ < R, Il < R, for each R > 0. In
particular, the solutions of (2.5) will be uniformly bounded for all Xo in X. Hence
there is no loss of generality in assuming a global Lipschitz condition.
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3. Definition of the game. Let To <- to < T. Let r, be a partition of [to, T] by points
to< tl<"" < t. T. Define the norm of r., denoted by IIr.ll, as follows: I1  11-
max {i: ti-ti_l, i= 1,..., n}. Let {zr.}= be a sequence of partitions such that for
each n 1, 2, 3,..., zr. <_-K n, where K is a constant independent of n. Let

/ {t: t-i--<-- < ty}:[ty-l, ty),

Let j denote the set of controls u defined on/ and let Lrj denote the set of controls
v defined on/. Note that/ and hence and L depend on 7r.. We shall not indicate
this dependence in the notation.

We can now define the notion of strategy for each player. Let F., denote a choice
of function in . For 2 <=j <_-n let F.,/denote a map from 1 xl x... x ’j--I Xj-I
to . Let

r. =(r.,,,..., r.,.), n= 1,2,....

We call F. an nth stage strategy for Player I. Similarly, let A.,I denote a choice of
function in Yl. For 2 <=j <= n let A.,j denote a map from 1 x Yl x... x

_
x_l to. Let

A. (A.,, , A.,.), n 1, 2,.

We call A, an nth stage strategy for Player II. The nth stage strategies F, and A,
correspond to the lower 8 strategies of Friedman. We shall not use upper strategies
in our work.

By a strategy F for Player I we mean a sequence {F,} of nth stage strategies.
Similarly, by a strategy A for Player II we mean a sequence {A,} of nth stage strategies.

Let {u.} be a sequence of controls. Let Fc= {F,} be the strategy such that for
n= 1,2,3,.

and

(F,,l)(t) u.(t) for e I

r n, 0- X ,:,R[ X X Oj_ X "j-- ’’) un for e 6,
for j=2,..., n, n 1,2, 3,.... Thus F, always selects u,. The strategy F will be
called the constant component strategy corresponding to u,. If un u for all n, then we
denote the constant component strategy F corresponding to {un} by F {Fn} and call
it the constant strategy corresponding to u. The strategy F {Fn} is such that Fn, always
selects the fixed control u. Constant component strategies A and constant strategies
A for Player II are defined similarly.

We next define the concept of a motion in the game. A pair of nth stage strategies
(Fn, An) determine control functions (u,, v,) on [to, T], where

un(t) (Fn,,)(t), vn(t) (An,,)(t), I,,

u,(t)=(F,,(u,, v,, u2, v2," u_,, vi_,))(t),

v.(t)=(An,j(tll, V,, U2, V2," Uj-1, Vj_,))(t), 2<--j<_n.

The controls (u,, vn) determined this way are called the nth stage outcomes of (Fn, An).
In equation (1.1), if we replace y by un(t), z by vn(t), and Xo by Xon we obtain

the system of differential equations

(3.1) --77 =f( t, x, u.(t), vn(t)), x(to) Xon.
al



VALUE AND SADDLE POINT IN GAMES OF FIXED DURATION 177

As pointed out in the discussion following Assumption I, equation (3.1) has a
unique solution b,( to, Xo,, u,, v,) defined on [to, T]. We call the solution
b,( to, Xo.,, u,, v,) an nth stage trajectory.

Any uniform limit of a subsequence of the nth stage trajectories
b, to, Xo.,, u,, v,), n 1, 2, 3,. , where Xo., - Xo and (u,, v,) is the outcome of
(F,, A.), will be called a motion or motion of the game corresponding to strategies
F {F,} and A {A,}. Following Krasovskii and Subbotin [9] we denote a motion
corresponding to (F, A) by tb[ to, Xo, F, A].

It follows from Assumption I that corresponding to a pair of strategies (F, A) and
a sequence of initial conditions {Xo,} with Xo, - Xo, the corresponding sequence of nth
stage trajectories {b,( to, Xo.,, u, v,)} is uniformly bounded and equicontinuous.
Hence there do exist motions b[ to, Xo, F, A]. We shall denote the set of all motions
corresponding to (F, A) by q[ to, Xo, F, A].

By b[t, to, Xo, F, A] we shall mean, as usual, the motion evaluated at the point t.
By [t, to, Xo, F, A] we shall mean the set of all values b[t, to, Xo, F, A], where
b[ to, Xo, F, A] ranges over [ to, Xo, F, A]. We point out that if F {F,} and
F’= {F’,} differ only in a finite number of elements F, and F’,, and if the same is true
for A-- {A.} and A’-- {A’.}, then

,to, xo, r,A]=[ ,to, xo, r’,A’].

We shall sometimes write b[ ] for b[ ,to, xo, F,A] and [ for
[ to, Xo, F, A].

In conclusion, we point out that, in general, a motion 4[ will not be obtained
as a solution of

dx

dt
f( t’ x, u( t), v( t)) X( to) Xo

for an appropriate choice of controls u, v.
Having defined the strategy spaces for the two players, it only remains to define

the payoff in order to define the game. In the game of fixed duration with initial point
(to, Xo) the payott P(to, Xo, F, A) corresponding to a pair of strategies (F, ) is set valued
and is defined as follows:

(3.2) P(to, xo, F,A)= g(@[T, to, Xo, F, A]).

Player I’s objective is to choose F so as to maximize P(to, Xo, F, A), while Player
II’s objective is to minimize P(to, Xo, F, A). That is, Player I wishes to choose F so as
to make all the elements of P(to, Xo, F, A) large, while Player II wishes to choose A so
as to make all the elements of P(to, Xo, F, A) small.

4. Value and saddle point. Let

W-( to, Xo) sup inf P( to, Xo, F, A),
F A

(4.1)
W+( to, Xo) inf sup P( to, Xo, F, A).

A F

Then

(4.2) W-( to, Xo) <-- W/(to, Xo).

If W-(to, Xo) W/(to, Xo), we denote this common value by W(to, Xo) and say that the
game has a value equal to W(to, Xo).
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Let A and B be two sets of real numbers. We say that A->_ B, or B <-A, if for
every a in A and every b in B the inequality a >_-b holds. Also, if/x is a real number
and A is a set, by/x-> A we mean that/x _-> a for all a 6 A. A similar meaning holds
for _-<A.

A pair of strategies (F*, A*) will be called optimal strategies, or will be said to
constitute a saddle point of the game, if

(4.3) P( to, Xo, F, A*) <__ p( to, Xo, F*, A*) __< P( to, Xo, F*, A)

for all strategies F for Player I and all strategies A for Player II.
Since

inf P( to, Xo, F*, A) __< sup inf P(to, Xo, F, A) W-(to, Xo),
A F A

sup P( to, Xo, F, A*) >_ inf sup P(to, Xo, F, A) W+(to, Xo),
F A F

it follows from (4.3) and (4.2) that if a saddle point exists, then the game has a value
and

(4.4) W to, Xo) P to, Xo, F*, A*).

We point out that our definition of saddle point is different from Friedman’s
definition of saddle point and generalized saddle point. We do not require that the
payoff be evaluated along a trajectory of the system.

5. Relaxed controls and trajectories. In what follows we shall utilize relaxed
controls. We therefore summarize some of the essential properties of relaxed controls
for the convenience of the reader. For details and further discussion see Warga [11,
Chap. IV].

Let f be a compact set in R" and let g be a mapping from [To, T1] R" xfl to
R" having the following properties: (i) g is continuous on R" x 1) for each To, T]
and is measurable on [To, T] for each (x, w) in R" x ll; (ii) for each compact subset
C of R" x l) there is an integrable function L defined on To, T1] such that for all
(t, x, w) in To, T] x C, Ig(t, x, w)l _-< L(t). We shall consider trajectories for control
systems of the form

(5.1) X’: g(t, x, to(t)), X(to) Xo,

where to is a measurable function defined on [To, T] with values to(t) f a.e.
A relaxed control on a fixed interval !

_
[To, T] is a mapping/z: /x(t) =/z(t,

from [To, Tl] to the probability measures on such that for every polynomial p the
function P defined by

P( t) f p(z) dlz (t; z)

is Lebesgue measurable on/. An arbitrary control to can be identified with the relaxed
control/x,, that assigns to the atomic measure concentrated at to(t). A relaxed trajectory

corresponding to the relaxed control /x is an absolutely continuous function q
defined on 1 and satisfying q(to)= Xo, to e/, and

(5.2) q’(t) f g(t, @(t), w) d/x (t, w) a.e.
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To simplify notation we shall define

g(t, (t), Ix(t)) I g( t, Ip(t), w) dix( t, w)

and shall write (5.2) as

4d(t) g(t, ip(t), Ix(t)).

It can be shown that an equivalent defihition of relaxed trajectory p is an absolutely
continuous function defined on I satisfying g,(to) Xo and g,’(t) co {g(t, g(t), f)},
where co denotes "convex hull" and

g( t, x, f) {y" y g(t, x, w), w

It is useful to view the set of relaxed controls as a subset of a space of linear
functionals. Let denote the set of functions 0 defined on I f such that 0( w)
is measurable on I for each w in O, O(t, is continuous on f for each in I and
the function max {]0(t, w)l’w } is integrable over/. The set is a Banach space
with norm

]]011 I ( max ]O( t, w)] dt.

Let/, be a mapping -/.7, (t) --/. t, from I to the set of finite Radon measures
on . Let A/" denote the set of such mappings with the following two properties. (i)
For every polynomial p the function t,p(w)dlJ, (t, w)is measurable. (ii) If [/.(t)[
denotes the total variation measure of (t), then ess sup {[/7,(t)[(f)" t I} is finite.
Then N can be identified with the dual space w. of w, where each/2 in f is identified
with the functional which we also denote by/7,, as follows"

[(O)-" fi (faO(t’ w) dl (t’ w)) dt’

The norm of an element of A; viewed as an element of * is denoted by 11/2ILL
and is defined by 101- ). It is also given by IIll-
ess sup {[/2(t)[()" t I}.

The set of relaxed controls is clearly a subset of *. An important property for
our purposes is that the relaxed controls constitute a convex subset of * that is
compact and sequentially compact in the weak-star topology of *.

Another important fact is that the ordinary trajectories of the system (7.1) are
dense in the set of relaxed trajectories in the uniform topology on L Thus, for any
relaxed trajectory p on I there is a sequence of controls {ton} and a sequence of
corresponding trajectories {bn} such that bn(t) converges to g(t) uniformly on /.

The following lemma will be used frequently.
LEMMA 5.1. Let {ixn} be a sequence of relaxed controls on an interval I It1, t_]

[To, T1] and let {gn} be a sequence of corresponding relaxed trajectories. Let din converge
uniformly to a function d/ on ! and let Ixn converge weak star to a relaxed control Ix. Then

is a relaxed trajectory corresponding to Ix; i.e.

Ip’(t) g(t, Ip(t), Ix(t)), 4’(tl) Xl,

where x limn-oo 4n (t).
Lemma 5.1 is a corollary of the following known result.
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LEMMA 5.2. Let (b,} be a sequence of continuous functions converging uniformly
on I to a function . Let {IX,} be a sequence of relaxed controls converging weak-star to
a relaxed control Ix. Then for any function X in L[I],

(5.3) lim I X(t)g(t, b,,(t), Ixn(t)) dr= I X(t)g(t, b(t), Ix(t)) dt.

6. Properties of motions. In this and subsequent sections we shall consider games,
trajectories and motions with varying initial points. We shall denote these initial points
by (, :), where To_-< -< T and : R n. Strategies F and A will be strategies over the
interval [-, T].

Our first property is that motions resulting from strategy pairs (F, A) with at least
one of F or A a constant strategy can be obtained as appropriate relaxed trajectories.

LEMMA 6.1. Let (’, ) be a point in [To, T) Rn. Let F be the constant strategy
with value u(t) on [’, T], and let A be a strategy on [’, T]. Then for any motion
th[ z, :, F, A] there exist a relaxed control and corresponding relaxed trajectory
(. )= b(., ’, , u, ) satisfying

(6.1) ’(t) If(t, d/(t), u(t), z) d" (t, z), x(’r)

for a.e. in Jr, T] such that

(6.2) 4)[ t, ’, , F, A] b( t, ’, , u, ’).

Conversely, given any solution d/ of (6.1), there exist a strategy A for Player II and a
motion qb[ -, , F, A] such that (6.2) holds.

Proof The motion b[ r, :, F, A] is the uniform limit of nkth stage trajectories
&,k( )=ok,k( -,,,u(t), v,k(t)) where (u, v,) is the outcome of (,,a,) and
:,k--> :. We relabel the sequence b as bn, :, as :,, and the controls as v,. Thus for
a.e. tin[r, T],

ctn(t)=f(t, qn(t), u(t), r.(t)),

where ’n(.t) is the delta measure over Z that is concentrated at v(t). There exists a
subsequence {st,} and a probability measure sr on Z such that ’, --> sr weak star. Hence
by Lemma 5.1, the corresponding subsequence {b,} converges uniformly to a solution
@( )= @( r, se, u, r) of (6.1). But the original sequence {b} converged uniformly
to b[ r, sc, F, A], and so (6.2) is established.

To establish the converse we note that since ordinary trajectories are dense in the
relaxed trajectories in C"[", T], the following holds. There exists a sequence of controls
{v,} and corresponding trajectories b, such that

b’,,(t) =f(t, qbn(t), u(t), V,(t)), b,(’r) :.
and th,(t)--> @(t) uniformly on [z, T]. Let A {A,} be the constant component strategy
for Player II corresponding to { v}. Then (t, r, :, u, ’) b[ t, ’, se, F, AC], and the lemma
is proved.

For fixed F, let

(6.3) O[ r, , F] U O[ r, :, F, A].

For fixed A let O[ -, :, A] be defined similarly.
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LEMMA 6.2. Let X be a compact set in R" and let F be a strategyfor Player I. Then
the union of all sets [., 7, , F] as ranges over X is compact in C"[7, T]. A similar
statement holds for [., 7, , A].

Proof We carry out the prooffor[ ,7, :, F]. From the discussion in 2 following
Assumption I, it follows that the set of all nth stage trajectories, n 1, 2, 3,... with
initial point : in X resulting from the fixed strategy F and any strategy A is uniformly
bounded and equiabsolutely continuous. Thus, the set of all motions [ ,7, :, F],
: X, is uniformly bounded and equiabsolutely continuous. It now follows from
Ascoli’s theorem that to prove that [ r, :, F], sc X, is compact in C"[7, T] we need
only show that it is closed in C"[7, T].

Let {b.[ ,7, so., F, A(n)]} be a sequence of motions converging uniformly on
[7, T] to a function b. Let b(7)= . Then :.- : and : X. Also, for each positive
integer n there exists an integer k k(n) such that k(n + 1) > k(n) and a k(n)th stage
trajectory ch..k( ,7, ..kU..k, V..k), where (U..k, V..k) is the k(n)th stage outcome corre-
sponding to (Fk(.), Ak(.)(n)), such that

(6.4)
Io.-.1< /2",

lob.It, 7, .,r,A(n)]--ch.,k(t, , .,k, U.,k, V.,k)l < 1/2"

for all in [7, T].
Let v be an arbitrary control on [7, T]. Let z= {z,,}, where if m k(n), then

assigns the control v to /, j= 1,2,..., m. If m= k(n), ,,,= ?k(,)(n). Let {:,,} be a

sequence defined by :,, : if m k(n) and :,, :n.k if m k(n). Corresponding to
(F, A) and {so,,} we obtain a sequence of outcomes (,,, 3,,) and mth stage trajectories
b,,( ,7, ,,, tm, 3,,). By construction, the subsequence {(k(n)( 7, k(n), k(n), /k(n))}
is such that bk(n b,.k, where b,.k is as in (6.4), n 1, 2, 3, . It now follows from
(6.4) and the uniform convergence of b,[ ,7, sc,z F, A(n)] to th that bk(,) converges
uniformly to b. Thus b is a motion b[ ,7, :, F, A] and [ ,7, sc, F] is closed.

COROLLARY. For each in [7, T], the sets [t, 7, , F] and [t, 7, :, A], sc in X, are
compact in R ".

Our next result states that any terminal segment of a motion is again a motion.
LEMMA 6.3. Let b[ ,7, sc,F,A] be an arbitrary motion, let 7< t< T and let

x b[t, 7, sc, F, A]. Then there exist strategies F’ and A’ for the game with initial point
t, x) and a motion b[ t, x, F’, A’] such that for all t <- <= T

[t, t, x, F’, A’] qS[ t, 7, :, F, A].

We leave the proof to the reader.
In studying the properties of the functions W/ and W- it will be necessary for

us to compare the set of all possible motions having initial point (7, sc) with the set of
all possible motions having initial point (7’, :’). Therefore, we consider two intervals
[7, T] and [7’, T]. Let

T 7
(6.5) s:s(t)=7’+ (t-r).

We next define a transplant mapping 0 from the control functions on [7, T] to the
control functions on [7’, T]. If w is a control function on [7, T], we assign to w the
control function # 0(w) on [7’, T] by the formula

(6.6) #(s)=(O(w))(s)= w(t),
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where s s(t) is given by (6.5). This correspondence is a one-to-one map of the space
of all control functions on [r, T] to the space of all control functions on Jr’, T]. Thus
the inverse mapping 0-1 exists.

The mapp.in 0 induces a one-to-one mapping of the strategies F, A on It, T] onto
the strategies F, A on It’, T]. We shall denote this mapping also by 0. Let rr, be the
nth partition of [r, T] with partition points r Zo < z <. < r, T, and with corre-
sponding intervals I1,"" ", In. Let

T induce a partition zr’, of [r’, T] of norm notThen the pointsr’ r<r<...<rn
exceeding K’/n, where K’ is a constant independent of n. Let I],..., I’, denote the
intervals comprising the partition zr’, on [z’, T]. By means of (6.5) and (6.6) with r’
replaced by r_ and T replaced by , the controls u on / are put into one-to-one
correspondence with the controls t7 on Ij. A similar statement holds for controls v
and .

We now define F OF by defining, (0r), ((0r),,,... (0r),,,) (,,,, , ,,,).
For j 1,

if rn,(t) u(t), then ,,,(s) a,(s)=- (Ou,)(s).

For 2 =<j -< n, if

(1-’,,,j(u,, Vl,""", uj-1, Vj-1))( t)= uj( t),

then

(r,,(a,, ,,..., a_,, _,))(t)= g(s)= (ou)(s),
where i Oui, Ova, i= 1,- .,j- 1. The mapping 0 is clearly one-to-one and onto.

The mapping 0"A-+ A 0A is defined in a similar fashion. We leave the details
to the reader.

Let u and v be control functions on It, T] for Players I and II and let 4 denote
the corresponding trajectory with initial value (r, so), i.e.

qb’(t)=f(t, dp(t), u(t), v(t)), b(r) sc.
Let b(s)= cb(s(t)) denote the trajectory corresponding to tT= Ou, = Ov and initial
value (r’, sc’) i.e.

qb’(s) f(s, qb(s), a(s), (s)), ck(r’) ’.
Note that in general ck(s(t))# 4(t).

LEMMA 6.4. Let (i)-(iii) of Assumption I hold, and let and ’ lie in a bounded
set X. Then there exists a nonnegativefunction , definedfor all p > 0 such that q (p) - 0
as p- 0 and such that for all , ’ in X, r, r’ in To, T]

(6.7) max

If (i)-(iii) of Assumption I’ hold, then there exists a constant K such that for all , ’ in

X, and all r, ’ in To, T]

(6.8) max ]p(s(t))-dp(t)l<= g[l-’l+l-#l].
r<t<T
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The proof of the first conclusion is straightforward and can be found in Friedman
[5, Lemma 2.6.1]. The proof of the second statement involves obvious modifications
of the proof of the first statement.

The following corollary of Lemma 6.4 will be important for us.
LEMMA 6.5. Let ’, r’ belong to To T] and let , ’ lie in a bounded set X. Let (i)-(iii)

of Assumption I hold..Then for every motion th[ ’, , F, A] there exists a motion
b[ r’, ’, OF, 0A] such that

(6.9) max Ith[t, % :, F, A]-b[s(t), r’, ’, OF,

If (i)-(iii) of Assumption I’ hold, then there exists a constant K such that

(6.10) max

LEMMA 6.6. Let 6[ ’, , F, A] be a set of motions such that (’, ) T, o). Then
th[ T, -, :, F, A] :o, uniformly with respect to F, A, o, for o in a bounded set.

For nth stage trajectories th( r, :n, un, v)

(hn(T)- :o= (: :) + (:- :o) + f(s, dp,,(s), u(s), v,,(s)) as.

Letting n--) c, we get

and the result follows.

7. Continuity properties of W+ and W-. In 4 we defined the upper value
W/(to, Xo) and the lower value W-(to, Xo) for a game with initial point (to, Xo). In this
section we shall study the continuity properties of W/ and W- as functions of the
initial point, which we now designate as (t, x) rather than (to, Xo).

THEOREM 7.1. Let Assumption I hold. Then W/ and W- are continuous on To, T)
R. Iff is a bounded set in R, then W+ and W- are uniformly continuous on To, T)
If we set W-( T, x) g(x) and W+ T, x) g(x), then W+ and W- are continuous on
[To, T]R.

Proof. We first prove that W- is uniformly continuous on To, T) 12. The proof
for W/ is similar. Let (r, :) and (’, :’) be two points in [To, T)f. Then

and

W-(’r, so)= sup inf g(Cb[T, r, :, F,A])
F A

W-(", :’) sup inf g(tb[ T, r’,

where F’, A’ denote strategies over Jr’, T] and F, A denote strategies over Jr, T]. Since
the mapping 0 defined in 6 is a one-to-one mapping from the strategies on It, T] to
the strategies on Jr’, T], we may write

W-(z’, ’)= sup inf g([ T, z’, ’, 0F, 0A]).
F

From (6.9) of Lemma 6.5, from the corollary to Lemma 6.2, and from the continuity
of g, we get that for fixed F,

infa g( @[ T, r’, ’, 0F, 0]) if g(6[ T, r, , F, A]) + E (r, , r’, ’, F),
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where IEI< (p)-0 as pO and depends on fl. Hence,

and the uniform continuity of W- on [to, T)x II is established.
Since W/ and W- are uniformly continuous on all sets of the form [0, T) A,

where A {x" Ix[ <- a}, it follows that W+ and W- are continuous on [0, T) R".
To prove the last statement we must show that if (r, :)--> (T, sCo), then W-(r, :)-->

g(:o). From the definition of W- and Lemma 6.6 we have that

W-(r, so)= sup inf g(p[T, z, sc, F,A])
F A

sup inf g(:o+ e(r, sc, o, I’, a)),
F A

where e -> 0 as (r, :) --> T, :o), uniformly with respect to (F, A). The result now follows
from the continuity of g.

THEOREM 7.2. Let Assumption I’ hold. Then W/ and W- are uniformly Lipschitz
continuous on bounded subsets of To, T)

The proof is similar to that of Theorem 7.1, except that we use (6.10) of Lemma
6.5 and utilize the Lipschitz continuity of g.

$. The sets C(vo) and C(v). Let (to, Xo) be the initial point of the game. Let

8.1 Vo W- to, Xo), vo W+ to, Xo).

Let W/(T, x)= g(x) and let W-(T, x)= g(x). Let

(8.2)
C(v) ={(r’ )" t-<r-< T, :e R", W-(r, :) =< Vo}

C(v) {(r, :)" to_<r-_< T, : R", W+(r, :)-> v}.
Sets equivalent to C(vo) and C(v) were introduced by Krasovskii and Subbotin

in [9]. The properties of these sets given in Lemmas 8.1 to 8.3 were also first stated in
[9]. Our proofs will be different from those in [9].

LEMMA 8.1. Let Assumption I hold. Then the sets C(vo) and C(v) are closed.
This lemma is an immediate consequence of the definitions of C(vo) and C(v)

and Theorem 8.1.
LEMMA 8.2. A point (r, ) belongs to C(vo) if and only iffor every e >0 and every

strategy F there exists a strategy A(F) and a motion b[ r, :, F, A(F)] such that
g(4’[ T, r, :, r, a(r)]) < Oo+ e.

The "if" statement follows from the definition of W-(r, so), since for each F we
have inf {A: p(r, :, F, A)} <= Vo. If the "only if" statement were false, there would exist
a Fo and an eo > 0 such that for all Z and all motions b[ r, :, Fo, A], we would have
g(ck.[T, r, , Fo, A]) > Vo+ Co> Vo. This implies that W-(r, ) > Vo, and the "only if"
statement is proved.

In the Krasovskii-Subbotin terminology, Lemma 8.2 states that "escape" from
C(vo) by Player I is not possible.

Remark 8.2. A result analogous to Lemma 8.2 holds for C(v).
LEMMA 8.3. Let (r, ) be a point of C(vo). Let tt satisfy r < t < T and let u be any

control for Player I on It, t]. Then there exists a relaxed control (u) such that the
relaxed trajectory ( r, , u, ) has the property that (tl, d/(fi)) C(vo).

Remark 8.3. Similarly, if (r, ) belongs to C(v), then for every r<t < T and
control v for Player II on It, tl], there exists a relaxed control rt such that the relaxed
trajectory q,( r, s, r/, v) has the property that (t, (t)) C(v).
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In the terminology of Krasovskii and Subbotin [9], Lemma 8.3 says that C(vo) is
v-stable.

Proof. Suppose that the result were false. Then there would exist a tl in (% T)
and a control u defined on [% t] such that for any sr, the relaxed trajectory
#( % :, u, r) would have the property that (t, #/(t))jC(vo). We shall show that
this leads to a contradiction of the assumption that (% ) C(vo).

Let FT be an arbitrary strategy for ay I in the game over the time interval
[t, T]. We shall associate to FT a strategy F F(FT) in the game over the time interval
[% T] by defining , (,,,..., F,,) for any sequence of partitions {Tr,} of [% T]
with liar. =< K n, where K is a constant independent of n. Let {r.} be such a sequence
of partitions with partition points of r., r ro < :’ < ’: <" < r. T. Let I+
[z, r+), i-0, 1,. ., n- 1. Let j =j(n) be the integer such that tl /+. The partition
r. of [r, T] induces a partition r’,. of [t, T] with partition points t, r < r] <. <
rm-- T, where r] )+, r-z+2,""", z. Z+m Z. T. Note that m depends on n.
Since m < n, zr’,. _-< K/ m. For >j + 1, the interval I of the partition zr. is the interval
I, of the partition zr’,., where k= i-j. The interval I] is the interval [t, r+).

For each n, F. will be the concatenation of the constant nth stage strategy u(t)
on^ [% t] and^ an mth stage stra.tegy FT,. on [t, T]. More precisely, we define F.-
(F..,..., F.,.) as follows. Let F., u. For 2 <=i<-j let

For i=j + 1, if t z, let

r,.+(x x... x% x) r..;
if zj < t < j-bl let,

(F,j+(x ...x%xj))(t)=u(t), zj<=t<t,

(F..j+(,l " "’))(t)--rT,m,(t), t<----t<)+.

For i=j+k, k> let

r,,+(,x x... x +_, x+_)= r,m,(X X... X %+_ X+_l).

Let A^= {A.} be an arbitrary strategy for Player II in the game over [, T]. Let
q[ , s, F, A] be a motion in the game over It, T] resulting from (F, A) and asequence
of partitions {zr.}. Let {(u.,v.)} be the sequence of outcomes of (F,A). Let
{@.( ,., u., v.)} be the sequence of trajectories converging uniformly to
b[ z, s,F, A]. Let x.=ck.(t, % ., u., v.) and let x=limk_X.. Then x=
[tl, ’l’, , F, A].

We now define a strategy AT=AT(A) such that there exists a motion
4[ t,, x, FT, AT] satisfying

(8.3) b[t, t,, Xl, FT, AT] b[t, , s, F, A]

for all t <- <= T.
As noted before, a partition zr. of [z, T] induces a partition zr’ of [t, T], where

the integer m depends on n. There exists a subsequence {nk} of {nk}, which for
typographical convenience we relabel as {n}, such that m(nv+)> m(n). Let {rap}=
{m(np)}. Let {zr} be a sequence of partitions of Its, T] into intervals I,. ., L. such

Recall that the outcome of (F., A.) onthat if m m for some p, then
It,, T] is (u.,
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We now define Ar AT(A on [r, T]. Let be a fixed, but arbitrary, control for
Player II on [rl, T]. If m mp for all p, let v,, 3; if m =mp for some p, let Vm Vm, =- V,,.
Let Ar be the constant component strategy corresponding to the sequence {v,}.

By our construction we have that for p l, 2, 3,..- the sequence of outcomes

{(u,,, Vmp)} on [r, T] resulting from {(FT.,,, AT.,,)} will be the sequence of outcomes

{(u,, V,,p)}. Hence for p 1, 2, 3,. and t _<- <- T we have

qb,.p(t, t., x.,p, u,p, t)mp (np(t, T, np, Unp, Vnp),

where Xlm Xlnp. If we let poo, we obtain (8.3).
Since on the interval It, t], F is the constant strategy with value u, it follows from

Lemma 8.1 that there is a relaxed control " and a corresponding relaxed trajectory
q,( r,s:, u,’) such that for te[r, tl], we have b[t, r, :,F, A]= (t, r,{, u, st). Hence
by our assumption concerning u, the point (tl, Xl) where x, 4[t, r, :, F, A], does not
belong to C(vo).

The last result can be stated in the following way. If H,, denotes the hyperplane
t in R"+, then

(8.4) (t,X[t,, r, , ])CI C(vo) f3 Ht,)= 4’.

From (8.3) we have that for any motion b[ r, s, , A] over the interval It, T]
there exists a motion b[ t, x, FT, A] such that x- b[t, r, sc, ’, A] and

g(dp[T, r, , ’, A])= g(qb[T, t,, Xl, FT, AT]).

Recall that [" (1-’T) and A T AT(A). Hence for fixed FT and corresponding fixed
we have

(8.5) inf g([T, r, , ’, A]) _-> inf g([T, t,, x,, Fr, A,])
A (X ,A,)

where by the infimum over (Xl, A,) we mean that we take the infimum over all initial
positions x [t, r, , [’] and all strategies A, for Player II in the game over [t, T].

Let

(8.6) /x inf g(@[T, tl, X1, FT, A,]).
(xl,A,)

Then there exists sequences {x,} and {A,( n)} and a corresponding sequence of motions
4[ t, Xl,, FT, A,(n)] such that g(4[.T, tl, x,, FT, A,(n)])- x. Since all of the points
x, lie in the compact set [t, r, :, F], it follows from Lemma 6.2 that there is a
subsequence of the sequence of motions, which we again label as
4[ tl, Xl,, Fr, A,(n)], that converges to some motion 4[ t, ),_FT, A,], where
is in [t, r, :, F]. Since g(cb[T, t, x,, FT, A,(n)]) g(cl,[T, tl, :, Fr, A,]), we have that
g(cb[T, t,, ,, FT, A,]) =/x. Hence infa, g([T, tl, , FT, A,]) _<_ x. But by (8.6)
infa, g([ T, t, )7, FT, A,]) >=/,. Hence

t,=infg([T, t,, x,, F, A,]).

Combining this with (8.5) and (8.6) gives

infA g(Cb[T, r, s, ’, A]) => ianf g([T, tl, 91, FT, A,]),
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where A ranges over all strategies for Player II in the game over [r, T] and A. ranges
over all strategies for Player II in the game over [tl, T]. Thus

(8.7) sup inf g(dP[T, z, , [’, A]) >__ sup inf g(dP[T, tl, 91, Fr, A.]),
F A FT-

where Fr ranges over all strategies for Player I in the game over the interval [tl, T].
The right-hand side of (8.7) is equal to W-(tl, )1). Since 91 [tl, z, :, F] it follows

from (8.4) that W-(tl, )> Vo. Hence

(8.8) sup inf g(Op[T, z, :, F, A])_--> sup inf g(dP[T, z, sc, , A]) > Vo,
F A F A

where F ranges over all strategies for Player I in the game over [’, T]. But this contradicts
the assumption that (z, :) belongs to C(vo), and the lemma is proved.

If the graph of an nth stage trajectory, or relaxed trajectory or motion lies in
C(vo) then we shall say that the trajectory or the motion lies in C(vo).

LEMMA 8.4. Let (z, ) belong to C(vo). Let there exist a strategy Ao such that for
any strategy F all motions b[ z, sc, F, Ao] on [z, T] lie in C(vo). Then for any strategy
F and all motions th[ , :, F, Ao], the inequality g(4)[ T, -, sc, F, Ao]) <-- Vo holds.

If the lemma were false, there would exist a strategy Fo and a motion
4)[ z, sc, Fo, Ao] such that c -= g(b[ T, z, sc, Fo, Ao]) > Vo. Let 3/= c Vo. It follows from
the continuity of g, from (2.6) and the definition of motion that there exists a > 0
such that for any two pairs of strategies (F,A) and (F’,A’) and any motions
4)[ tl, xl, F, A], th[ tl, xl, F’, A’] the inequality

(8.9) Ig(c[T, t,xl, r, A]) g( d)[ T, tl, Xl, r’, A’]) <--Y
2

holds whenever It- t,I < . Select a t satisfying 17"- t,I < . Let Xl 4,[tl, r, :, Fo, Ao].
By Lemma 6.3 the segment of the motion b[ z, :, Fo, Ao] on the interval [tl, T] is
again a motion, say 4[ tl, Xl, F’, A’]. Therefore g(4,[ T, tl, Xl, F’, A’]) c. But (tl, xl) e
C(vo) so by Lemma 8.2 there exists a strategy A(F’) and a motion b[ tl, Xl, F’, A(F’)]
such that g(4[T, tl, Xl, F’, A(F’)])< v0+ 3//2. This contradicts (8.9), and the lemma is
proved.

Remark 8.5. A result similar to Lemma 8.4 holds for the set C(v).
9. A comparison of trajectories. In this section we compare two trajectories. This

comparison was introduced by Krasovskii and Subbotin [9, 14] and is crucial for
both their development and ours.

DEFINITION 9.1. The Isaacs condition holds at a point (t, x) in [To, T] x R ’, if
for all vectors s in R"

(9.1) max rain (s,f(t,x, y, z)) min max (s,f(t, x, y, z)),
y y

where y ranges over the set Y and z ranges over the set Z. We say that the Isaacs
condition holds on [To, T] R" if it holds at all points (t, x) of [To, T] R".

We note that we can write max and min instead of sup and inf because f is
continuous in (y, z) and Y and Z are compact.

Remark 9.1. If the problem originally is one with integral payoff, i.e. fo 0, then
the Isaacs condition (9.1) when written in terms of the original problem would read

max min (g, f(t, x, y, z)) min max (g, f( t, x, y, z)),
y y



188 LEONARD D. BERKOVITZ

where g= (s, sl, s") and f= (fo, f,... ,f,). We shall show later that we need
(9.1)’ to hold only for vectors g with s> 0. With this restriction (9.1)’ is equivalent to
the Isaacs condition

(9.1)" max min [f(t, x, y, z)+(s,f(t, x, y, z))]=min max [f(t, x, y, z)+(s,f(t, x, y, z))]
y y

used by Friedman and Elliott and Kalton.
The Isaacs condition was introduced by Isaacs in his early studies of differential

games.
An equivalent formulation of the Isaacs condition is that for each s in R" the

zero sum game with payoff (s,f(t, x, y, z)) in which Player I, the maximizer, chooses
an element y Y and Player II, the minimizer, chooses an element z Z has a saddle
point (y*, z*). We then have

(s,f(t, x, y*, z*)) max min (s,f(t, x, y, z)) min max (s,f(t, x, y, z)),
y y

and (s,f(t, x, y*, z*)) is the value of the game. We shall call this game over Y Z, the
local game at (t, x, s). We also have that

(9.2) (s, f( t, x, y, z*)) <= (s, f( t, x, y*, z*)) <- (s, f( t, x, y*, z))

for all y in Y and z in Z.
LEMMA 9.1. Let Assumption I hold. Let (-, ) and (’, x) be points in a fixed

bounded region B contained in To, T] R", and let the Isaacs condition hold at (’, ).
Let s*= -x. Let (y*, z*) be a saddle point for the local game at (Zl, SOl, s*) with
payoff(s*,f(’, , y, z)). Let u be a controlfor Player I on [rl, T]. Let ck be an absolutely
continuous function on [’1, T] satisfying

(9.3) ok’(t) =f(t, ok(t), u(t), z*), $(r,) SOl,

and let be an absolutely continuous function on [zl, T] satisfying

(9.4)
g/’(t) f(t, g/(t), y*, (t))

|f(t, (t), y*, z) d (t), q(Zl) Xl..z
Let

p(t) Ib(t)- @(t)], r --_< _--< T.

Then there exists a nondecreasing function E defined on [0, T-Zl] such that E( 3)--> 0
as tS- 0 and a positive constant such that for all 0 <-t <= T--,

p(,l + *) --< (,)( +/) + (*),

for all (’/’1, 1) and (’1, Xl) in B.
This lemma is proved in [9, 14].

10. Extremal strategies. In this section we shall use the "extremal aiming"
strategies introduced by Krasovskii and Subbotin [9] to define our "extremal" strategies.
We shall show that if Player I uses a strategy I’e extremal to C(v), then all motions
t[ to, Xo, Fe, A] will lie in C(v). If Player II uses a strategy A extremal to C(vo),
then all motions b[ to, Xo, F, ae] will lie in C(vo).

Let U be a function defined on [to, T] R" with values U(t, x) in Y. The function
U determines a strategy F F(U) in the game with initial point (to, Xo), as follows.
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Let zr, be the nth partition of [to, T] and let 11," ", In denote the partition intervals,
/ [’j-1, zj) j= 1,..., n. Define

1-’n,(t) U(to, Xo) for Ii.
To define Fn,g,j-2,..., n we must assign a control ug on / for Player II for each
(Ul, Vl," , ug_, vg_), where for i= 1,... ,j-l, ui is a control for Player I on/ and
vi is a control for Player II on/. The function u defined on [to, z_) by u(t)= u(t)
for /, i- 1,...,j-1 is a control for Player I on [to, z_). Similarly, the function
v defined on [to, _) by v(t)= v(t) for t I, i= 1,...,j-l, is a control for Player
II on [to, z). Under Assumption II, the differential equation

x’ =f(t, x, u(t), v(t)), X(to) Xo

has a unique solution ok(" )= ok(’, to, Xo, u, r) on the interval [to, Z_l]. We define

(In,j(Ul, )1, /j--l, j--l))( /) U("I’j-I, (’/’j-1)), "-1 <

We shall call a strategy F F(U) determined this way a feedback strategy for
Player I. We shall also call a function U defined on [to, T] x R with values in Y a
feedback strategy.

Given a function V defined on [to, T] with values in Z, we can associate to V a
strategy A(V) in a way similar to that used to define F(U). We shall also call both the
function V and the strategy A(V), feedback strategies for Player II.

We now shall follow Krasovskii and Subbotin [9] and shall define a feedback
strategy V extremal to the set C(Vo). A similar procedure will give a feedback strategy
Ue extremal to C(v). From Ue and V we can obtain feedback strategies Fe and A
in the manner outlined above. Note that Fe and Ae will depend on the initial point
(to, Xo). In order to define Ve and Ue we must assume that the Isaacs condition (9.1)
holds at all points of [to, T] R ".

If (t,x) belongs to C(vo), define Ve(t,x)=z where z is any vector in Z. If
(t*,x*)yC(vo), t*< T, then by Lemma 8.3, with (-, :) (to, Xo), the set

(10.1) S(t*) H(t*)(q C(vo)

is not empty, where H(t*) is the hyperplane t*. It follows from Lemma 8.1 that
S(t*) is closed relative to H(t*). Hence there is at least one point w* in S(t*) that is
at minimum distance from x* in S(t*). If w* is not unique, select any w*. Let
s* x*- w*. Define

Ve t*, x*) z*,

where (y*, z*) is any saddle point of the local game (t*,x*, s*), with payoff
(s*, f( t*, x*, y, z)).

Remark 10.1. It can be shown that if the problem originally is one with integral
payoff (fo /0) and the state variable is 5 (x, x) in R"+, then s*>- O. (See Remark
9.1.)

LEMMA 10.1. Let Assumption I hold. Let Ve be extremal to C Vo) and let Ae A(V)
be the corresponding feedback strategy for the game with initial point (to, Xo). Then
every motion t[ ,to, Xo, F,A] lies entirely in C(vo); i.e. {(t,x):to<-t<-T; x
b t, to, Xo, A]} c__ C (Vo).

In the terminology of Krasovskii-Subbotin [9], the lemma asserts that Ae is a
"railing" for the "stable bridge" C(vo). Our proof is simpler than that of the similar
result in [9].



190 LEONARD D. BERKOVITZ

Suppose the lemma were false. Then there would exist a strategy F and a motion
b[. b[., to, Xo, F, Ae] that did not lie entirely in C(Vo). Since (to, Xo) C (Vo), the set

Ct ={t: t[to, T], (t, chit, to, Xo, F, Ao]) C(vo)} is not empty. By Lemma 8.1, the set Ct
is closed. Since b[ to, Xo, F, Ae] does not lie entirely in C(vo), the complement of
C, relative to [to, T] is not empty. Let tl inf {t: t [to, T], t.(Ct}. Since C, is closed,
tl Ct and tl > to. The point t can be considered as the first time at which b[ ] leaves
C(vo).

For each to -< -< T, let S(t) be defined as in (10.1). Let e(t) denote the distance
from the point (t, b[t]) to the set S(t). Then e(t) is also the distance in the hyperplane
H(t) from b[t] to S(t). Let g(t) denote the distance from (t, b[t]) to the set C(vo).
Then g( t) <- e( t). Clearly, if e(t)=0, then e(t)=0 and (t, ch[t])S(t)_C(vo). If
f(t)=0, then since C(vo) is closed, (t, b[t]) C(vo). Hence (t, h[t])S(t), and so
e(t) 0. Thus e(t) 0 if and only if 8(t) 0, and so e(t) 0 if and only if C. We
shall arrive at a contradiction by showing that e(t)=0 for all in [to, T). For t<= tl,
we already have e(t)= 0. Therefore, we need only consider > t.

Let b, th to, Xo, u,, v,), be a sequence of nth stage trajectories converging
uniformly to b[ to, xo, F, Ae]. For t-> t, let e,(t) denote the distance between
(t, th,(t)) and S(t). Clearly, lim e,(t)= e(t). Therefore to establish the desired contra-
diction it suffices to show that

(10.2) lim e,(t)=0 for t < < T.

Let 11,’’’, I,, where /=[-j_, r), j=0, 1,..., n, be the intervals of the nth
partition 7r,. Let II  ll--< K! n, where K is a constant independent of n. Let k k(n)
denote the integer such that t Ik =[zk-, ’k). We emphasize that k depends on n;
for notational convenience, however, we shall write k instead of k(n). As n -, 7"k t.
Since b,( converges uniformly on [to, T] to b[ ], (Tk, /)n(Tk))-(tl, t[tl])G C(/)o),
as n->.

Let x b[t]. By Lemma 8.3, for each integer n, there exists a relaxed control
such that the relaxed trajectory tp,( t, x, u,, ’) has the property that (% ,(’k))
C(Vo). Hence

,()--< I(, q,.())-(, .())1.
By the triangle inequality we get

En("gk) <= l(’k, n(7"k))--( tlXl)l-l-I( tl, Xl)--(’k,

From this we get,

(10.3) lim e,(’k) 0.

Let be any point in (t, T). Then there exists an integer no no(t) such that for
n _-> no, >_- rk. Let n > no. We shall estimate e,(t).

Suppose [% ’k+l]. Let x* 4’,(’k), let t* ’k and let w* be the point in
selected as being at minimum distance from x* in S(’k) in the definition of Ve(t*, X*)
Ve(rk, b,(’k)). Let s*= x*-w* and let y* be any point in Y such that (y*, z*) is a
saddle point for the local game (t*, x*, s*) (’k, b(Zk), S*) with payoff
(s*,f(rk, qb,(’k), y, z)). By Lemma 8.3 there exists a relaxed control sr such that the
corresponding relaxed trajectory q,( if( ’k, w*, y*, ’), has the property that
qt(t, "I’k, W*, y*, ) C(vo). Since for s>= "l’k, n(S, to, Xo, u,, v,)-4,(s, 7"k, (n(q’k), Un, Dn),
we have that

e,(t)<=ldP,(t, ’k, dp,(Zk), U,, V,)--l,(t, 7"k, W*, y*,
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Note that for ’k, equality holds and that for Ik, v,(t) z*. Hence by Lemma 9.1
with r "rk, : tn (Tk), Xl W*, we have

e2.( t) <- e2.(rk)(1 +( t-- rk)) + E( t-- ’k)( t-- ’k).

If we set . K/n, we have that for all in Irk, rk+]

(10.4) e2,(t)
By a similar argument, we get that for all in [r+j, r+j+], j 1, , n k,

e(t)
It now follows by induction that for in [rk+j, r,++l], j 1, , n- k,

2( _-<((++( (+

Recall that 6 K/n. Then for n > no,

2

i=0

i()( +,)" + (,)(( +,)"- )/
,() e + (,)(e )/.

If we let n-, we get from (10.3)and E(,)- 0 that e(t)-O. Since t> tl is arbitrary,
(10.2) is established and the lemma is proved.

Remark 10.2. We can define a feedback strategy U extremal to the set C(v) in
a manner analogous to that used to define V. We can then define a feedback strategy
F F(U) for the game with initial point (to, Xo). This strategy will have the propey
that every motion [ to, Xo, F, 5] will lie entirely in C(v).

We now point out a major advantage in using the Friedman definition of strategy
over that of asovskii and Subbotin. In we showed that if the original problem
has an integral payoff as in (1.2), then the problem can be transformed into a problem
with state vector Y in R"+ with terminal payoff g(Y). The asovskii-Subbotin extremal
strategies are functions V and U defined on (t, Y)-space. These functions must be
replaced by functions V and U’ of (t, x), since the definition of strategy in [9] requires
that a strategy in a game with integral payoff be a function of (t, x) and not of
(t, Y)= (t, x, x). This leads to difficulties, which in this writer’s opinion were not
adequately addressed in [9], but which were later taken up in [10].

For us also, V and U will be functions of (t, Y), but for us this is not a problem.
We conve these strategies into instructions for choosing a control on some interval,
given the past history of the controls. The fact that the instructions are arrived at
utilizing the xth coordinate is irrelevant.

11. The existence of value und suddle points. The principal result of this paper is
Theorem 11.1, below. Its proof will be an easy consequence of the results in 7 and
9.

TnnonM 1.1. Let Assumption I hold and let the Isaacs condition (9.1) hold on
[to, T] R’. en the game offixed duration with initial point (to, Xo) and with payoff

(.) (to, Xo, V,a)=g([v, to, Xo, v, a]),

has a value W( to, Xo) and a saddle point.
and W(t, x) g(x) as T, for all x in R’. If is a bounded set in R’, then W is
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uniformly continuous on To, T) . IfAssumption I’ holds, then Wis uniformly Lipschitz
continuous on bounded subsets of To, T) Rn.

Since (4.2) always holds, in order to prove the existence of a value it suffices to
show that

(11.2) W+(to, Xo) <- W-(to, Xo).

The statements concerning the continuity and Lipschitz continuity of the value will
then follow from Theorems 7.1 and 7.2, as will the statement that W(t, x)- W(T, x)
as t- T.

We now establish (11.2). By Lemma 10.1 there exists a strategy Ae such that every
motion 4[ to, Xo, F, Ae] lies in C(vo). By Lemma 8.4 this implies that

(ll.3)

Hence

and so

g((I)[ T, to, Xo, F, Ae]) <= Vo for all F.

sup g([T, to, Xo, F, Ae] _--< Vo W-(to, Xo),
F

W+(to, Xo)=infsup g((I)[T, to, Xo, F, A])--< W-(to, Xo).
A F

This establishes (11.2).
To complete the proof ofthe theorem we must show the existence of a saddle point.
By virtue of Remarks 10.2 and 8.5, there exists a strategy re such that for all A

(11.4) g(@[T, to, Xo, Fe, A]) --> W/(to, Xo).

If we take F F in (11.3) and use the fact that we have already established the
existence of the value, we get that g((I)[ T, to, Xo, Fe, Ae]) =< W(to, Xo). If we take A A

in (11.4), we get that g([T, to, xo, Fe, Ae]) >- W(to, Xo). Hence

(11.5) g((I)[ T, to, Xo, Fe, Ae]) W( to, Xo).

This equality, the equality W(to, Xo) W/(to, Xo) W-(to, Xo) and (11.3) and (11.4)
show that the pair (Fe, Ae) is a saddle point for the game.

12. Relationships among various definitions of value. In this section we assume
that the reader is familiar with the Friedman definition of a differential game (see [5,

1.3 to 1.6]). Friedman partitions the interval [to, T] into n equal subintervals of
length 6 (T-to)/n, but shows that the same results would be obtained if one were
to deal with sequences of arbitrary partitions 7r, whose norms tend to zero.

We shall denote an upper ( strategy for Player I, as defined by Friedman, by

Similarly, an upper 6 strategy for Player II, as defined by Friedman, will be denoted
by

Lower strategies in the sense of Friedman will be denoted by
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The payoffs P[AF,S, F] and P[AF, FF,S] and the numbers Vs, Vs, V+ and V- are as
defined in [5].

The following relationships hold between the Friedman upper value and our upper
value and the Friedman lower value and our lower value.

THEOREM 12.1. Let Assumption I hold. Then

w/ to, Xo) >- v/ to, Xo), w- to, Xo) <= v- to, Xo).

Proof. The payoff is given by (11.1) for our game and by

e(y, z)= g(x( t, y, z))

for the Friedman game.
Let e > 0 be given and let W-= W-(to, Xo). Then by the definition of W-(to, Xo)

there exists a strategy F such that

Hence for all A,

inf P to, Xo, F A) > W- e.

(12.1) P( to, Xo, F, A) > W- e.

For n 1,2,3,..., the nth stage strategy F..=(F...,.--,F....) is clearly a
lower 6 strategy in the sense of Friedman for Player I. We denote the lower 6 strategy
by Fv.s(e). Then for any upper 6 strategy A for Player II,

P[r,(e), A]=< sup P[r,,
FF,

Hence

inf P[FF.(e), a] =< infsup P[FF.,/X]= V.
A AF FF,

Also, there exists a A(e) such that

P[rv,(e), A(e)] < inf P[rv,(e), a]+ e.

Combining the last two chains of inequalities gives

(12.2) e[r,(e), a(e)]< v + e.

Let (us, s) be the outcome of (FF.s(e),AF(e)). Let A= {A..} be the strategy
such that Z.. assigns v.(t) 5s(t) to/, thejth interval of the partition, forj 1,. , n.
Then the outcome of (F.., A..) will be (u., v.) (us, 5s). Since F.. and A,. determine
the outcome (u., v.) uniquely, there is a unique nth stage trajectory (h. to, Xo, u., v.)
resulting from (F.., z..), n 1, 2, . Thus,

(12.3) P[Fv.(e),/xv(e)]=g(ck.(T, to, Xo, u., v.)).

Combining (12.3) with (12.2) gives

g((]).( T, to, Xo, u., v.)) < Vs + e.

Recalling that Vs- V- as n-* , we obtain

(12.4) lim g(b.(T, to, Xo, u., v.))<= V-+e.
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But

P( to, Xo, F, A g([T, to, Xo, F, A])
(12.5)

=< lim g(b, T, to, Xo, u,, v, )).

From (12.4), (12.5) and (12.1), we get

W--e<P(to, xo, F,A) <- V-+e.

Thus

If we let e -* O, we obtain

W-<= V-+2e.

W-<=V-.

A similar argument shows that W+->_ V/.
From Theorems 11.1 and 12.1 we immediately obtain the following result concern-

ing the Friedman value.
TIaEOREM 12.2. Let Assumption I hold and let the Isaacs condition (9.1) hold on

[to, T] Rn+. Then the Friedman game offixed duration with initial point (to, Xo) has
value V( to, Xo) and V( to, Xo) W( to, Xo).

We point out that we have obtained the existence of the Friedman value without
recourse to arguments involving probability theory or the theory of partial differential
equations.

Other definitions of upper and lower value for a differential game of fixed duration
have been given by Fleming [4] and by Elliott and Kalton [2]. Let F/(to, Xo) and
F-(to, xo) denote the upper and lower Fleming values and let U/(to, Xo) and U-(to, Xo)
denote the upper and lower Elliott-Kalton values. Friedman has shown under
hypotheses weaker than those of Assumption I that F/(to, Xo) V/(to, Xo) and
F-(to, Xo) V-(to, Xo) (see [6, p. 24]). Elliott and Kalton [2] have shown under
hypotheses weaker than those of Assumption I that U/(to, Xo) V/(to, Xo) and
U-(to, Xo)= V-(to, Xo). The arguments used to establish the equalities F+= V and
U+= V are nonelementary.

A differential game of fixed duration has value F(to, Xo) in the sense of Fleming
if F/(to, Xo) F-(to, Xo), in which case F(to, Xo) is the common value of F/(to, Xo) and
/7-(to, Xo). A similar definition holds for the value U(to, Xo) in the sense of Elliott and
Kalton.

If Assumption I holds and the Isaacs condition (9.1) holds, then the game of fixed
duration has a value in our sense and in the sense of Krasovskii-Subbotin [9]. Moreover,
a saddle point (Fe, be) exists in our sense and a saddle point (Ue, Ve) exists in the
Krasovskii-Subbotin sense. If we denote the Krasovskii-Subbotin value by K(to, Xo)
([9, Chap. 4]), then in our notation,

K to, Xo) g((I)[ T, to, Xo, Ue, Ve]).

(We have reversed the roles of U of V from those in Krasovskii and Subbotin. They
use U for the minimizer and V for the maximizer.) From (11.5) we get

g([T, to, Xo, Fe, Ae])= V(to, Xo).

From the definitions of lye and A and the definitions of Ue and Ve it is clear that

g([T, to, Xo, lYe, Ae]) g([T, to, Xo, Ue, Ve]).

From the preceding discussion we obtain the following result.
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THEOREM 12.3. Let Assumption I hold and let the Isaacs condition (9.1) hold. Then

K to, Xo) W to, Xo) V to, Xo) F to, Xo) U to, Xo).

13. The Isaacs equation. Let Assumption I’ hold. Then by Theorem 7.2 W/ and
W- are uniformly Lipschitz continuous on bounded subsets of [0, T] R n. Hence, by
Rademacher’s theorem, W/ and W- are ditterentiable at almost all points of any open
bounded set. Thus W/ and W- are diiterentiable almost everywhere.

LEMMA 3.1. Let t, x) be a point of differentiability of W-. Then

(13.1) max min [W-(t, x) / W-(t, x),f(t, x, y, z))] <_- 0,
y

where the max is taken over all y Y and the min is taken over all z in Z. If t, x) is a
point of differentiability of W+ then

(13.2) min max W+ t, x)/( W+ t, x), f( t, x, y, z))]_-> 0.
y

We shall prove the lemma for W-; the proof for W+ is similar, with appropriate
modifications. To establish (13.1) it suffices to show that for all y in Y,

(13.3) min [W-(t, x) + W-( t, x), f( t, x, y, z))] _-< 0,

at each point of ditterentiability of W-. If (13.3) were not true, there would exist a
point of ditterentiability (tl, x) and a vector 37 in Y such that

(13.4) min[W- tl, xl) / W; tl, XI), f( tl, X1, , g))] > O.

We shall show that (13.4) leads to a contradiction.
It follows from Lemma 9.3, applied to the set C(W-(tl, Xl)), that for every

tl < t< T, there exists a relaxed control ’t such that if the relaxed trajectory
q( tl, xl, )7, ’t) is the solution of

(13.5) x’=f(s,x,, ’t)= ff(s,x,., z) dt (s), x(tl)=Xl,. z
then W-(t, q(t)) <_- W-(tl, x). Thus if A W-(t) W-(t, @(t)) W-(tl, xl), we have
that for all tl _-< < T

(13.6) 0>_-- AW-(t) W-(t,Xl)At+(W-(tl, Xl),Ax)+rll(t),

where At tl, AX i(t) x and

(t)/(at=+lhxl=)/=O as I(At, Ax)l-o,

From the continuity off and the fact that all solutions of (13.5) lie in a compact
set, independent of ’r, it follows that there is a constant K, independent of Ct and
such that IAxl<=KIAtl. Hence q(t)/At-O as At-*0. We also have

Ax= f(s, 6(s), ., z) dot (s) ds {f(tl, x, , z)+ n:(s)} dot (s) ds,
tl

where :(s)0 as s t, uniformly with respect to z in Z Since for each s, ff,(s) is a
probability measure on Z, we get that

h/=J [Izf(tl, Xl, fi, z) d,, (s)] ds+a(t)At,
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where T3(t) - 0 as At- 0. Substituting the last expression for Ax into (13.6) gives

(13.7)

AW-(t) It Iz [W-(tl, Xl)+(W-(t,x),f(t,,x,, z))]d, (s) ds+rl(t)At

where r/(t)0 as Ate0.
By (13.4), the term in square brackets in (13.7) equals a constant c > 0. Hence

we get

AW-(t)=[c+n(t)]At for all tt<Z
This implies that for suciently close to tl, A W-(t)> 0, which contradicts (13.6),
where we have A W-(t) 0 for all tl < Z This contradiction proves the lemma.

If in addition to Assumption I’ we assume that the Isaacs condition (9.1) holds,
then by Theorem ll.1, W+= W-. From this and from Lemma 13.1 we get that the
value function W satisfies the Isaacs equation almost everywhere. From Theorem 12.3
we also get that the Fleming value F, the Friedman value V and the Elliott-Kalton
value U satisfy the Isaacs equation.

The preceding discussion has established the following result, among others.
THEOREM 13.1. Let Assumption I’ hoM and let the Isaacs condition (9.1) hold. At

points of differentiability W satisfies
W(t, x),f(t, x, y*, z*)) max min W(t, x),f( t, x, y, z))

y

(13.8) rain max Wx( t, x),f( t, x, y, z))
y

w,(t, x),

where the max is taken over y Y and the min is taken over z Z. The function W also
satisfies the boundary condition W( T, x)= g(x).
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NONLINEAR OBSERVERS WITH LINEARIZABLE
ERROR DYNAMICS*

ARTHUR J. KRENERf AND WITOLD RESPONDEK$

Abstract. We present a new method for designing asymptotic observers for a class of nonlinear systems.
The error between the state of the system and the state of the observer in appropriate coordinates evolves
linearly and can be made to decay arbitrarily exponentially fast.

Key words, nonlinear estimation, nonlinear observer, observable and observer form

1. Introduction. The problem of approximating the state x R" of a linear system

(1.1a) ax + Bu,

(1.1b) y Cx

based on knowledge of the input u R" and output y [P has a well-known solution
provided only that (C, A) be an observable pair, i.e.

C

1.2) rank
CA

CA,-I

We define z(t), an estimate of x(t), to evolve according to the dynamics

(1.3) 2 (a + GC)z Gy + Bu
where G is an n p matrix to be chosen. Then the error e x-z satisfies

(1.4) d.=(A+GC)e.

The observability hypothesis (1.2) ensures that for any set of n complex numbers
invariant under complex conjugation there exists a G so that the spectrum of (A + GC)
is that set. In particular G can be chosen so that the spectrum is sufficiently to the left
in the complex plane so that error decays arbitrarily exponentially fast. See [6] for
details.

In this paper we identify a class of nonlinear systems of the form

(1.5a) =f(s, u),

(1.Sb)
for which there exists observers with arbitrary exponential error decay at least locally.
We give necessary and sufficient conditions in the form of a constructive algorithm
for there to exist changes of coordinates

(1.6a) : sO(x),

(1.6b) qt qt(y)
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in a suitable domain transforming (1.5) into

(1.7a) 2 Ax + y(y, u),

(1.7b) y Cx

where (C, A) is an observable pair. If (C, A) is in dual Brunovsky canonical form we
say that (1.7) is in observer form. A slight modification of (1.3) yields an observer for
(1.6)

(1.8) (A + GC)z Gy + y(y, u)

with the same error dynamics (1.4) as before.
If we transform (1.8) back by (1.6), we obtain a differential equation for ’(t)=

(z(t))

(1.9) -f(, , u).

On a compact subdomain one can achieve arbitrary exponential decay of the error
between :(t) and st(t) by proper choice of (3.

This paper grew out of earlier work of Krener-Isidori [1] who considered the
above question when p 1, @ =y and with no inputs. Essentially we shall reduce the
more general question to the multi-output (p->_ 1) version of that. In some loose sense
the question which we address is the mathematical dual of that solved by Jakubcyzk-
Respondek [2] and Hunt-Su [3]. They considered the problem of linearization of (1.5a)
using change of coordinates in the state space and state dependent change ofcoordinates
in the input space (nonlinear state feedback). We refer the reader to ]-[3] for a fuller
discussion of these points.

A referee called to our attention similar work of Bestle and Zeitz [7]. They assumed
the existence of the linearizing transformations and showed how the observer could
be constructed when p 1.

The paper is organized as follows. Section 2 discusses the observability of a

nonlinear system and 3 develops a key necessary condition (Proposition 3.3), for the
existence of an observer form. Section 4 is the heart of the paper, in which the two
theorems which reduce the general problem to the multivariable version of [1] are

presented. In 5 the multivariable version of [1] is given. Sections 2-5 consider systems
without inputs, while 6 generalizes to systems with inputs. We close by a series of
examples in 7. The reader may wish to consult these immediately after reading the
statements of Theorems 4.1, 4.2 and 5.1 and the associated remarks.

2. Observability. Consider the problem of estimating the current state (t) of the
nonlinear system without inputs

(2.1a) =f(:),

(2.1b) 6 h(:),

(. c) :o__ (0)
from knowledge of the past outputs (s), 0 <- s <- t, but with no knowledge of the initial
state (0) except that it is near :0. Later in 6 we shall treat systems with inputs. We
are not using the term "estimation" in a statistical sense although one could make
additional assumptions about (2.1) and formulate the problem as such. Rather we
desire that our estimate (t) converge to (t) "sufficiently fast" as increases. The
initial displacement :(0)- :o represents an error in our current estimate of the state
due to the accumulation of past disturbances. The estimate should converge fast enough
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SO that the error becomes negligible in a short length of time and future disturbances
are dampened at a rate faster than they arrive. On the other hand if one attempts too
high a rate of decay, the inaccuracies of the observations (2.1b) can play havoc with
the estimate.

The mathematical extreme of this approach is to estimate :(t) by differentiating
the output O(t) several times. While this is not a practical approach, it does set a limit
on the observability inherent in the model (2.1). Of course this requires that (2.1) be
sufficiently ditterentiable or , we shall implicitly assume this throughout this paper.
If from the knowledge of 0(t) and its derivatives at one can uniquely determine
:(t), then (2.1) is observable.

To make this mathematically precise we must introduce some terminology. Let
OJ)(t) denote the jth time derivative of the ith output. This can be expressed using
Lie differentiation of the functions hi by the vector field f,

(2.2) J(t) LJy(hi)((t)).

L(hi)() is the jth Lie derivative of hi by f and a function of : defined inductively by

(2.3a) L(h,)() hi(),

(2.3b)
0

L}-( hi)() -(Lf- hi)())f().

The symbol (o/o)(hi) stands for the gradient of the function hi and is a ln
vector valued function of :. It is the local coordinate description of the one form dhi,
which can also be Lie differentiated by f. For our purposes the following suffices as a
definition

(2.4) Ly(dhi) d(Ly(hi)).

DEFINITION 2.1. This system (2.1) is observable at :o if there exists a neighborhood
a//of :o and p-tuple of integers (kl,." ", kp) such that

(i) kl >- kE>- >- kp >- O and ,P=I ki n.
(ii) After suitable reordering of the hi’s, at each : the n row vectors

{Uy-l(dhi): i= 1,. ., p; j 1,. ., ki} are linearly independent.
(iii) If (11,’", lp) satisfies (i) and after suitable reordering the n row vectors

{L-l(dhi)(): i= 1,...,p; j= 1,..., ki} are linearly independent at some

sc then (11,’", lp)>-_ (kl,’", kp) in the lexographic ordering [(/1 > kl) or
(11 k and 12> k2) or (lt- k, 12= k and 13> k3) or or (l k,..., lp
k)].

The integers (kl, , kp) are called the observability indices at sc.
This definition of observability is not the only one which has appeared in the

literature. See [4] and [5] for alternatives. It is equivalent to being able to take the n

functions {L-l(hi): i= 1,...,p; j= 1,..., ki} as coordinates in a neighborhood of

:o where no set of lower derivatives would suffice. If we abuse notation by letting

(2.5)

L(hi)(,f), then (2.1) becomes

4 1
11 12

where f L’(hi).
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Following Kailath [6] we refer to (2.5) as a system in observable form. It is not a
canonical form relative to the pseudo-group of state and output coordinate changes
because different output coordinates (or even different ordering of the outputs) lead
to different f’s.

LEMMA 2.2. The system (2.1) admits an observable form around o iff (2.1) ih
observable at o. The observability indices at o are the same as the k’s ofany observable
form (2.5) at o.

Let us consider how one might verify Definition 2.1 and Lemma 2.2 for a system
(2.1). Define g,o {0} and

g;k=Span{Uy-’(dh,)" i= 1,-.. ,p;j= 1,... ,k}

where Span indicates all linear combinations over the co functions of :. Each ,k is
a module ofone forms over this ring offunctions; such an object is called a codistribution
or Pfaffian system. Let Ek() denote the space of cotangent vectors obtained by
evaluating the one forms of k at sc. Each Ek() can be thought of as a space of n
vectors. Clearly k-lC k and Ek-l()c E(sc). Let dk() denote the codimension of
Ek-() in Ek().

LEMMA 2.3. The system (2.1) is observable at o with observability indices
(kl," ", kp) iff di() is constant in a neighborhood of for i= 1, ., n and d() n.
The relation between these sets of integers is given by

(2.6a) dk card { ki ki >- k},

(2.6b) ki max {k: dk >-- i}.

The proof amounts to an algorithm for transforming (2.1) to (2.5). It uses the fact
that k is invariant under change of output and state coordinates.

Proof. Suppose (2.1) is observable with indices (kl,’", kp); then Ek(sc) has as a
basis {L (,dh): 1,. , p; j 1,. , min (ki, k)} hence is of constant dimension.

On the other hand suppose dk() is constant for each k. After reordering the
outputs we can assume that the first d of the dhi’s are a basis for EI(:). We can
reorder the first dl of the outputs so that Ly(dh) i= 1,..., d2 and dh, i= 1,..., dl
are a basis for E2(:). We repeat the processes reordering the first d2 of the outputs so
that L}(dh): i= 1,..., d3 and the previous chosen basis for E2(sc) forms a basis for
U3(:). In this way we obtain n linearly independent exact one forms. The corresponding
functions are the desired coordinates j. Q.E.D.

3. Necessary conditions. While observable form is useful for deciding the observa-
bility of a system, it is not particularly helpful in constructing an observer. Suppose
there exist changes of coordinates x--x() and y=y(q) around o and o= h(sco)
which transform (2.1) into observer form

(3.1)
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The construction of an observer for (3.1) is straightforward Let zu evolve according
to

.tl zi2 + a(y) + qt(y zt)
2 z13 + c2(y) + q2(Y- Zl)

(3.2)

,l<=al<(y)+q<(y--Zll)
where qu are constants to be chosen.

If e0 x0 -zo, then

(3.3)

# Zp2 + ap(y) + qpt(y Zp)

The characteristic polynomial of this linear system is

(3.4)
i=1 j=0

where qio 1. Clearly we can set the spectrum arbitrarily so that the error decays
exponentially fast at any desired rate.

It is well known that every observable linear system can be transformed into
observer form where au is linear in y by linear coordinate changes in the state and
output [6]. However, even if we allow nonlinear coordinate changes and nonlinear
the analogous result for nonlinear systems does not hold.

PROPOSITION 3.1. If the system (2.1) admits an observer form (3.1) at o, it must
be observable at o with observability indices given by the k’s of (3.1).

Proof. Let W (0/0yj); then

so

dq,=

d
=.dy=,’

dy,,/’

1.__ Span {dy,,..., dyp} Span {dXll,... dXpl }.

Assume by induction that

mod j-2.

then

t-l(d) xlYtf-’ (dy) + Lf(aI2’)tJf-2(dy)

LJf- d = ald" LJf- dy

mod Ly(--)= g-,
mod -l.

But

{ dxi;+Lf-I(dy’)=-
0

if j+ <_- k,
mod gj--I

ifj+ > k,

so gJ is spanned by dxo, j <= k, mod ga-. From this we see that the dimensions of
E(sc) are constant. Q.E.D.
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DEFINITION 3.2. Suppose the nonlinear system (2.1) is in observable form (2.5).
We denote () the ring of polynomials in : with coefficients that are function
of 0. The degree of 0 is defined to be j-1 and the degree of the monomial
i,j, inj is the sum of the degrees of its factors, (jl-1)+’’ "+(j-1). k()
denotes the polynomials of degree k or less and () those polynomials of ()
which are generated by elements of k-(). In paicular, k+ is in k() but not
in ().

With this terminology available we can introduce our second necessary condition.
PROPOSIWION 3.3. Suppose the system (2.1) admits an observerform at o; then in

any observable form (2.5) the functions f() are in k,() for i= 1,’’’, p.
Proof Let (x) denote the polynomials in x with coefficients that are functions

ofy; in a similar fashion we define the degree ofxo to bej 1. k(x) are the polynomials
of degree k and (x) the subset of k(x) generated by elements of k-(X).

It is easy to see that Ly(k-(x))c (x) and G(-(x)) (x). For example
Xk, k k, is of degree k- and

Xik+l + ik(Y), k < ki,
aik(Y), k ki

is clearly of degree at most k. A similar calculation using the Leibniz rule shows that
monomials of degree k-1 go into monomials of degree k under Lie differentiation
byy

Notice that the changes of coordinates transform o()onto (x), i.e., ((x))=
(x) and o()= o((x))" Moreover ()= o() and (x)= (x) so ()is
transformed into (x).

We show induction that k() is transformed to k(x) and +() is transformed
to +l(x) for all k. If k N 2, then

where
P 01E e

j=l

This proves the above statement for k 1.
Suppose it is true for k- and suppose also that the generalization of (3.5) holds,

i.e., if k k

(3.6) , ,x+p,(x),

where p(x) -(x). If k k + 1, then

(3.7) ik+l Ly(ik): ik E Xjk+l @ Pik+(X)
kjk+l

where

(3.8) Pik+l(X) ( Olli (Olli) )k.j>=k \Oy.
ce+ + Lf \Oy/X.h + Lf(p,k(X)),

and hence Pik+l(X) (X). From (3.7) the statement follows for k+ 1. Q.E.D.
Actually we can deduce a slightly stronger result from the above argument.
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PROPOSITION 3.4. If a system (2.1) admits an observerform (3.1) around o, then
it admits an observable form (2.5) around o which satisfies f/() ok’(), i= 1,"" ", p.

Proof. Suppose y- q. Differentiating (3.6) with k ki yields

oq,, + (x)(3.9) f(:) ig ef(ik,)= 2 Pik+l
k ki

where pk(X) ’(X) is given by (3.8). Since y and Xk, ak, 0(X), the result
follows. Q.E.D.

DEFINITION 3.5. A system (2.5) is in special observable form if () ’(),
i=l,...,p.

Of course a system need not have a special observable form and such forms are
not always unique. As we shall see in the next section, they are a very useful intermediate
step between the observable and observer forms. We will also give necessary and
sucient conditions for the existence of a special observable form. Notice that if
k kp (e.g. p 1), then any observable form satisfying Proposition 3.3 is special.
his is because ,() ,().

4. Change of output coordinates and prolongation. Consider a system satisfying
the two necessary conditions of Propositions 3.1 and 3.3, namely, that it can be
transformed to observable form (2.5) wheref(:) k,(:). Suppose we take the obvious
approach and compare (2.5) and (3.1) to obtain differential equations for q(y) and
a(y) (aij(y)). For simplicity assume p and hence kl n. This approach yields

f2 1 Xl (X2 "" i 1)

(4.1) 3=d2 X X3 "t- if2 "" (X2 "t" O "t
d21/’/
dX----((X2-t-Oll),

d"q’(x+ c )".L n Oln " t - dx-l
The result is an nth order system of nonlinear ordinary differential equations for the
+ n unknowns q, al, , a,. If p > the situation is even worse, for we obtain a kth

order system of nonlinear partial differential equations for the p + n unknown q and
aij. Clearly a better approach is needed for all but the smallest value of p and n.

Our approach will be to separate the problem into two parts. The first step is to
derive a first order linear differential equation which essentially determines the change
of output coordinates q(y) if it exists. Once we have this, then we can use the method
of Krener and Isidori [1] to decide if the system can be transformed into observer
form and to compute the change of coordinates and a (y). This latter task we postpone
to 5. The rest of this section will be devoted to proving the following.

THEOREM 4.1. Consider a system in special observableform. If it can be transformed
to observerform, then the Jacobian () (Oti/OYj) of the change ofoutput coordin-
ates must satisfy

(4.2a)

and

(4.2b)

It 0 ifkj> ki
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We can normalize (tl,) by specifying that

(4.2c) xI,(q,) I.

A different initial condition amounts to a linear change of state and output coordinates.
Notation. We are using the semicolon to denote partial differentiation, e.g.,

Remark 4.1. Note that f:,;:2 e (sc since the system is assumed to be in special
observable form. Therefore the differential equation (4.2b) lives not on the state space
but on the output space as it should.

Remark 4.2. The equations (4.2b) are locally solvable iff the mixed partial condi-
tions are satisfied

Since must be invertible, this reduces to

(4.3) fi’lk,’r2;ml 4;- i;,k,;s2fs;mk,.;r2--fi’mki;r2;ll -- i;mk,;s2fs’tk.:r2
s=l s=l

fori, m,l,r=l,...,p.
Moreover, a solution of (4.2b) need not automatically satisfy (4.2a). This imposes

additional necessary conditions on the f’s, namely that their partials have the same
block upper triangular structure as , i.e.

(4.4) f,:lk,;j2 0 if kj >

Remark 4.3. Suppose xI, is a solution to (4.2); then g,(y) satisfies

(4.5)
aYa

Equation (4.5) is integrable iff the mixed partials commute. This is equivalent to

(4.6a) fi;ski;r2

It is useful to choose the solution so that g,o transforms to yO= 0, i.e.,

(4.6b) q,(0) 4,0= h().
Remark 4.4. Proposition 4.1 deals with a system in special observable form. Of

course any system which can be transformed into observer form must satisfy f(:)e
k’(sC) in any observable form. To bring it to special observable form requires a change
of output coordinates (q,) as described below.

Let Y(tt,), , YP (q,) be vector fields defined on the output space whose coordin-
ate descriptions relative to q, are given by

i
if i=j,

(4.7) Lyj(bi)-- i;jki+l if k > k,,
otherwise.

Notice that fi:.ik,+ is a function of 4’ alone since f(sc)e k,().
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THEOREM 4.2. Consider a system is observable form satisfying fi() k,(). It is
in special observable form relative to the transformed output coordinates (0) iff

(4.8) Lvj(bi) 0 for kj > ki.

There exists such a change of coordinates d/(b) iff the distributions

’= Span { YJ(o)" kj > ki}

are involutive for i= 1,..., p.
Recall that a distribution is a family of vector fields closed under addition and

multiplication by oo functions. It is involutive if the Lie bracket of any two vector
fields from the distribution is again in the distribution. The Lie bracket is defined in
local coordinates by

yi, yj]
O Y3

yi

note that it is again a vector field on the same space, in this case the output space.
Proof of Theorem 4.1. We start with a system in special observable form. For the

time being assume all of the observability indices are the same, k ke kp k,
so that n p. k. Let g() be the vector field on the state space which is the unit vector
in the k-direction, for j 1, , p. Equivalently these p vector fields are characterized
by the equations

{0,(4.9a) LgJLlf(t)i)= 6,

where 6 is the Kronecker 6 symbol.

0<__l<k-1

l=k-1,

We introduce the ad-notation for repeated Lie brackets

ado(_f)gj g, adl+l(-f)g [-f adl(-f)gi]

and the pairing of a one-form w() and vector field X()

(, x)() ()x().

In local coordinates the right side is the product of x n and n x vector valued
functions of . The Leibniz formula holds for this pairing under Lie differentiation

Therefore (4.9a) is equivalent to

(Llf-r( dd/i), adr(-f)gJ) Lad(_f)gJ Llf-r( di)
(4.9b) [ O, Or < k- 1,

6, 0r I= k- 1.

Suppose the system can be transformed into observer form by change of state and
output coordinates. Let B be the vector field on the state space which is the unit vector
in the Xk direction and J() be the representation of this vector field in coordinates.
Let f() and c() be the representations in coordinates ofthe vector fields represented
in x coordinates by Ax and a(y) where Ax is the linear part of the right side of the
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(4.10a)

differential equation of (3.1). In other words if x is the x0’s in lexographic ordering, then

/o
".. 0 0

0

A= 0 0

0

The output is given by y Cx and B (B ,

(4.lOb)

0

"’, Bp) where

/0

(4.10c) C 0 0
0 0 0

The ith diagonal blocks of A, B and C are of dimensions k, k,, k and k
respectively.

Viewing y Yi(,) as a function of : we have

L,jLl(yi Lty-r dy, ), ad (-f )
lLn_y),Ly r(dyi)

_{ O, ONrNl<k-1,
6, ON r l= k- 1.

From the proof of Proposition 3.1 we see that both g() (gl(),.. ", gp()) and
() ((),..., gP()) annihilate the codistribution k-1 which is of codimension
p. Moreover

L-’(d)L-’(dy) mod k-l
where () (OO/Oyj), hence (L-(dO), ())= and so

(4.10) =g.
Next we show by induction that

(4.11) adl(-f)=ad(-f) forj=l,...,p, /=0,...,k-1.

Suppose (4.11) holds for/-1; then since f()=f()+ (), we have

ad’ -f)y -If+
ad(-f)"i -[6, ad’-(-f)].
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In x coordinates adt-l(-f).i=Al-B and -[a, adl-(f)] is (Oa/Oy)CAt-lB=O.
Moreover since adl(-f)gs(sc) is the constant vector field AtB in x coordinates for
s=l,...,pandl=0,...,k-l, it follows that

(4.12) [ad-i(-f)g ", adt(-f)g]=O

for r, s 1,. ,p and j, l=0,. ., k- 1. (Note: A is the/th power of A, B the sth
column of B.)

The Leibniz rule applied to (4.10) yields

(4.13a) ad-(-f)
/=1 =1

(4.13b) ad_(_f) - (o).
j=l o=1 j

From (4.12) we see that

(4.14) 0= {Lf(d,), [ad-(-f)r, ad-l(-f)s]}
and if we expand the right side using (4.13), most of the terms drop out because of
(4.9). We are left with

p

0=
p,=

(4.15) + (k-

From (4.13) and the identity L.(dqi)=f we obtain

E f,;,,k:o2o= E (k 1) ()o+ (
p, p,

Multiplication by - yields the desired result (4.2).
Now suppose the observability indices are not all the same kl>=’’’ -> kp. By

hypothesis the system is in special observable form relative to the output q. Moreover
by the proof of Proposition 3.4 the system will also be in special observable form
relative to the output y.

Theorem 4.2 implies that the change of coordinates y y(q) satisfies the equations
(4.8) with y q, i.e.,

OY---2- 0 for k > k

because f:,+ =0. This implies (4.2a).
To show (4.2b) we prolong the system, i.e., define a new system similar to the old

but with all observability indices equal to the largest index k of the old. We do this
in such a way that the new system is transformable to observer form by 0 and c itt
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the original system is also. Moreover the form of the differential equations (4.2b) for
is left invariant.
In order to simplify the exposition, we will restrict to the case where there are

two distinct observability indices kl k and k2 k-1 of multiplicities p and P2. The
general case follows by repeated application of this technique. Let y denote the first.

Pl ouptuts and Y2 the last P2 outputs; each sco is a Pi vector, etc. The original system
and its transformed version are

ij+l, <=j < ki,
(4. 7) i [.f, j

for i= and 2.

Yi Xil,

ij

Xij+ -- ceq(y),
Ol iki(y

The prolonged system and its transformed version are in different variables but
the same function q(. and a(. should accomplish the transformation,

{o+, <-j < k,, o + ao(), <-_j <= k,
(4.18) ij [f, j= kl,
where

(4.19a) O2k ---0,

(4.19b) f =fl,

0 2
2 k

(4.19C) f2= _---]7-_ (at/’)22a’I/’2 (2k,--f2) + ’ ’, f2,ij’j+l.
i=lj=l

Of course the functions on the right side of (4.19) are to be evaluated on the new
(barred) variables. Recall also that by Proposition 4.2

_a_0.
OY

The claim is that (4.17) holds if (4.1g) does. To see this notice that the straightfor-
ward approach (4.1) described at the beginning of this section yields almost the same
set of differential equations. The only difference occurs at the k and k k+ time
deriwtiws of 2 and . At the kth derivative we have

(4.20a) f() =(aZk+’" ")+’’’,

(4.20b) , (2, + az+"" ").

Assuming that (4.17) holds and (4.18) holds up to this equation, then comparing (4.20)
and the earlier equations yields

(4.21)

Now (4.18) will hold if the derivative of this is consistent with

(4.22) , f().

But differentiating (4.21) yields

0 2 k.

(4.23)
i=1 2j=l

as desired.
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On the other hand suppose (4.18) holds. The differential equation on the right
restricts to the hyperplane given by X2k, 0. This transforms to the hypersurface given
by :2k, =f2(:). The restricted systems are precisely those of the original (4.17). Q.E.D;

This completes the proof of Theorem 4.1 in the course of which we have used
Theorem 4.2.

Proof of Theorem 4.2. We start with a system in observable form satisfying
f(sc k,(:) and at least two distinct observability indices, (if the observability indices
are all the same there is nothing to prove.) Similar to before we define vector fields
gl(),..., gp() to be the unit vectors in the lkl, pkp directions, i.e.,

I0, 0 <- < ki- 1,
(4.24) LgLlf d/i) 6, l= k,- 1.

As we noted before in 2 the codistributions

k=Span {Lf(dh)" <=i<=p; O<=l<k}

are invariant under changes of state and output coordinates. The vector fields g , gP
and their brackets under f span the dual distributions, k= g,kz, given by

@k Span {adl(-f)gJ" k > k, O<-_ < k k}

hence these are also invariant. Moreover the distribution obtained by bracketing the
elements of k, with f up to k times is also invariant; we denote this by

k’ {adl(--f)gJ" k > k O<-_ < k}.
It is straightforward to verify that

i
if i=j and 1= kj- 1,

L,,d’(_fg(O) :jk,+l if kj > k and l= kj- 1,
otherwise,

so the image of k, under dth is precisely the distribution 0 on the output space. This
shows that is independent of the output coordinates.

Now suppose we wish to choose output coordinates q so that relative to these
coordinates we have the special observable form; then dq must annihilate . Hence
q must satisfy (4.8).

But 0y c__ 2 c__. .c__ P so dq, , dqp also must annihilate the p- dimensional
distribution 0y. hence must be involutive.

On the other hand if each is involutive, then we can choose p independent
functions q,..., qp such that dq +/- 0y. This is the desired output coordinate
change. Q.E.D.

5. Sufficient condition. Let us review the previous sections. We start with a non-
linear system (2.1) around some nominal operating point sc for which we desire to
build an observer. We first check that it is observable at o by attempting to transform
it into observable form (2.5); then we check iff() e k,(sc as described in Proposition
3.3. Next we attempt to make a change of output coordinates to get it into special
observable form as described in Theorem 4.2. If this can be achieved, then we attempt
to solve equation (4.6) using Theorem 4.1 to find the output y =y(q). If we are able
to accomplish all of this, we have the system in the form

(5.1a) =f(:),

(5.1b) y h(sC),



210 ARTHUR J. KRENER AND WITOLD RESPONDEK

(5.1c) c(0 o
which we wish to transform by change of state coordinates : :(x) into

(5.2a) 2 Ax + t(y),

(5.2b) y= x,
(5.2c) y(0)

where A, C are as in (4.10) but with possibly varying block sizes determined by the
observability indices k,..., kp. The diagonal blocks of A and C are k k and k
respectively.

The scalar output (p 1) version of this problem was solved by Krener and Isidori
[1]; the following theorems are straightforward generalizations.

THEOREM 5.1. Let ,(),. ,P() be vector fields defined by the equations

0, 0<_- 1<= k- 1,
(5.3) tLy(y, , k, 1.

There exists a change of coordinates transforming (5.1) to (5.2) iff
(5.4) [ad(-f), , ad*(-f)]] O

for i, j 1, , p, k O, , k- 1; 0, , k- 1. The appropriate coordinates x
(Xk) are such that the vector field ad k,-k(_f), is the unit vector in the X,k direction,

(5.5)

The appropriate functions a (a) can be computed by applying the state coordin-
ate transformation to (5.1) and comparing the result with (5.2) or by solving the
equations

(5.6) Ladk,(_f),,(Xjl).

These are always solvable if (5.4) holds.
Remark 5.1. The repeated Lie brackets of vector fields X, X2 and X satisfy the

Jacobi identity

(5.7) [xl[x2, X3]] [IX 1, X2]X3]-I-[X2[X1, X3]].
This leads to considerable redundancy in the conditions (5.4). Suppose the conditions
hold for any k < k,, < k and k + < r.

If k+l=r, applying (5.7) we obtain

[adk(--f)g i, adl(-f)gJ]=--[adk-l(--f)g i, ad+(-f)g ]
(5.8)

+[f[adk-’(--f)g, ad(-f)g]]
but the second on the right is zero by assumption. Hence for each i, j and r we need
check (5.4) for only one value of k and summing to r. Moreover because of the
skewsymmetry of the bracket, (5.8) is skewsymmetric in and j if r is even and
symmetric if r is odd. Therefore for even r we need only check for i<j and for odd
rfor i-j.

In particular if p 1, (5.4) need only be checked for k l- and 1,. ., n- 1.
The condition that f(sc) ,(:) and the basic differential equation (4.2) are

implied by (5.4) and as we shall see in the examples are sometimes equivalent to (5.4).
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Remark 5.2. Suppose we have a system in special observable form relative to the
output q and we have computed , the solution of (4.2). It is not necessary to compute
g(y) to verify (5.4).

If g, gP are the vector fields defined by (4.24), then they are related to,..., P by (4.10). With the help of (4.13) we can convert (5.4) into a family of
differential equations which must satisfy.

Proof of Theorem 5.1. Suppose there exists a change of coordinates sc= :(x)
transforming (5.1) to (5.2), then the vector fields , , P are transformed to constant
vector fields in the Xik, direction. Let B be as in (4.10) with block sizes determined by
the observability indices, the diagonal blocks are ki 1.

Then adt(-f)g AtB for j= 1,...,p and/=0,..., kj_ so clearly (5.4) holds.
(Note" A is /th power of A, B the jth column of B.)

On the other hand suppose (5.4) holds. These are the integrability conditions for
the set of partial differential equations (5.5) so there must exist coordinates x in which
adk-(_f) is the unit vector in the xt direction.

We wish to compute Lf(xj).
If <-k<-ki,

OXik
Ladk,-k(-y),’Ly(xt)= Ladk,-k+’(--f),’(Xji)-t LyLadk,-(_y).’(xt).

From (5.5) we see that

But xil --Yi SO

02j,_ j+’ if k > 1,
cgXk I, Ldk -y)’(Xt) if k 1.

I xt+, + at(y), < kj,
xt

t ajkj (y ), kj

where at is the solution of (5.6).
These are first order partial differential equations so they are solvable if the mixed

partials agree.

000tj.___l_. Ladk_,(_f),Ladk,(_f),,(Xjl)
OYr OYi

L[adk,-,(_f)r, adk,(_f)’](Xjt) L,d,(_]),, Ladkr-’(--f)’(Xjl).

The second term on the right is zero by (5.5). Skew symmetry, the Jacobi identity
(5.7) and (5.4) yield

[adk,-(-f)r, adk,(--f)’]=[adk,-’(--f), adk,-’(--f) ’]
SO the mixed partials agree. Q.E.D.

6. Systems with inputs. The previous method can be easily generalized to handle
systems with inputs

(6.1 a) =f(:, u),

(6.1b) q h(),

(6. c) o= :(0),

(6.1d) go= h(o).
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(6.2a)

(6.2b)

(6.2c)

(6.2d)

We seek a change of output and state coordinates which transforms (6.1) into

Yc Ax + y(y, u),

y= Cx,

x x() O,

yO u(O) O.

If A, C is in dual Brunovsky form as given by (4.10), we say that (6.2) is in
observer form. The system

(6.3a) : (A + GC)z + y(y, u) Gy,

(6.3b) z(0) =0

tracks (6.2) with the error e x-z having dynamics

(6.3c) .=(A+GC)e,

(6.3d) e(0) x(:(0)) 0.

Once again by proper choice of G we can insure that e(t) goes to zero with arbitrary
exponential decay.

To reduce this problem to the one considered previously we first choose a nominal
input, either a constant u or a function of , u(O). From a mathematical point of
view the choice is immaterial. But of course the mathematical model is never an exact
description of the real world; to reduce the effect of modeling errors the nominal
control should be typical or average in some sense of the controls that will be employed.

We then rewrite (6.1a) as

(6.4)

where

(6.5a)

(6.5b)

=f(:) +f’(s u)

fo() =f(, uO((:))),
f’(s, u) =f(, u)-f()

and proceed as before with the unforced system (6.6) and (6.1b, c, d)

(6.6) =f(s).
If this can be transformed into observer form (6.7) and (6.2b, c, d)

(6.7) := Ax + o(y)

by change of state and output coordinates, then all one need check is that f(:, u) is
transformed into a vector field of the form

(6.8) (y,u).

If this is possible, then y(y, u)= a(y)+(y, u) and the problem is solved. If
unforced system (6.6) and (6.1b, c, d) cannot be transformed into observer form.or
f(:, u) does not transform into (6.8) then the original system (6.1) cannot be trans-
formed into observer form (6.2).

As we remarked before the choice of the nominal control u(q,) is immaterial; a
system (6.1) can be transformed into observer form (6.2) iff every unforced closed
loop version (6.6) can be transformed into observer form by the same changes of
coordinates.
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Two nonlinear coordinate changes which transform a system (with or without
inputs) into observer form differ by a linear change of coordinates. For such systems
the output feedback u u(qJ) attects neither the observability nor the observability
indices. However it is possible that (6.1) does not have an observer form yet one or
more unforced closed loop versions do. If there is more than one, then typically these
will involve different coordinate changes and perhaps even different observability
indices.

7. Examples. We consider several simple cases ofthe above method for transform-
ing a system into observer form.

Example 7.1. p 1, n k 2. In observable form we have the. system

(7.1) 2, o=
/

/) fro .
=fl(),

Proposition 3.3 requires that fz (); hence

(7.2) f2() a(,) + b(,)+ c(,).
If this holds then since there is only one output the system is in special observable
form, i.e., f (). The differential equation (4.2) for d/dy is

d
(7.3)

d f;2;2"()= c(@)*();
the solution is

(7.4) (q,) exp (v) dv,o
where we have normalized the constant of integration so that (q) 1. Next we check
condition (5.4) using the identities (4.13)

g ad(-f)g ad(-f) [, ad(-f)]

(l) (;)
Equation (7.3) implies that (5.4) holds and hence the system can be transformed into
observer form.

The required change of output coordinates is obtained by integrating (7.4) to

(7.6) y()= exp () d do o
where $o= and the limits of integration have been chosen so that y($)= 0. Since
$ and y x this gives half of the change of state coordinates. The other coordinate
x2() must satisfy (5.5) which reduce to

(7.7)

From (7.5) this becomes

L,(.) 1, Lad(_f)g(x2) O.

(7.8) cx2 -ald’-l ( b’-2c2) OX2
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These are easily integrated to obtain

(7.9) x2(s) -12- :- -(v)b(v) dv

where the constant of integration has been chosen so that x2(:)= 0.
Finally we compute a. Comparing the time derivative of (7.6) with (7.9) yields

(7.10) tl(l) + W-(v)b(v) dr.

Time differentiating (7.9) yields

(7.11) a2(l) -l(,)a(,).
Notice cri ai(O) ai(O(y)) as desired.

Hence we have that an n- 2, p system can be transformed to observer form
if[ it satisfies Proposition 3.3.

Example 7.2. n- 20, kl kp- 2. The analysis is very similar to previous
example. In observable form we have for i- 1,..., p.

(7.12)

for k= 1,...,p. We rewrite (7.13) as

(7.14)

If the integrability conditions

(7.15)
oFk

xI [’kxIt"

are satisfied, we have the solution

(7.16)

FIFk FkF

Let

g2 X X2

Again f must be quadratic in i2 SO

f({) a,({,) + b,(,)z+{c,(,){
where a is a scalar and b (bi) and c (x) are xp and symmetric p xp matrix
valued functions. The paial differential equations (4.2) become

0
(7.13) 0 1=,

It is convenient to define p p matrix valued functions
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Again (7.14) insures us that (5.4) holds, so the changes of coordinates exist. The change
of output is obtained by integrating (7.15) via the line integral

(7.17) y(q,)= xI,- ,) d,.
q,o

This is also half of the state coordinate change; the other half x2(:) satisfies (5.5)
which becomes similar to

OX2 ( P ) OX2 /t-1(7.18) a:
-,t,- b + =, r: aa

where b is the p x p matrix whose i, jth entry is the jth entry of b. The solution (7.18)
is

*-l()b() d(7.19) x() =,-1-

_
e

where the last term is a line integral. The computation of is as before and given by
the vector versions of (7.10) and (7.11).

Hence a 2p n, kl kp system can be transformed to observer form iff it
satisfies Proposition 3.3 and the integrability conditions (7.15).

Example 7.3. p 1, n kl 3. In observable form we have the system

=1,

(7.20)
1 2,

d =f.
Proposition 3.3 requires that f be of the form

f( a(+b(+C(l+a(l
(7.21)

+ (o(1 +(1).
The basic differential equation (4.2) is

d

d
and the solution is

* ()
(7.23) (q) exp d,.

+o 3

If we use (4.13), then after a laborious calculation (5.4) reduces to the two differential
equations

2
(7.24a)

dtr 3
d + o"2,d:,-2

(7.24b)
d:

c + ptr.

Hence a p 1, n 3 system can be transformed to observer form iff Proposition 3.3
and equations (7.24) are satisfied. The rest of the calculations proceed as before.
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Example 7.4. p 2, n 3, kl 2, k2 -1. In observable form we have

(7.25)

where by Proposition 3.3

(7.26a)
fl()-" a(l) + b(:l):12 q- c(l)T,

(7.26b) f2(:) p(:l) + r(:,) :, 2
First we transform this to special observable form by Theorem 4.2. We seek q2(q)

such that

Ly’(2)=0 where y=(l)=(l](7.27)
\ /\/f;l-r(l)

or

0q,___ + (q, 0q,
o"

O O2

This is always solvable. In observable form (2.5) relative to the new outputs
and q we have

(7.28a) aT()= (:’)+/(:’) :’2 + (,).2,
(7.285) 2()-- (l)"

At this point the presence of the second output is immaterial and we proceed essentially
as in Example 7.1 carrying I//2 --21 as a parameter. Hence a p 2, n- 3, kl 2, k2-"
system is transformable to observer form iff it satisfies Proposition 3.3.
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IDENTIFICATION OF PARAMETERS IN DISTRIBUTED
PARAMETER SYSTEMS BY REGULARIZATION*

COSTAS KRAVARISft AND JOHN H. SEINFELDt

Abstract. Identification of spatially varying parameters in distributed parameter systems from noisy
data is an ill-posed problem. The concept of regularization, widely used in solving linear Fredholm integral
equations, is developed for the identification of parameters in distributed parameter systems. A general
regularization identification theory is first presented and then applied to the identification of parabolic
systems. The performance of the regularization identification method is evaluated by numerical experiments
on the identification of a spatially varying diffusivity in the diffusion equation.

Key words, system identification, parameter estimation, distributed parameter systems, inverse problems,
ill-posed problems, regularization

1. Introduction. Consider the following distributed parameter dynamic system:

0u
(1.1) +A(t)u =f in i-I ]0, T[,

0t

(1.2) u(x, O) Uo in

(.3) nu=g, j=0,...,m- onr]o, T[,
where [l c R" with boundary F and 0 < T < c and where

(1.4) A(t)u= E (-1)lplOPx(apq(X, t)Oqxu),
Ipl,lql<-m

(1.5) Bju E bjh(X, t)Dhu, j 0,’’ ", rn- 1,
Ihl<=mj

with 0<= m order of B <-2m- 1.
The parameter identification problem associated with (1.1)-(1.5) can be stated as

follows: Assuming the input function f, the initial condition and the boundary condi-
tion(s) to be known, and given an observation of u, determine the system operator
A(t), i.e. the parameters apq(X, t).

A number of important physical identification problems fall within the above
framework. For example, the partial differential equation

a(x, y) a(x, y) =f(x, y, t)
Ot OX -X -y

governs the temperature distribution in an inhomogeneous solid or the pressure
distribution in a fluid-containing porous medium. The local flux of energy or fluid is
dependent on the value of the parameter a. For example, in the case of fluid flow in
a porous medium, a is termed the transmissivity. For models of petroleum reservoirs
and subsurface aquifers the transmissivity is generally inaccessible to direct measure-
ment, and its value must be inferred from measurements of the pressure u at wells.

* Received by the editors December 14, 1982, and in revised form April 2, 1984.

" Department of Chemical Engineering, California Institute of Technology, Pasadena, California 91125.
t Present address: Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan

48109.
The boundary condition parameters bib(X, t) may also be unknown, although we do not consider that

case here.
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Because ofthe economic importance ofknowing accurately the properties of subsurface
aquifers and petroleum reservoirs, a great deal of effort has been expended in developing
techniques for determining transmissivity from measurements of pressure [5], [9], [10],
[12], [14], [24], [25], [32]. The determination of a from data on u is a special case of
the general linear parabolic system identification problem introduced at the ou.tset.
Specifically, given f, the initial condition and appropriate boundary conditions, and
given measurements Zd, of U (Xi, Ys t) at a set of discrete spatial locations, 1, 2, ,
it is desired to determine, or identify, a(x, y).

The key difficulty in developing successful numerical techniques for identifying
spatially-dependent parameters is the fact that such problems are ill-posed. To see
this, consider (1.6) as a first order hyperbolic equation in a. One can easily show that
the characteristics to(x, y) c are orthogonal to the lines of constant u. Thus, one can
define a new curvilinear coordinate system (eu, e) so that eu is unitary in R2 and the
metric factor in the to-coordinate is 1. Equation (1.6) can be written as

(1.7) IVul ( lVul) =---f where [Vu[

Upon integration of (1.7), we obtain

I (c3u/c3t-f) dl,,,
(1.8) c(x, y) =

IVul
where integration is performed along the characteristics and lo denotes Lebesgue
measure along the characteristics. Ill-posedness follows from the fact that the differenti-
ation operator is not continuous with respect to any physically meaningful observation
topology. The fact that the identification problem associated with (1.6) is not well-posed
can also be illustrated by counterexample [32]. In summary, the problem of identifying
spatially-dependent coefficients appearing in the differential operator of a partial
differential equation is, in general, both nonlinear and ill-posed [17], [18].

The customary way to approach the identification of a in (1.6) has been by
least-squares, i.e., by minimizing the functional

(1.9) As [u(xi, Yi, t)-za,]2 dt

subject to (1.6), initial and boundary conditions. There have been two ways of treating
the unknown parameter a. In the first, c is considered as an element of an infinite-
dimensional function space [9], [5], whereas in the second, the minimization is per-
formed over a finite-dimensional subspace, reducing the problem to one of determining
a finite number of constant parameters [10], [12]. When the number of parameters is
kept small in this approach, a well-behaved solution results. However, the modeling
error introduced is significant, since the corresponding subspace of a’s is too restricted
to provide a good approximation of an arbitrary a. As the number of parameters is
increased, on the other hand, numerical instabilities appear, manifested by spatial
oscillations in the estimated a, the frequency and amplitude of which are inconsistent
with the expected smoothness of the true a. The symptoms usually also include a fiat
global minimum in JLs [24], [25], [32]. The same instability phenomena characterize
the minima of JLs over an infinite-dimensional function space. One approach that has
been somewhat successful in alleviating numerical instabilities involves the incorpor-
ation of a priori statistics concerning a into the minimization by adding a Bayesian
term in the performance index (1.9) [14], [24]. The major drawback to this approach
is that reliable a priori statistics for a are seldom available. Thus, there is a need to
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develop a rigorously based approach for identifying parameters in partial differential
equations from noisy data that is numerically stable and physically consistent with the
expected character of the unknown parameters.

The numerical instabilities and ill-posed nature of the problem of interest strongly
suggest a regularization approach. "Regularization" of a problem refers in general to
solving a related problem, called the regularized problem, the solution of which is
more regular, in a sense, than that of the original problem and approximates the
solution of the original problem. When referring to ill-posed problems, regularization
is an approach to circumvent lack of continuous dependence on the data. The regular-
ized problem is a well-posed problem whose solution yields a physically meaningful
answer to the given ill-posed problem.

The idea of regularization of ill-posed problems was first proposed by Tikhonov
[27], [28] as a method of solving linear Fredholm integral equations of the first kind.
Further development of the theory for ill-posed linear operator equations followed
[23]. Modern practical numerical methods for the solution of linear Fredholm integral
equations involve regularization [31].

The object of the present work is to develop a regularization theory for the
identification of parameters in distributed parameter systems. In 2 we define the
parameter identification problem in an abstract manner that facilitates proof of the
major theorems. The concept of identifiability is discussed in 3. In 4 and 5 a
general regularization identification theory is presented. In 6, 7 and 8 the theory is
applied to the identification of parabolic systems from distributed and point observa-
tions. Finally, in 9 numerical results are given for the identification of a spatially-
varying diffusivity in the one-dimensional diffusion equation.

2. Problem statement. To develop a general identification theory, we introduce
the following abstract problem.

Let , U and F be Banach spaces. Consider a system described by

(2.1) (A,u)=f

where is a mapping, not necessarily linear, from s U into F. We assume"

(A1) is of Ck-class (k => 1).
(A2) There is an open subset c of and an open subset Uc of U such that

’qA (2.1) admits a unique solution u U.
(A3) VA g, tu U, (O/Ou)(A, u) is a linear homeomorphism of U onto F.
Furthermore, consider that A depends on a set of parameters A belonging to the

Banach space A. The set of physically admissible A is Aad --A. We assume:
(A4) A: A is of Ck-class (k->_. 1).
(A5) Aad is a norm-closed convex subset of A.
(A6) a(ad)
Now from the implicit function theorem ([26, pp. 277-304]) we have:
PROPOSITION 2.1. Assume (A1)-(A3) are valid. Then the implicitfunction, u (A),

defined as the solution of (2.1) is of C k-class from into U. Its first derivative is given
by

(2.2) ’(A) -;--(A, u) 2-7(A, u) VA 6 c.

Equivalently, ’(A) associates 6A g 6u =-’(A) 6A U, where u is the solution of

(2.3)
0 0
(A, u). 6u+ (A, u). 6A=0.
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As an immediate consequence, we have
PROPOSITION 2.2. Assume that (AI)-(A4) and (A6) are valid. Then dp A: Aa, --> U

is of Ck-class. Its first derivative (dp A)’(A) associates tSA Aad-> tSu U, where Su is
the solution of

, o,
,(0---(A(A), u). u+-(A(A), u)o A A). A =0.

Now the identification problem can be posed as follows"
Knowing the mappings " M x U--> F and A’A-, M and the element fe F and

given an observation of u, find A Ad to satisfy (2.1).
We need to be precise about the nature of the observation of u. Thus, consider a

Hilbert space (observation space). Denote by Ae the canonical isomorphism of
onto ’. Also, consider an observation operator, not necessarily linear, : U--> and
assume

(AT) is of Ck-class (k 1).
The situation is depicted in Fig. I.

PARAMETER OPERATOR SOLUTION OBSERVATION
SPACE SPACE SPACE SPACE

F1G. 1. Function spaces for the abstract identification problem.

3. Identifiability. The identification problem, as defined in 2 can be viewed as
solving in Au the (nonlinear) operator equation

(3.1) dp A)(A Zd.

Before one develops an identification method, two key issues need to be examined:
(a) Whether equation (3.1) admits a unique solution (identifiability).
(b) Whether the solution of (3.1) depends continuously on the data Zd (stability).
The purpose of this section is twofold:
(i) To discuss the available concepts of identifiability and introduce two new

concepts: conditional identifiability and pointwise identifiability. The latter is a special
case of the former and will play an important role in 4 and 5.

(ii) To stress the importance of stability and illustrate (through homogenization
theory) why identification of spatially-varying parameters in distributed parameter
systems is unstable. Also, to point out that stability is a necessary condition for output
least-square identifiability. These considerations will motivate the treatment of identifi-
cation problems as ill-posed problems.

DEFINITION 3.1 [4], [15], [7]. A parameter A is said to be identifiable in A,d for
the observation operator , if the mapping (parameter-, observation) is injective, i.e.
if (I:, A’Aad -> has a unique inverse.

DEFINITION 3.2. A parameter A is said to be stable in Aad for the observation
operator , if ( A)- is continuous.
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Remark. In case of nonidentifiable A, stability is understood in the sense of
continuity of multiple-valued mappings.

The identifiability of the parameter a(x) in

(3.2) a(x) fCOt

from a distributed observation of u, i.e. an observation of u(x, t) in 1)x]0, T[, has
been studied by [15] (one spatial dimension) and [4] (several spatial dimensions). It
has been shown that in general a(x) need not be unique [15]. However, if the set
E(t)={xI(COZd/COx)(x t)=0} is nonempty for every t]0, T[ and f’)tlO.Tt E(t) is of
measure zero, then a(x) is unique. The result in [4] is similar to that in [15], but
involves quite restrictive assumptions concerning V Zd and V:zd. Thus, these results
establish that a(x) in (3.2) is not identifiable in the sense of Definition 3.1; however,
under certain additional conditions on Zd, there corresponds a unique a(x),

Due to the conditional nature of most distributed parameter identifiability results
(see [7] for a review), we find it important to introduce a weaker concept of identifia-
bility.

DEFINITION 3.3. A parameter A is said to be conditionally identifiable in Aad with
respect to , if the restriction of the mapping c A" Aad " on the set
(c A)- has a unique inverse.

A degenerate case of conditional identifiability is obtained when is a point
set, i.e. = {d}c c((A(Ad))).

DEFINITION 3.4. A parameter A is said to be pointwise identifiable in Aa for the
observation d c((A(A,d))), if d has a unique preimage with respect to the mapping
oo A:Aad .

The concept of pointwise identifiability is the weakest possible concept of identifia-
bility. It will be used in 4 and 5 (Theorems 4.3 and 5.3).

As we have noted, the identification of distributed coefficients appearing i the
differential operator of a partial differential equation is, as a rule, an unstable problem
[18]. The homogenization theory [2] shows that operators with highly oscillatory
coefficients can be "replaced" by very different operators and still yield practically the
same response. Lions 18], has, in fact, cited the main difficulty in identifying distributed
coefficients in partial differential equations as preventing excess of oscillations in the
coefficients.

To illustrate the power ofhomogenization theory in proving instability ofidentifica-
tion problems, let us consider the problem of identifying a(x) in (3.2).

Let Y ]0, yO[ x ]0, y[x. x]0, yO,[ c R" and a R" + a function with properties

(ii) a(y)>-ao>O a,e. in y;
(iii) a(y) is Y-periodic i.e. it admits a period yO.j in the direction y;, j- l, n.
Denote a(x)= a(x/e), e > 0. Now given fi a bounded open subset of " and

T> 0, consider

COu CO ( COu ]0, T[,a (x) =f infl
cot j=

(3.3)
u(x, O)= Do(X) in

boundary condition.
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Observe that as e 0, the a"s are highly oscillating functions. They converge in a
weak sense"

(3.4)

a(a) inL()weak-* (i.e. lnadxf, (c)bdxVchL’(f)),
where (a) /meas Y) v (Y) dy.

The question now concerns the behavior of the solution u of (3.3) as e 0. it is
tempting to believe that u converges to the solution of

Ou
-(a)Au =f inf ]0, T[,
Ot

(3.5) u(x, O)= Uo(X) in f,

boundary condition.

But this is untrue [2, p. 242]. The correct result is given by the following proposition,
which is an immediate consequence of a general result for second-order parabolic
systems [2, pp. 241-243].

PROPOSITION 3.1. The solution u of (3.3) converges in L2(- ]0, T[) to the solution

of the following homogenized problem"
Ou
---Au f in l ]O, T[,
ot t(/)

(3.6) u(x, O) Uo(X) in

boundary condition.

Thus, for sufficiently small e, u is approximately equal to the solution of (3.6);
however a and 1/(1 / a) can be very different.

The least-squares approach to distributed parameter system identification [4], [8]
can be stated as follows"

Given Zd Y(, find Aad tO minimize the functional

(3.7) Js(h ((A(h )))- Zd

Conceptually, the least-squares approach consists of two steps:
(a) Project Zd in Sd on the set ((A(Ad))).
(b) Find in Ad a preimage h of d for the mapping A.

It is therefore natural to inquire if a projection of an arbitrary Zd g on the set
c((A(Ad))) exists and is unique. Also, when Zd is perturbed slightly, does the
perturbation correspond to a small change in ,?

DEFNrrON 3.3 [6]. A parameter h is said to be output least-square identifiable
(OLSI) in Aod for the observation operator , if there exists a neighborhood
((A(Ad))) such that for every Zd the least-squares estimate is unique and
depends continuously on Zd.

It is easy to see that the following are necessary conditions for OLSI"
(i) Existence of a neighborhood D c((A(A,d))) such that every Zd has

a unique projection on ((A(Aad))).
(ii) Well-posedness of the identification problem for every Zd ((A(Aad))),

i.e. both identifiability and stability of h in A,d w.r.t, c (in the sense of Definitions
3.1 and 3.2.).

It has been shown in [6] that with Aa convex and A sufficiently regular,
satisfaction of (i) can be guaranteed. Condition (ii) is the key one" unless a parameter
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is both identifiable and stable, the least squares approach will not produce a reliable
estimate.

4. Identification by regularization. Let us return to the general identification prob-
lem of 2. in order to regularize the parameter A, we introduce a more regular space, for which we assume"

(AS) is a Hilbert space.
(A9) is densely imbedded in A.
(A10) The imbedding operator from into A is compact.
Define ad c Aa. With (AS) and (A9) it readily follows that ,a is a norm-

closed convex subset of .
We now introduce the stabilizing functional

and the smoothing functional
(4.2) Jo(A Js(A + flJs(A ), A ,a
where > 0 is the regularization parameter. Identification by regularization proceeds
as follows. Given za and fl > 0, find A0 a so as to minimize J0 (A).

In this section we establish the basic results concerning the regularization method.
The first result concerns differentiability of the functional J(A).

THEOREM 4.1. Assume that (A1)-(A4) and (A6)-(A9) are valid. en thefunctional
(4.3) J(h) ((A()))-z II+ I1 I1
is of C-class. Its first derivative J(X)" is given byz

(4.4) J;(1). I (A(1), u). A’(1). I, 0 +2(I, I)
FF’

where u is the solution of (A(1), u)=f and 0 is the solution of

(4.5 ((, ul o -[’(ul]*((ul-.
oo (A1)-(A4) and (A7) imply that Js(1) (.(A( 1 is of C-class

with respect to the A-topology. Due to (Ag), Js(1) will also be of C-class with
respect to the N-topology. Hence Jo(1) is also of C-class.

Existence and uniqueness of the solution of (A(1), u)=f is guaranteed by (A2)
and (A6).

Existence and uniqueness of the solution of (4.5) follows from the following facts:
(a) -2[’(u)]*A((u)-e)e U’, since

((ul- e , . ’, [’(ul]*.’ u’.

(b) [O/Ou(A(1), u)]* is a linear homeomorphism of F’ onto U’, as a result of
(3.

Let us now calculate the first derivative of J0(1). For eve I e A we have

j;(l. =(’(ul. u, (ul-l+(,)
=(’(u. u, ((ul ,+(,
(u, [’(u]*((ul- ,+ (, .

Given a Banach space X and its dual X’, we denote by (.,.)xx’ the duality between X and X’. Given
a Hilbe space , we denote by (.,.) the inner product in .
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Taking into account (4.5) we have

J’ A ,A u, -u A, u P

---u (A, u). 8u, p + 2/3(8, a).
FF’

Finally, from Proposition 2.2,

J’(h 8 (0A(A, u) a’(h 8h, p) ,+ 2fl(h’ A).

This completes the proof.
The next theorem establishes the existence of a global minimum of J (A) on tad.
We recall the following lemma.
LEMMA 4.1. Let and A be Banach spaces and assume that gt is compactly

weak-top of 9t norm-top of Aimbedded in A. If x, x, then x, x.
THEOREM 4.2. Under assumptions (A1)-(AI0), the functional

admits a global minimum on 9aa.
Proof. Let m infao J(a). Clearly, m -> 0. There is a minimizing sequence {a,}

in 9aa such that lim,_, J(h,)= m. Clearly, we may assume that

Then, for every n

i.e., {h,} is norm-bounded in 9. Hence, there is a subsequence {h,k} that converges
in the weak topology of 9 to some h . Since 9ad is norm-closed and convex, it is
also weakly closed and hence h 9aa, so

i

It follows from Lemma 4.1 that

weak-top of 9

norm-top ofA

Finally, using the continuity of the functional &s(X)--II((A(x)))-zall in the
norm-topology of A, as well as the weak lower semicontinuity of Js(h)= [[h in ,
we conclude

lim .. I1m k-.oolim J(h,k)= k-.oolim II((A(A.,))) zalle+/3

k

Hence J(h)= m. This completes the proof of Theorem 4.2.
Remark. We can say nothing about uniqueness of the minimum, since the func-

tional J(h) will in general be nonconvex.
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Now we can give a necessary condition for optimality"
PROPOSITION 4.1. A necessary condition for A .a to be a global minimum of

Jt(A) on the set .a is

’(t) (v-),>-O Vv.
Proof. The proof is straightforward; see e.g. [20, p. 9] or [16].
So far we have established the existence of a minimum of the smoothing functional

on ad and have given a necessary condition for optimality. Now we will show that
minima of J depend continuously on the observation. This will be the key result of
the regularization approach. Roughly speaking, what the next theorem says is the
following"

Let be the "true" value of the parameter and d ((A(X))), what we would
have observed with a zero-error observation. Provided that

(i) is the unique preimage of d;
(ii) fl is an appropriately chosen function of the observation error;

any minimum of J(h) converges (in the norm of A) to , as the observation error
tends (in the norm of ) to zero.

Note that our theorem is a local version of the Tikhonov-Arsenin convergence
theorem [29, p. 65] in the sense that:

(a) We relax their global identifiability assumption (i.e. in the sense of Definition
3.).

(b) We refer to a specific pair (, a) for which it is assumed that is the unique
preimage of a in Aa (pointwise identifiability assumption).

The need of such a generalization has been motivated by the fact that identifiability
results are as a rule conditional identifiability results (see 3). Note that the pointwise
identifiability assumption (b) is the weakest possible assumption to ensure that the
estimated parameter is "close enough" to the true parameter. (If :?a has e,g. two
preimages and , no mathematical method can "predict" which one is the true A).

We first prove the following lemma:
LEMMA 4.2. Let (X, dx), (Y, dy) be metric spaces, f: X - Y a continuous mapping,

K a precompact subset ofX. Furthermore, we are giveny f(K) to which there corresponds
a unique x X with y=f(x). Then Ve > O, ::ly(e) > 0 such that Vx K dy(f(x), yO) <=
3’ dx (x, x) <= e.

Proof It suffices to prove that for every sequence {x.} in K such that f(x.) yO
we have x. x., Since K is precompact, {x.} has a subsequence {x.k} that converges
to some Y eX. Since f is continuous, f(x.k)f(;). But f(x.)y. Hence, f(;) =yO.
And since x is the unique preimage of yO, y xo. So, x.- x.

The same argument shows that {x.} cannot have any cluster point other than x.
Thus x is the unique cluster point o" {x.}, which is contained in the precompact set
K. Hence [1, p. 68] x.- x. This completes the proof.

"[HEOREM 4.3. For any fl > 0 and Za , denote by Ao ad any minimum ofJ3(A
on ,a. Also, denote by T the class offunctions that are nonnegative, nondecreasing
and continuous on the interval [0, 81]. Suppose,

::i a unique . ad with d ((A())).
Then Ve > 0 VBI, B2 T, with

BE(0) =0,
82

,()
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::l5o(e, Bl, B2) ti such that /Zd V <- tSo

for all fl satisfying /B() fl B(6).
Proof We have

:# [+ IlXll] #In,(,)+ I111] #[BI(’I) + I111].

Denote ,o=[n,(,)+ IlXll]’/. Clearly> IIx, ll no a.a IlXll "o. Thus we have
shown that the elements X and A# belong to the set

a,o= {x IIx I1 -o).

which is precompact in the norm-topology of A. It follows from Lemma 4.2 that

Ve > 0 ?(e) > 0 such that VX A,o
(@(A(X))) II. eI1 Xll .

Now observe that

(@(A(x)))- I1 (@(A(X))) I1+ # I1 I1
z (@(A(X)))- 1.1 + # IlXll

IIS I1+ # I111
+n()llXll.

It follows that

(@(A(x))) II- (@(A(X))) I1+ I1 S II-
(+n()llXll)’/ + .

The function 6()= (+ n()llXIl)’/+ is a oontinuous monotonioaily ioreasit
function satisfyint 6(0)=0. ence, one can choose o:-’(r()) ana have
(@(A(X)))-S I1. r(.) V o. Tk we ee that for aii satisfyint /,()
#:(), te inequality II-Sll.z implies the inequality II,-XIl. This
completes the proof.

5. leetion of th relularization parameter. In t 4 we established that the regu-
larization approaoh provides a stable method for distributed system ideti0oatio. Oe
question was not addressed, the selection of the regularization parameter #. In this
section we will disouss two methods for seleotio of .

Let aa be the "true" value of the parameter A and a be the error-free
observation, (@(A())). We assume that (i) X is the unique reimate of 7; (ii). ppe, bo.d i. the obevatio, ero is kow., i.e. I1- e II- -Metho 1. When an a priori unner bound on IlXll i kow., i.e. IlXll a, iller
[22] suggests #()=(8/A). (When is a obolev space, I1"11 i a measure or
smoothness.) We note first that this choice of satisfies the assumptions of Theorem
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4.3. Furthermore, if Ao) is a minimizer of

(5.1) J(A)- II(,(A(A)))-zall2/ IIAII,
on a, then

((A())))- z I1%+ I1)11

IlXll,--- 2,s2

Hence,

(5.2) ((A(A))))- z I1_-<V, IIA)II _--<4A

i.e. regularized solutions satisfy the constraints up to a factor of
Method 2. This method has been suggested by Tikhonov and Arsenin [29]. Their

suggestion is to choose/3(6) so that

ll((A(A())))- zall
where A() minimizes

Before one discusses the stability of the method, one has to examine the existence of
such a/3.

To this end, we follow a different approach than Tikhonov and Arsenin, who give
a simple sufficient condition for existence. We give here a much weaker condition
which is both necessary and sufficient. In the development of this condition we have
used concepts and results from the theory of minimization of vector-valued functionals.

DEFINITION 5.1 (ordering relations in "). Let x=(xl,’’ .,x,) and y=
(y,..., y,) be two arbitrary elements of ". We will write

(i) x<=yiffx<=yforall i;
(ii) x y iff x =< y and x < y for at least one i;
(iii) x < y iff xi < y for all i.
DEFINITION 5.2. Let Y’A-> E". We will say that , is a Pareto-minimal point of

the vector-valued functional Y if IA A with Y(A)Y(). The set

{Y()I is a Pareto-minimal point of Y}

is called the Pareto-minimal set of Y.
PROPOSITION 5.1 [30, p. 94]. Let Y(A) =- (Y(A),. , Y,(A)) be a vector-valued

functional on A. An element A is a Pareto-minimal point ifffor every j { 1,. , n}, minimizes Yj(A) on the set

Aj {X E AIY,(A) <_- Y,([) Vi e {1, , n} with #j}.

LEMMA 5.1. Let

Amin the minimum-norm element ofa,
6max JLs(’min) (I)(A(Amin))) Zd

6mn inf Jrs(X) inf IIc((a(x)))-zalI2.
X ad A .ad

Given 6 > 6min, there exists an element As minimizing the functional Js(A on the set
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{x III c((A(A))) za I1- 8}. Furthermore, if 8 <= 8max, then

Remark. Lemma 5.1 holds for 8 min if Js(h) admits a minimum on d.
THEOgEM 5.1. Let h, 8max as in Lemma 5.1. efunction

O() Js(X), max
is monotonically decreasing. Its graph coincides with the Pareto-minimal set of the
vector-valued functional Y:a defined by Y(A) (Js(A), Js(A )).

Proof ofLemma 5.1. The proof of existence of a minimum is almost the same as
that of Theorem 4.2.

Consider a minimizing sequence {A,}. This will have a subsequence {A,} that
converges in the weak topology of to some A . We conclude that

strong topology of A
A a, A, A.

Also, due to the continuity of A, it is easy to see that the limit has to satisfy

Finally, using the weak lower semicontinuity of Js(A) in , we conclude that A
minimizes Js(A) on the set {A

To prove the second pa of the lemma, suppose

Since @ o A is continuous, there is a ball B(A), centered at A, such that

2

Now observe that
(i) We can always have Amin B(As) since 8" < max implies A # Am.
(ii) B(A)Da {A since

But from (i) and convexity of ad it follows that aA* B(A)a so that ]IA*]I <
II  ll .

This contradicts the definition of A and (ii).
Proofof eorem 5.1. If A minimizes Js(A) subject to the constraint JLs(A) 8 <

8re,x, then from Lemma 5.1

(X) (, ()).

It is clear that 8 82 max implies O(82) O(8) i.e. O is monotonically decreasing.
Fuhermore, Proposition 5.1 implies that the Pareto-minimal set of Y is a subset of
the graph of O.

Finally, if Y() Y(A) for some a and 8 8max, this would mean

either

< <__

or

As( ) -< <
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Both cases are impossible since they contradict the definition of As and/or Lemma
5.1. Hence, Y(Aa)---(8, (R)()) is an element of the Pareto-minimal set.

This completes the proof of the theorem.
Before we proceed to the main result of this section, we will state an important

proposition by Yu [33], which will be needed in the proof. We first give the definition
of cone convexity, introduced in the same paper.

DEFINITION 5.3. Let S c I" and C a convex cone in !". S will be called C-convex
if S + C is convex.

PROPOSITION 5.2. [33, p. 28]. Let Y" A-+ R and suppose that Ran Y is R.-convex,
where 7. {x " Ix >- 0}. If is a Pareto-minimal point, there exists rl 0 such that

nv()_<- nv(x) va A.

THEOREM 5.2. Let 0 and Y be as in Theorem 5.1. Then the following assertions
are equivalent:

(i) For every 8 ]8min, 8max[ there is fl > 0 and a minimizer As of the functional
J (A) JLs(A + flJs(A on ,d, such that Jt.s(As &

(ii) Ran Y is 2+-convex.
(iii) O is convex.

We first prove the following lemma:
LEMMA 5.2. Let

for8<--Smax,1)(8)
js(/min), for8>=Smax"

Then3 Ran Y+2 Epi+

Proof of Lemma 5.2. Take (x, y)e Epi . If x >- 8max, then (x, y) {Y(ami,)}+lZ+.
If X<Smax,= then (x,y)e{Y(ax)}+2/, where ax minimizes Js(a) on ad subject to
Jcs(a 5-. x. So" Ran Y + 2+

_
Epi .

Now take z e Ran Y _[_2+. This means lh e aa :Iv e [R2+ with z Y(A) + v. Assume
that zEpi , hence 18>_-0 with z._ (8, O(8)).

Case 1. 8 _-< 8max. Then Y(a)+ v < Y(aa). where ha minimizes Js(a) on .a subject
to Jts(h)<--8. This implies that ha is not Pareto-minimal.

Case 2. 8>_-8max. Then Y(x)+ V(;m,n)Xm,. is not Pareto-minimal.
Thus, we see that in all cases the assumption z Epi leads to contradiction.

Hence, Ran Y +R2+ c_ Epi . This completes the proof.
Proof .of Theorem 5.2.
(i)(ii). Given /3>0 denote by As a minimizer of J(A)=Js(A)+flJs(A) on

ad and define

P {(x, y) 2IX "" fly >--__ Js(h)+ flJs(h)},

P= {(x, y) 21Y >-- Js(h,,i,)}.
Furthermore, define

y) 21x > 8,in} U {(x, y) a’-Ix io, y >-- Js()}
Po

2
if minimizes Js(h) on

[{(x, y) Ix > 8mi} if JLs(A) does not admit a minimum of d.

We will show that f’)o<=<= P Ran Y +R+. Clearly VA ad V/3 > 0 Y(A) P. Hence
’11 adVZC=[2+ Vfl>OY(h)+zePt. Thus Ran Y+IR2+_ P Vfl>0. It is also trivial
to see that the above relation holds for/3 0 and/3 oo. Hence Ran Y +12+

_
fq o=t__<o Pt.

By the symbol Epi F we mean the epigraph of a function F, i.e. the set {(x, y) Ra [y => F(x)}.
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TO show that t3o<__<__ P
_
Ran Y +R2+ we will take (, 33) Ran Y+R and show

that !/3 such that (x,) P. We only need to consider the case : ]6min, 6max[, since
:=6min clearly implies (x,)C:Po and >-6ma mplies (,)3)P. By (i), :1/>0
:1 minimizer h ofthe functional J(h)= JLs(h)+ flJs(A) on ad satisfying JLs(hf)=
Observe that Js(h fi)> )3, since otherwise Y(hfi)-< (, 33) which would imply that (,
Ran Y+2 But+.

So

Js(A) >)3
JLs(A)+Js(A)>+y(,fi)C:P.

f’l P Ran Y+i+.
0<__3<__c

Taking into account the convexity of the sets P we conclude that Ran Y+_ is
convex.

(ii)(i). Consider an arbitrary e ]min, max[ and denote by A, a minimizer of
Js(A) on a subject to the constraint Jcs(A N .

Since Ran Y is N-convex, by Proposition 5.2, there is (l, 2)N 0 such that:

Since > mi, I does not minimize Jcs on a. Hence 0.
Since < max, we have I 1m. Hence 0.
So we may choose /> 0 and have

But by construction of Ae and Lemma 5.1 it follows that Js()= .
(ii) (iii).

Lemma 5.2
Ran Y is N-convex < Epi O is convexO is convex.

Since O is decreasing, the latter is equivalent to O convex. This completes the proof
of the theorem.

What remains to show is that regularized solutions obtained by this method
converge (in the norm of A) to as the observation error tends (in the norm of )
to zero. This will be done independently of the theory of 4. Note, however, that the
argument is almost the same as in Theorem 4.3.

THEOREM 5.3. Suppose

:! a unique aa with d ((A())),
the function 0 defined in Theorem 5.1 is convex.

Then Ve > 0 ! 6o(e) > 0 such that VZd Y( V6 <-- 6o

where

(6) denotes a regularization parameter,

ht( denotes a minimizer of Jt3()(h on ad,

satisfying II((a(h())))- Zdlle= 6.
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Proof Denote ={A adl IIAII--<IIII} which is precompact in the norm-
topology of A. It follows from Lemma 4.2 that

Ve > 0 y(e) > 0 such that

((A())) d II rIIX- XIl .
Clearly, A) minimizes Js(A) on d subject to the constraint II((A(X)))-

Zd . Since

((A()))- za II I1 z I1
it is obvious that Js(A())Js() i.e. Ao) . Also, observe that

((J()))) II ((A()))) z II+ IIz I1 2.

Thus we can choose 60 y(e)/2 and have

((A(X(o))))- I1_<- (e) va<-_ ao.
Thus we see that for all 6 _-< 6o y(e)/2, the inequality IIz I1-<- a implies the

inequality IIA)- XIIA <- .
This completes the proof.
Before we close this section, we should say a few words concerning the practical

implementation of the two methods of selection of the regularization parameter presen-
ted previously. Method provides a concrete formula for/3(6) given an upper bound
A on the smoothness of the unknown parameter. Thus, one can obtain an approximate
solution of the identification problem by numerical minimization of the corresponding
smoothing functional (see 9). In Method 2, fl(a) is determined implicitly as a solution
of the equation

(5.3) ((A())) za II- a.
Tlaerefore, in order to find/3 (in terms of 3) in practice, one will have to numerically
solve the above equation; this will involve a sequence of numerical minimizations of
Jo(A) (each corresponding to the value of/3 at each iteration).

For instance, one can use the interval halving algorithm. Convergence to a root
of (5.3) is an immediate consequence of the following monotonicity and lower- and
upper- semicontinuity properties"

PROPOSITION 5.3. If l <[32, then JLS(AtI)<JLs(A2 for all minimizers At3 of
J(A )= Js(A )+ fllJs(A and all minimizers A3,_ ofJ3(A Js(A )+ fl2Js(A ).

PROPOSITION 5.4. Let /3*>0 and M3. be the set of minimizers A. of J.(A)=
J()+/3*J().

(a) If {ft,} is an increasing sequence ofpositive numbers converging to fl* and
is a sequence of minimizers of J3.(A)=Js(A)+fl,Js(A), then JLs(At3.)
supx. t.JLs(Ate*).

(b) If {/3,} is a decreasing sequence converging to * and {A.} is a sequence of
minimizers of Jt3.(h JLS(h + ,Js(h ), then Js(t3.) - infa.M. JLs(ht3*).

The proof of these propositions is omitted for brevity.

6. Identification of a second order linear parabolic system from distributed
observation. Let

I a bounded open subset of
F the boundary of f/, a C 1-manifold with f locally on one side of F,
T a real number with 0 < T < c,
Q ,.q ]0, T[,

r ]0, r[,
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and consider

0" j,k=l tgXj
ajg(X) -1-ao(x)u =f(x, t)

(6.1) u(x, O)= Uo(X) in [l

c3U
---=0 on X.
0v

in Q,

The variational formulation of the above Neumann problem is as follows

(6.2) " v + ,: ag x -x -x + ao(x uv fv V E V,

u(x,O)=uo(x)

where V H’(f).
We assume that the parameters a, ao C(), i.e. the parameter space

(6.3) A=( (C(I)) xC()j,k=l

which is a Banach space with norm

I1 I1- max {11a oa, aoll o>).
The set of admissible parameters is taken to be

(6.4)

A"d={AEA]j,k=, ajg(X)k>=K(’+’’+’2")V’ER"VXEI’I and ao(X)>---RoVXEfl},
where and o are given positive numbers; so (A5) is satisfied.

Now given A E A, define A E M ( V, V’)4 by

Ou ov(6.5) (Au, v)’v I E ajk(X)

The open subset of M

+I ao(x)uv Vu, v E V.

(6.6) c ={AE MII’>0 (Av, ,).,._>- llvllVv v}

is the set of coercive operators. It is straightforward to verify assumptions (A4) (with
k=c) and (A6).

Equation (6.2) can be rewritten as follows

du
--+Au=f,

(6.7) dt

u(0) Uo,

where we have used the notation (du/dt)(v) in place of Ou/Ot v and f(v) in place
of ,fv. It is known [20, p. 102] that for every A E c,f L2(0, T; V’) and Uo

4 Given X and Y Banach spaces, we denote by (X, Y) the space of bounded linear operators from
X into Y.
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(6.7) admits a unique solution uU=W(O,T)={uluL:(O,T,;V), du/dt
L:(0, T; V’)} which depends continuously on f and Uo.

Taking F L:(0, T; V’) L:(f), Uc U W(0, T) and defining the mapping

;(A,u)eMUo +Au, u(O) eF,

it is not difficult to verify assumptions (A1) (with k =), (A2) and (A3).
Finally, suppose one wants to identify ag and a0 from distributed obseation i.e.

by obseing u(x, t) in Q. Take

(6.8) = L2(Q),

(6.9) A identity,

(6.10) =injection of W(0, T) into LE(Q),

(6.11) = H(a) xH(a) withl>-.

Thus (AT)-(A10) are automatically satisfied.
As a consequence of Theorem 4.1 we have the following:
ToN 6.1. Gieen e L(Q) and > 0, the smoothing functional

(6.12) J(A) ( [u(x, t; A)-za(x, t)]2 dxdt+llxl[
Q

where u(x, t; A W(O, T) is the weak solution of (6.1), is ofC-class. Itsfirst derivative
is given by

where e W(O, T) i the weak solution of the adjoint equation

Ot ,l Ox
a(x) ao(x) 2(u(x, t)- za(x, t)) in Q,

/(x, T) O in .
Remark 6.1. The analysis ofthis section can be generalized for the system described

by (1.1)-(1.5). See [16] for details.
Remark 6.2. A similar analysis has been performed by Chavent concerning the

least-squares identification of linear parabolic systems [4, pp. 69-71].

7. Identification of a second order linear parabolic system from point observa-
tion. Given a set of discrete points Xl, X E ’, we now consider the identification
of the system (6.1) by observing u(xi, t), i= 1,...,/z. We have seen in 6 that the
weak solution of (6.1) lies in L2(0, T; H(f)). Thus, for a weak solution u, the point
value u(x, t) has meaning if H(f)c C(f)c:>n<2. Since such an assumption is
overly restrictive, we will consider here strong solutions, which lie in H2’I(Q) (hence
they lie in C(0) for n_<-3).

For a definition and properties of the spaces H"s see [21, pp. 6-10].
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We will make stronger regularity assumptions, such as

(7.1) F is an (n-1)-dimensional C2-manifold, with 11 locally on one side of F

and ajk C((), ao C((), i.e. the parameter space

(7.2) A=( C(fi)
j,k=l

which is a Banach space with norm

I[A IIA max {[[ ajk[I c’(a), aoll r)}.

The set of admissible parameters is taken to be

(7.3)

Aad ={A ajk(X)k >---- K(SC +" + 2,) VSc e [, VX e O and ao(x) >-_ o Vx

where and o are given positive constants; so (A5) is satisfied.
As operator space we take

(7.4)
{A (H2"(Q), L2(Q))

which is a Banach space with norm

A= x(ak(X)x) + ao(x)

with ajg C(fi) and ao C(fi)}
IIAII max {lla  ll aoll

and denote by sgc its open subset

(7.5)

A e s A-e is a regular elliptic system on f xN VO e
Oy2’ -’

It is straightforward to verify assumptions (A4) (with k ) and (A6).
It is known6[21, p. 33] that for every A, fL(Q), uo6H(O) and g

H/’/4(Z), the boundary-value problem

OU
--+Au=f inQ,
ot

(7.6) u(x, O) Uo in f,

Oil
--=g one
Ov

admits a unique solution u U H2’I(Q) that depends continuously on f, Uo and g.

Lions and Magenes use sharper regularity conditions for F and the coefficients of A than (7.1) and
(7.2). However, the result remains unaltered. See [21, Remark 6.1, p. 35] and [4, Thm. 3.3, p. 32]..
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Taking F L2(Q) x H(I2) x H/2"1/4(,), Uc U-- H2’(Q) and defining the
mapping

: (A, u) s x U + Au, u(x, 0), F

it is not difficult to verify assumptions (A1) (with k c), (A2) and (A3).
Now to identify (ajk) and ao in (6.1) from an observation of u at the points xi,

i= 1,. ,/x, take

(7.7) (L:(0, T))",

(7.8) A identity,

(7.9) : u(x,t)H’(Q)(u(x,,t),i=l,..",) (L2(0, T))",

(7.10) H(a) xHo(a) with 1> +- 1o >-
,k= 2’ 2"

Thus (A7)-(A10) are automatically satisfied.
As a consequence of Theorem 4.1 we have the following:
TnEOREM 7.1. Given Zd =(Zd,(t),’’" ,Zd,(t))(L2(O, T)) and fl>0, the smooth-

ing functional

(7.11) J(A) ,Z, [u(x,, t; A)- z,(t)]= dt+llAIl
0

where u(x, t; A H2’I(Q) is the strong solution of (6.1), is ofC-class. Itsfirst derivative
is given by

O j,k=l OXj
6ajk + 6aou fl dx dt + 2fl(6A, A)

where LE(Q) is the unique solution of
(7.13)

o -,k= Ox
ak(X) + ao(X)V dx dt =-2

i=
[u(xi, t)-Zd,(t)]v(xi, t) dt

Vv H2’(Q) satisfying Ov/O 0 on , v(x, O) 0 in ft.
In other words, is a distributional solution of

+ a(x) -ao(x)=2 (u(xi, t)-za,(t))@(x-x,) inQ,

(7.14) 0=0 on ,
(x, r) o in a.

Remark 7.1. The first term in (7.12) can be formally rewritten as

f [ tajkO--U c-fi+taoufi]dxdtQ j,k= OXk tgXj

by using Green’s formula.
Remark 7.2. The analysis ofthis section can be generalized for the system described

by (1.1)-(1.5). See [16] for details.
Remark 7..3. A similar analysis has been performed by Chavent concerning the

least-squares identification of linear parabolic systems [4, pp. 88-92].
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8. Identification of a nonlinear parabolic system. Let C, F, T, Q, E as in 6 and
consider the identification of ajk(X) in

-,=, ox a(x)-x + b(x)u + lul*u f in Q,

(8.1) u(x, O) Uo(X) in f,

u=O one

from distributed observation of u, where y > 0 and b(x) is bounded below by a positive
number.

The variational formulation of (8.1) is as follows:

--v+ ak(X) + b(x)uv+ luluv= fv ve V,
j,k= OXj

(8.2)
u(x, o)= Uo(X),

where V H(fl).
The parameter space is taken to be

(8.3) A= ) c(fi),
j,k=l

and the set of admissible parameters

(8.4) Aaa {a (ajk) e A
j,k=l

where K is a given positive number; so (AS) is satisfied.
Now given ;t A, define A M ( V, V’) by

(8.5) (Au, V)v,v Ia ai(x) O---u--u O___v
j,k=l OXk OXj

VU, l). V.

The open subset of M

(8.6) L ={Ae la>0: (Av, v),,ve llvll Vv v}

is the set of coercive operators. It is straightforward to verify assumptions (A4) (with
k=c) and (A6).

Note that (8.2) can be studied using methods of monotone operators ([13, Ch. VI
1], [19, Ch. 2 1]); this leads to an existence-uniqueness result for (8.2) which is not

enough to verify (A3) unless additional assumptions are made. Using the maximum
principle and assuming in addition that =ic, c2 with 0 < c < C2 such that

(8.7)

O< c<=f(x’ t)
C2b(x)

0 < c <= Uo(X) <= c2

it can be shown [4, p. 37] that (8.2) admits a unique solution u U=
{ulu e LZ(0, T: V)CI L(Q), du/dt+ Au L(Q), u(0)e L(f/)} satisfying u(x, t)>= c
a.e. in Q.
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Taking F L(Q) x L([I), U {u s UI/lc > O" u(x, t) >- c a.e. in Q} and defin-
ing the mapping

,i,. (A, u) x u +Au + bu + lul’u, u(O) e F,

it is not difficult to verify assumptions (A1) (with k= 1), (A2) and (A3).
For the identification of A (a) from distributed observation of u, we take

(8.8) = L(O),
(8.9) Ax identity,

(8.10) g injection of L(Q) into L2(Q),

(a.l) = N(a) with l>--
j,k=l 2"

Thus (A7)-(A10) are automatically satisfied.
As a consequence of Theorem 4.1 we have the following:
THEOREM 8.1. e smoothing functional

(8.12) J(A) [u(x, t; A)-za(x, t)]z dxdt+llA[[
Q

where u x, t; h U is the weak solution of (8.1), is of the C -class. Its derivative is given
by

(8.3) (). a ou o dx dt +2(,)
Q j,k= OXk OXj

where L2(0, T; H(fl)) is the weak solution of the adjoint equation

Ot ,k= O ak(X) -[b(x)+(y+ l)lul’]=2(u(x, t)-z(x, t)) in Q,

(8.14) =0 on
(x, T) 0 in .

Remark. If the data are more regular, e.g. ak C(fi), Uo H(), the solution
of (8.1) will be in H2’(Q). Hence, one will be able to consider point observation as well.

9. Numerical implementation of the regularization method, The minimization of
J,(A) can be conveniently carried out by a gradient method [3], [11], in which J, is
iteratively minimized along the gradient direction OJ/OA, which is defined as the
unique element satisfying J(A). h=(, h) h. To illustrate the theory,
we will consider the identification of a(x) in the one-dimensional diffusion equation
from point observations za,( t) of u(x, t), i= 1,..., .

(x) +f in a x]O, T[
Ot Ox

(9.1) u(x, O)= Uo(X) in ,
Ou
--=0 onFx]0, T[.
Ox
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Following the analysis of 7, we take:

A CI(I),

={A(H2"(Q), L2(Q))[a=(o/Ox)(a(x) O/Ox), where a C’(fi)},
U=H2,1(Q),

(L(O, T)),

H2(),

a {a H=()la(x) ao> 0 Vx }.

The smoothing functional is

Ior,(9.2)
i=1

Applying Theorem 7.1 we find that its first derivative is given by

fnforu (9.3) J(a)
Ox Ox

where is the solution of

(x) = (u(x,,t)-e,())N(x-x,) inax]0, r[,
Ot Ox i=1

(9.4) =o on ]o,
Ox

(x,T)=0 in

If H() is equipped with the norm

(9.5) lfl, (f+f") dx

the gradient OJo/O is given by

(9.) 0j( +,
where is the weak solution of

d
dx

+
Ox Ox

(9.7)
0" 0 on F,

’" 0 on F,

with u and being the solutions of the state and adjoint equations respectively. The
gradient algorithm in this case proceeds as follows:

(1) Initialize
(2) Solve the state and adoint equations.
(3) Calculate Jo() and I (Ou/Ox)(O/Ox) dr.
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(4) If IJo(ald)--Jt(anew)l<Tolerance stop.
(5) Solve (9.7) for q, and calculate (OJt/Oa)(a).
(6) Set anew=ald+e(Jt/0a)(ald) where e is a step length parameter to be

determined by one-dimensional line-search.
(7) Go to (2).

We have considered the three cases given in Table 1. Data were generated by first
numerically solving (9.1) using the Crank-Nicolson scheme with 50 grid points and
then adding to u(x, t) random numbers with zero mean and standard deviation tr 0.2.

The smoothing functional

fo"5 ’ IoZ (u(xi, t)-Za,(t))2 dt+ [(a(x))2+(a"(x))2]dx(9.8) J(a) - i=1

was minimized by applying the gradient algorithm described above. The state and
adjoint equations were solved by the Crank-Nicolson method. The fourth order O.D.E.
giving $ was solved by a finite-difference scheme. The one-dimensional line search
for the step length was performed by the golden section search method. Finally, the
test for stopping the iterations was

IJt(anew)--Jt(ald)l< 10-3.

The initial guess for a (x), the true a (x.) and the result after six iterations of the gradient
method are shown for Case in Fig. 2. Similarly, the estimated a(x) after six iterations
is shown for Case 2 in Fig. 3. In each of Cases and 2 the value of the regularization
parameter/3 was .selected based on the suggestion of Miller (see 5). In Case 1, with
an assumed upper bound of 0.05 for the squared error and an assumed upper bound
for smoothness of Ilatrue[[42 <- 1, we obtain /3 5 x 10-2. In Case 2, with the same
assumed upper bound of 0.05 for the squared error and that for smoothness of
][otrue[[2=< 10, we have/3 5 x 10-3.

TAnLE

Numerical values for identification of a (x) in

O

O ( a x O-x) O < x < O < < 0"5’

u(x, O) 10+ 270x2- 180x3,

0---u(0, t)=0---u(1 t)=O,
cgx OX

based on noisy observations of u at the points x (5i-3)/49, i= 1,. , 10.

Standard deviation of Regularization
Case True (x) I111,= errors in the data parameter

0.5+0.5x 0.583 0.2
2 0.5 + X 5X + 6x 2x 6.236 0.2
3 0.5 + 0.5x 0.5x 1.342 0.2

510-2

510-3

10-4

10-2

The effect of the choice of/3 is examined in Case 3. Figure 4 shows three estimated
a(x) profiles corresponding to/3- l0-4, l0-2, and 1. The value/3 10-2 is consistent
with the suggestion of Miller. We note that when/3 = 1.0-4 the oscillations in a(x),
characteristic of numerical instability, are setting in. In the absence of a good estimate
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INITIAL GUESS
TRUE a(x)
ESTIMATED a(x)

0 0.5

0.5

INITIAL GUESS
TRUE
ESTIMATED a(x)

o
FIG. 2. True and estimated profiles of tx for Case 1. FIG. 3. True and estimated profiles of a for Case 2,

TRUE
0.7 #=

B !0
j 10-4

0.6

0.4

,_;’i
/

0 0.,5

FIG. 4. True and estimated profiles of a for Case 3.

for the errors and/or smoothness, it is a good idea to examine the solution as a function
of/.
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ON DETERMINISTIC CONTROL PROBLEMS:
AN APPROXIMATION PROCEDURE FOR THE OPTIMAL COST I

THE STATIONARY PROBLEM*

R. GONZALEZ" AND E. ROFMAN$

Abstract. We study deterministic optimal control problems having stopping time, continuous and
impulse controls in each strategy.

We obtain the optimal cost, considered as the maximum element of a suitable set of subsolutions of
the associated Hamilton-Jacobi equation, using an approximation method. A particular derivative discretiz-
ation scheme is employed.

Convergence of approximate solutions is shown taking advantage of a discrete maximum principle
which is also proved.

For the numerical solutions of approximate problems we use a method of relaxation type. The algorithm
is very simple; it can be run on computers with small central memory.

In Part we study the stationary case, in Part II [SIAM J. Control Optim., 23 (1985), pp. 267-285] we
study the nonstationary case.

Key words, deterministic control, Hamilton-Jacobi-Bellman equations, finite elements

Introduction. Previously [9], we have dealt with the numerical solution of some
optimal deterministic problems using, as a basic tool of analysis the characterization
(introduced in [7], [8]) of the optimal cost function as the maximum element of a
suitable set of subsolutions of the associated Hamilton-Jacobi equation. In this paper,
to compute this maximum element, we present a new algorithm that makes possible
solutions of nontrivial problems on computers with small central memories.

In part I we study the stationary case. In Part II (this issue, pp. 267-285) we study
the nonstationary case.

In we introduce a control problem with a cost function J to be minimized.
We consider in each strategy stopping times, continuous and impuls.e control; so
V(x)=inf,u(.),z(.)J(x; z, u(.), z(.)). After the definition of a suitable set W of
subsolutions and following the same techniques used in [7], [8], [9], we characterize
V(x) as the unique solution of the equivalent problem (P): Find the maximum element
of the set W.

In 2 we consider the discretized problem (Ph), its solution (h), the algorithm
to compute it and its properties. Using a particular scheme to discretize the partial
derivatives of the functions under consideration we are enabled to define an algorithm
that, with successive iterations, increases the values of these functions in the vertices
of the triangulation employed, until the approximate solution ffh is found.

In 3 the convergence is proved. An estimaiion of the rate of convergence is given.

1. The optimal control problem and an equivalent formulation (the problem (P)).
To control a system with trajectories in an open bounded set [l n we use stopping
time control, impulse control and continuous control.
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In the intervals of time free of the action of impulse controls, the trajectory of
the system satisfies the differential equation

dy

(1.1)
y(0) x,

where u(. is a measurable function of time with values in a compact set U c m.
At times 0(0N 0 < 02< ") impulses z(O) are applied; they produce jumps of

amplitude g in the trajectory of the system:

(12) y( O) y( O;) + g(y(0;), z(0));

y(O), (y(OS)) is the right (left) limit of the trajectory y(.). The set Z of admissible
impulse controls is a compact set of NP.

The control strategy is determined by the stopping time r 0, the function u(. ),
the times {0} and the impulses {z(0)}; it will be noted by (r, u(.), z(.)).

In the following we shall suppose that V t, y(t)e .
We assign to each control strategy the cost value J:

J(x; , u(.), z(.))= e l(y(s, u(s) s
(.3

+(( e + e-q((o,

in which is the instantaneous cost, is the final cost, > 0 is the discount factor
and q > 0 is the cost of application of an impulse.

Our aim is to find the optimal cost function V(x) defined by

(1.4) V(x)= inf J(x; r, u(. ), z(. )) Vx).
,u(-),z(.)

In what follows we will always suppose that
i) f, l, b, g, q are continuous and bounded functions (My,..., Mq being the

bounds)
ii) f, l, b, g, q are Lipschitzian functions of y (Ly,..., Lq being the Lipschitz

constants);

iii) a > [ Lf + In Ag (if hg> 1),
Ly (if hg _-< 1),

with

he, sup { []x + g(x’ z) x’- g(x’’ z)l[ x’ x’ }IIx-x’ll
x

2 e(M, + aM6) 2 e(Ml + aM6)
/x= /Zo= qo=infq(x,z)>0.

qo aqo
zZ

The characterization of V(x) given in Theorem 1.2 concerns Lipschitzian functions.
So it is useful to recall the following result, which is easily obtained as a combination
of those shown in [9].

THEOREM 1.1 (Lipschitz continuity of V(x)). Under assumptions i), ii) and iii)
V(x) is a Lipschitzian function, i.e.

IV(x) V(x’)l <_- Lollx- x’ll
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in which

LD
LtA + Lq g

a Ls -/z In hg hg e(cs-)/’
+ LA

L
e(-)/

O El’t- Lq !g e(-/"+ L, ifAg <-_ 1.

ifAg > 1,

As a consequence V(x) is a.e. differentiable in ft. Using the techniques of dynamic
programming it is possible to show (cf. [9]) that V(x) is a solution of the Hamilton-
Jacobi inequality associated with the optimal control problem,

(1.5) min(OV(x) )uv Ox .f(x, u)+l(x, u)-aV(x) >-0, xa.e. inf/,

(1.6) V(x)- min V(x + g(x, z))+ q(x, z)) <-O
zZ

(1.7) V(x) (x) <- 0 Vx

For all x at which V(. is differentiable, V(. satisfies one
at least of (1.5), (1.6), (1.7) with equality.

Following the te.chnique used in [7], [8] we have proved in [9]:
THEOREM 1.2 (characterization of V(x)). Let

(1.9)

where

w {w: --> l(1.o), (1.11), (1.12), (1.13)},

(1.10) w is a Lipschitzianfunction,

(1.11) min(0w(x),,v Ox
"f(x, u)+l(x, u)-aw(x) >=0 a.e. xefl,

(1.12) w(x)-min(w(x+g(x,z))+q(x,z))<--O Vxfl,
zl

(1.13) w(x) <-_ d(x) Vx 1.

Then V(x) is the maximum element of the set (1.9) i.e. V(x) W and

(1.14) V(x)>- w(x) lxl’l, Vw W.

Clearly Theorem 1.2 makes possible the determination of the optimal cost function
defined in (1.4) by solving the equivalent problem:

(P): Find the maximum element in the set W defined by (1.9).

2. The discretized problem (P).
2.1. Preliminary comments. In this section we shall introduce sets W, finite-

dimensional approximations of W, looking for a numerical device to compute V(x).
Following this idea, after a discretization 1 of the set 1, we shall define W by
functions w verifying properties related to (1.10)-(1.13). The main difficulty of this
approach is the choice of W having maximum element .

In fact, after introducing in W the natural partial order

(2.1) w -< 2’ W(xh) <---- W(xh) Vx vertex of D,h,
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it is not possible, in general, to ensure the existence of h. We show in what follows,
that thanks to a criterion used in the discretization of the derivatives that appear in
(1.11) (see (2.3)) we obtain

a) the existence of an unique maximum element h in wh;
b) a characterization ofh that enables us to compute it with an iterative algorithm

of relaxation type.

2.2. The discretization procedure.
a) The set ll is approximated with a triangulation flh (union of simplices) (see

Fig. 1).

FIG.

b) We consider, in place of W, the set Wh of functions wh"h + R, Wh continuous
in ,h, Owh/Ox constant in the interior of each simplex of Oh (i.e. wh are linear finite
elements) satisfying at every xh of f/h the restrictions (2.2), (2.4), (2.5), (discretization
of (1.11), (1.12), (1.13))"

(2.2)
OWh

0x:
(x’; u). IIf(x,h, u)ll + l(xh, u)- awh(xh)= 0

for all u Uh. Here Uh is a finite set which approximates the set of admissible
continuous controls U.

We denote by (Owh/Ox:)(xh; U) the derivative of wh in the direction of f, more
precisely (see Fig. 2)"

(2.3)

wh(a,(u)) Wh(xhi)
’gW---h(xh, u). IIf(xh, ull- a,(u)-x,ll
oxy

0 iff(xh,, u) 0;

(2.4)

IIf(x,, u)ll if f(xh, U) O,

wh(xh)<--wh(xh +g(xh,z))+q(xh,Z) VzZhc Z,

(u)

FIG. 2

with Zh a finite set that approximates the set of admissible impulse controls Z, and

(2.5) wh(xh <= b(xh ).

c) We introduce problem (Ph), a discretized version of problem (P)"
(Ph)" Find the maximum element h of the set Wh with respect to the partial

order (2.1) in Wh.
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d) Remarks relevant to comment b).
d) We suppose always that x / g(xh, Z) 1h in order to ensure that (2.4) makes

sense.
d2) If D is the diameter of a simplex, there exists 3’ > 0 such that for each simplex

in -h there exists a sphere of radius r >_- y D in the interior of the simplex (Fig. 3).

FIG. 3

d3) Denoting by Ilhl[ the maximum of the diameters of the simplices of Oh, the
sets Uh and Zh approximate the sets U and Z in the following sense:

Uh c U, Zh Z,

Ilhll IIh’ll U’ uh, Zh’
c2 Zh,

@ Uh U, @ Zh Z.
h h

2.3. Existence of a solution of problem (Ph). In the set Wh a partial order is
defined. As a consequence we can speak of maximal elements but, as was said before,
it is not obvious, a priori, that a maximum element exists. To prove property a) of

2.1 we will transform the constraints (2.2) and (2.4) into more useful equivalent
relations (2.2)’ and (2.4)’.

Considering that ai(tl) and xhi + g(xh, Z) are linear convex combinations of the
simplices to which they belong, we have (Fig. 4):

ai(u)= h(x/h,u)’x), hj->_O, h=l,
(2.6)

xhi A(x,z).xj, A- A 1.
j=l j=l

h

FIG. 4

(2.2)’

(2.4)’

Since W
h is an affine function of each simplex, (2.2) and (2.4) are equivalent to"

wh(xh)<= min /3(xh, u) h./(x), u). wh(x)+(xhi, u)l(xh, u)
uUh j=l

wh(xhi)<--min [ Aj(x/h, z)" wh(x)+q(xhi, Z)],zZh I.j
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where
iff(xh, u)=O,

t,(x,, u)=] iif_Cxy) iff(xh, u)# 0"
[llf(x, u)ll+ alla,(u)-xh,

Ia1-- iff(//h, u)=O,
fl:(xh, U): ] _a_(_.)_:__x iff(xh, u) 0[ II/(x/, u)ll+ lla,(u)-xh,

So, we can now consider Wh as the set of linear finite elements on Oh satisfying
(2.2)’, (2.4)’, (2.5), and we can pass to"

THEOREM 2.1. There exists h, maximum element of Wh.
Proof. Let be

(2.7) ffh(xhi sup {wh(xhi )lwh wh}.

h is well-defined by virtue of (2.5). From (2.5), (2.7) it follows that h verifies (2.5).
In (2.2)’, (2.4)’ the factors that multiply wh(x;) are nonnegative; then by virtue

of (2.2)’ and (2.7) we have

[ h ]Wh(xh) <= min jI(X/h, /.,/) ij(xhi l,)th(xp)" j2(X/h, u)l(xh, u)
uU j=l

and taking into account (2.7) we have

[ h
ff’h(xh)<= min l(X/h,/,). 2 ij(xhi, U) th(x)’--[2(xhi u)l(xhi U)

uU j=l

i.e. h verifies (2.2)’. In a similar way it is proved that h verifies (2.4)’ and in
consequence h Wh. Now, by virtue of (2.7), h is the maximum element of Wh, i.e.

2.4. Characterization of the maximum element h. We define the operator M" Rnh -Rnh in the following manner

(Mwh)(xh)=min min /3(xh, u). 2 A(xh u). Wh(Xp)+2(xh, u)l(xh, U)
uU j=l

(2.8)

zZ"min Lj=
[ AJ(xh’ z)wh(x)+q(xh’ Z)], (xh)},

and we obtain the following characterization of 1 h.
THEOREM 2.2. h is the maximum element of Wh if and only if h=_ Mff;h (i.e. if

and only iffor all Xh ’h one at least of (2.2)’ (2.4)’, (2.5) is an equality).
a) Proof of the necessary condition. Let ffh be the maximum element of Wh, and

suppose that i0 and e > 0 exist such that

(2.9) h(Xhio)’q- E (M,)(Xio).
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We define

fib(x/h) ’h(xhi Vi io,
(2.10)

X,o) X,o)+ .
Then, by virtue of (2.9) and the monotonicity of M, we obtain

Wh(x) h(X) (Mh)(X) (Mh)(x) Vi # io,

k(Xo) (M)(Xo) (M)(Xo).
In consequence #h W and by (2.10), h> h; this contradiction has the origin

in (2.9). So "(x)= Mh(x)Vi, i.e. hMh.
For the proof of the sufficient condition we will introduce the following lemma.
LEPTA 2.1 (discrete maximum principle). Let Ch be a subset of vertices of n

and Sh its complement. Iffor all x Ch

(2.11) rain/" <x,. .). IIf(x .)11 + l(x u)- awh(x)) >= O,, \ Ox
then there exists % 0 < y < such that

(2.12) max wh(x) y[max wh(x)v 0] +[ max l(x u) v O
x?c" ks" a L?c

U

Proof We rewrite (2.11) in its equivalent form (2.2)’:

(2.13) w"(x)N rain (x), u) 1(x, u)"(g)+(x) u)l(x,, u)u j=

Let xh h
o C be such that

w(Xo) max (w(x)) Mc"
xhi C

we denote

max l(x, u) v 0),(2.14) M max (wh(x) V 0), M-
xS

uhi

and we have Vu Uo from (2.13)

"(Mc wh(Xhio) <---- fl(Xio,
j/xjC(2.15)

a(Xo, u)M;.)+ t3:(X,o,

After putting

a (x",o, u) E a(X,"o, u)
j/xC

we obtain

y,
j/xj

hi(Xiho, u) c (Xho, u);
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so we can rewrite (2.15) as follows"

t(x.ho, u)(1 (x,o, u)) +(2.16) Mch <--
--fl,(Xo, u)AC(xh,o, u) Msh +

u Uo. As 0-<_/3<1, 0=<AC=<l we have

:(x,, u)M7
,(Xiho, u)A c (Xio, u)

fl,(x,, u)(1 a c (Xio, u)) < fl,(Xio, u)
t,(x‘,o, ")X (Xo, u)

-/3,(xh u)A c (Xho, U)= -/3,(Xho, U)’io

so (2.16) tells us that

t(x"i’u) M-(2.17) Mc, <= fl,(X,ho, u)M- + fl,(x h Uio.
io

But, taking in account the definition of/3, f12, we have

(X,o, u)
h t/)-#(x,o,

Furthermore, by definition of/3, for all xh, we have
h U) <0 <-/3(x, u) < 1; so !0< , < 1/qXh, qU

Using this relation in (2.17) we obtain (2.12).
Remarks on Lemma 2.1.
As 0 < ), < we also have:

(.8) .__<.+lf.
If txh C h, u uh, l(xh, U)= 0, then

(2.19) Mc, <- rM,.

Even if y is independent of xh and u, it depends on the triangulation fh. We
could emphasize this point by writing y y(h)< 1.

In the proof we have supposed that the set of controls Uh depend on xh; this
is why this set is denoted by Uh.

b) Proof of the sufficient condition. Let wh be an arbitrary element of Wh and ffh
such that ffh=_ Mffh. We define

(2.20) ,(x. w,(x. )- ,(x. Vx

and a partition of the vertices of fh in three disjoint sets:

(2.21)

(2.22)

(2.23)
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Remark. From the definition of M and the hypothesis fib= Mffh we have

-h Sh U Ih U C h.

From (2.5) and (2.21) we obtain

(2.24) w(x) <-_ ,(x) 4,(x) Vx s.
To achieve our proof we need similar inequalities in Ch and Ih.
Let tih be a control for which equality (2.23) holds. So (using the equivalent form

(2.2))

(x,h, ah) [If(x), ah)ll + l(xh, ah )- h(Xh, )=0 VX) e C h.

But, as Whe Wh,

--(xP, a,) IIf(x,, a)ll + t(xp, h, olwh(xh)) 0 Vx,h e a

we have, Vxh Ch,

(2.25) (x, ). IIf(x,h, ,h)ll- Ol]h(xhi) e O.

We can apply Lemma 2.1 with C h given by (2.23), sh.J I h as its complement and
Uh {rich}. (2.12), (2.19), (2.24) tell us that there exists % 0< y < such that

(2.26) min ,(xh) -<_ y[max #(xh) v max #(xh)]+ <_-- y max #(xh) v O.
xiC xiS xiI xil

On the other hand, let /h be an impulse control z for which (2.22) holds:

(2.27) ff(xh) q(x, h )+2 Aj(Xh, ehi )lh(x)) [xhi I h,

Since wh Wh we have for h as above

in consequence

wh(xh <__ q(xh, h )+2 Aj(Xh, Zh )Wh(X Vxhi ’h

h h(2.28) Ih(xhi )NE Aj(xhi, z;)ITIh(xj Vxh e I

With a view to finding an upper bound of maXxhei lh(xhi) we shall introduce the
set of indices

and the vertex

I {Xh Ih/ ff’h(xh max ffh(X)),
ixj

Xho/ ffh(Xho) min ffh(x)).
Ixi
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As Xho Ih we have, from (2.27),

(2.29)
#h(Xhio) q(xhio, 2io) +

j/xI
aj(X,o, o)"(x)

. o).(x)+ E ,(X,o,

We will suppose that

}kt(Xh -h Vj/x.j, io, Zio)--’O
In this case (2.28) shows that

(2.31) W
h

Xio

As X/ho e IbM, (2.31) gives

J/Xj

As

we obtain

]2h(Xhio < }kt(X h hio)h(X)+io E
k.j
k/x

(Xh -h h h}klck io’ Zio) ll’ (Xio)"

E
khJ.

k/Xkl

}k t(xh -h(,o, e/o)= - , ,o, Z,o),

h h -h hw(X,o)(X,o, ,o) <- ,(x,o, Z,o) (x),,, h e?o) O, "()= "(’o) i.e. t2.which implies Vj such that jtxo,
h

If we use this result in (2.29), (2.30) taking with account the definition of Xho, we
have

h ./ho) ), h (X) >h hio + E }kj(Xio, q(Xio, -h h h#h(Xhio)= q(Xio, Xio),Z,o)+
Ij/xj

n o) < 0, contradicting our initial hypothesis q > 0.i.e. q(Xio,
This contradiction comes from supposition (2.30). Then there exists at least a

veaex x In such that h2(xo, -hZio) > O.
We return to (2.28) and we have

h hio). h(x).._ E(Xhio E }kj(XiO,
j/xjGIh j/xjIh " eh,o)" "(xf)jtXiO,

and, as

we obtain

E }k;(Xhio,-hZ io
J/Xj

h -h

/x,’
h(xo, zo) > O,

(2.32) max ff(x) h(Xhio)<= max
Xj x C J S

ff(x) <_-( max h(x)) V O.
xjC



252 R. GONZALEZ AND E. ROFMAN

So, after (2.24), (2.32), if ffh has a positive maximum it will follow that

maxxc ffh(x)>0. But from (2.26), (2.32),

(2.33) max h(xh) <= 3,max fib(x;) v 0--< 3, max h(x) V O.
xhi C Cxj Xj

Then, if maxxc ffh(x)>0 we have in (2.33) (1-3,)maxxch ffh(x)O, i.e.

maxxc ffh(X.) <= O, contradicting our previous supposition.
We conclude ffh(xh) <=0 Vxh fh, i.e. Vh(Xh) >= wh(xh) txh f". As wh is an

arbitrary element of Wh, the sufficiency condition is proved.

2.5. Algorithm to eomlute h. We will take advantage of the characterization of
ffh given in Theorem 2.2 to define an algorithm generating an increasing sequence of
functions wh, convergent to a function satisfying Mwh= wh, i.e., convergent to h.

ALGORITHM 2.1.

h (x)lwh+i/(x) (M w+(i_l)/)

yes

/

W+l, STOP

This algorithm gives the solution of problem (Ph) in the following sense.
THEOREM 2.3. Algorithm 2.1 terminates at Ih in afinite number ofsteps or generates

a sequence {wh} convergent to h.
Proof. If the algorithm terminates in a finite number of steps (), that means wh

is not modified in the last loop, i.e. Wh(xh) h hMw(xi ), i, then in virtue of Theorem
2.2, wh= ,h.

If this is not the case, since w Wh, it results by induction that

h wh h h h h
W,+l/n and w< < < < < <Wu+(i--l)/nh Wu+i/nh Wv+
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then there exists ffh such that
lim h hW+i/,h= i= 1, ", nh.

We remark that by definition of operator M we have wh WhCwh<= Mwh"

W
h <= 1h Mwh =< MIh hence, as Algorithm 2.1 imposes W+i/,hh (xh)

Mwh+(,_ (xh), from (2.34) we obtain ffh(xh)= Mcvh(xh), i.e. by Theorem 2.2,l)/nh

lim_. wh h.
Remarks on Algorithm 2.1.
a) The algorithm only needs the values of functions h

W+(-I)/,h at points a(x)
h hand xh + g(xh, Z) to compute w+,/,(x, ).

This property allows the application of this algorithm on computers with small
central memories (minicomputers).

b) As Theorem 2.3 shows, the convergence of the algorithm does not depend on
the order of vertices x in triangulation oh; however a careful choice of that order
may allow:

1. An easy retrieval of the information needed for the computation, from the mass
memory to the central memory of the computer.

2. An acceleration of the convergence of the algorithm.
c) The algorithm implies the fulfillment with equality of at least one of the

constraints (2.2)’, (2.4)’, (2.5) in each iteration. In practice, the convergence will not
be lost if that saturation is omitted in some steps.

3. Convergence of discrete solutions (x) to the optimal cost functions V(x).
3.1. Preliminary comments. The result will be achieved in two steps. In the first

step we will restrict ourselves to consider only stopping time problems (Ps). Vs(x)
will be, in this case, our optimal cost function and to show Vs(x)_-< limllll_o (x) we
introduce the same techniques used in [9]. But the discrete maximum principle will

h(x) Furthermore, this DMP implicitly givesbe essential to show Vs(X)>=limllhll_.o
the stability of the method.

In a second step we consider the original problem (P), with continuous and
impulse controls. We introduce a suitable sequence of stopping-time problems which
are able o define a sequence of solutions convergent to V(x).

3.2. Convergence in stopping time problems (Ps). In the dynamics (1.1) of the
system

dy
(3.1) -=f(y, u), y(O) x,

we consider a constant value of u U, and we look for

(3.2) Vs(X) inf e l(y(s), u) ds + e-’ q(y( O).

If we suppose q Lipschitzian (L its Lipschitz constant) we obtain following what
was done in Theorem 1.1 and Theorem 1.2 that Vs(X) is Lipschitzian (having Ls as
Lipschitz constant: Ls L/(-L)+ Ld/) and it is the maximum element of the set:

(3.3)

(3.4)

(3.5)

(3.6)

Ws={W:II--> R/(3.4), (3.5), (3.6)},

w(x) is Lipschitzian,

w(x)
f(x, u) + l(x, u) ow(x) >- O,

Ox

w(x)<-O(x) Vxea.
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As in 2.2 we introduce the discretization procedure and we pose the approximate
problem (over the same triangulations of problem (ph)):

(ph). Find the maximum element of the set

(3.7) whs {wh’fth R/(3.8), (3.9), (3.10)},

(3.8) wh is a linear finite element characterized by the values wh(xh),
cqw h

(3.9) (xh" u). Ilf(x) u)ll + l(xh h
i, u) cw (x)) ->_ 0 Vx) vertex of Oh,

Ox
(3.10) wh(xh)<=O(xh) Vxhvertexoffh.

Similarly to what was done in 2.3 we show that (Pg) has an unique solution #
given by

#s(xh) min (g#(xh ), [3(X), U) Y Aj(Xh, U) #s(X )+ 2(xh, U)" l(xh, U)],(3.11)
\ /

and relation (3.9) can be equivalently written

(3.12) Wh(xh)<=(xh, U)" 2 tj(xhi, U) wh’(x))--[2(xhi, u)l(xhi, U) Vxhi E’h,

To show the uniform convergence of # to Vs we introduce three hypotheses"
H) The functions f(x, u) and l(x, u) can be extended to some open set which

contains f in such a manner that the Lipschitz continuity is preserved (and the Lipschitz
constants Ly and L are unaltered).

H2) There exist r/> 0 and an injective continuous differentiable mapping An" f
R" such that

(3.13) =lc > 0 such that
11 -with I the unit matrix of

(3.14) ]lA,(x)-xl[<-x

-I _<-r/ VxlI,

Remark. (3.13) implies the existence and continuity of OA-/Ox; furthermore

OA!x) I <= c, rl Vrl <(3.13’)
II 0x c

H3) For each vertex xh on the boundary of lIh there exists eh > 0 such that for
0N e N e the segment x)+ ef(x), u) belongs to Oh;so owh/Oxy(x), U) is well defined
(Fig. 5).

FIG. 5
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The convergence property asserted in Theorem 3.1 is an immediate consequence
of the following two lemmas (whose proofs will be given after the theorem).

LEMMA 3.1. If H), H2), H3) hold there exists a real single valued function
G, (rl, p, h [I) such that

(3.16) Vs(xh,)--G,(,O, Ilhll) hs(x,) VX, ah,

with 0 < p <-rl/4, p a regularization parameter and

(3.17)

G,( rl, p, Ilhll) rlLs + pLs(1 + c, rl) + L4,( rl + p)

1{+-- rl[Ls(c,M+ L) + L,]

+ pELs( + c ’ Lf 3I- LI] 4r [c3Ls( + c, rI) Mf]

with C constant.
LEMMA 3.2. With the same hypothesis as Lemma 3.1, there exists a real single

valued function G2(rl, p, h II) such that

(3.18) #hs(xh)<-- Vs(Xhi)+G2(rl, P, I[hll) Vxh, fh,

with 0 < p < rl /4 and

G=( n, p, Ilhll)- rl(3 Zs + L,) + p[3 Ls( + c, q + L6]

1{(3.19) +-- q[Ls(c,My+ Ly)+

+p[Ls(l+cn)L+L,]+ S f
P

(I-]-ClT/)

THEOREM 3.1. If HI), H2), H3) hold the functions #hs(X) converge uniformly to

Vs(x).
Proof. In Lemmas 3.1 and 3.2 if we put p= ][hll / *1 =4p we obtain, from (3 16)

(3.17), (3.18) and (3.19) a positive constant C such that x(vertex) of n"
(.o V(x-cllnll’/ (x, V(x+ cllnll /.

We now consider an arbitrary point x n. As we know we can express x as

x=qx), q>-_O, q=l;

so we can obtain

Vs(X)--I2hs(x)--( Vs(x)-2 kjVs(x;)) + (2 kjVs(x;)-2

(3.21)
2 ( V(x)- V(x))+2 X( V(x))-. X, Ls x- x’ + Xc h I1’/=

<= Ls[Ihl] + Cllhll ’/=.
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In the same way

vs- h(x)>-- -(Lsll h +
which gives together with (3.21)

max Iff(x)- Vs(x)l<= Lsllhll + Cllhll ’/
xI

and the proof is achieved, l-1

Proof ofLemma 3.1. By a constructive device we shall obtain Vhs whs such that

(3.22) Vs(Xh G,(n, p, Ilhll) =< Vh(x, VXh,
Vh[xhthen, as s =< hs(xh), (3.16) will hold.

The construction of Vhs needs four steps:
a) Using H2) we introduce the Lipschitzian function

(3.23) V,(x) Vs(A-(x)) Ix

OVn/Ox exists a.e. in A,(I). So, from OV,/Ox=(O/OA-(x))Vs(A-(x)).OA-(x)/Ox,
using (3.13) we have

lox
(x) <Ls(l+cn) a.e. xeA(x).

We remark that the domain of Vn contains the set +Bn/ (from definition of
Vn and (3.15)).

We compute some bounds concerning n(x)

(3.25) Vs(x) V,(x)l Vs(x) Vs(Ag’(x))l Lsllx Ag’(x)ll

but, after (3.15), xaBya such that x=A,(y); so Ilx-Ag’(x)ll=llA,(y)-yl[
which, by (3.14) is bounded by . Then, in (3.25) we have

(3.26) ]Vs(x)- V,(x)]Ls. Vx.

On the other hand, thanks to (3.6), (3.14),

V,(x)- (x) Vs(A;(x))- (A(x))+((A’(x))- (x))
(3.27)

t, llm;(x)- xll L, Vx a,(x).
If we compute the first term of (3.5) with V,(x) in place of w(x), we have

,v(x) OVsf(x, u)+ l(x, u)-aVn(x)=(Al(x))f(A’(x) u)
(3.28)

+ l(A(x), u)-aVs(A(x))+ yn(x),
with

O Vs (A-’(x)y,(x) =--x(Al(x)) Ox I)f(x, u)

+--x (A-’(x))(f(x, u)-f(A-’(x), u))+ l(x, u)- l(A-’(x), u).

Using H2), (3.13), (3.14), we have

[7, (x) --< Lsc, rlMf + LsLyrl + LlTq.
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Also, in (3.28) we obtain (recalling (3.5))

(3.29) OVn(x)f(x, u)+l(x, u)-aVn(x)>= -#[Ls(c,My+Lf)+L,] VxAn(x).
Ox

b) Regularization of V.(x). Let/31(" be a function such that

/31(.)C(l"), ,(x)>=OVx, supp/3,B,, Ia.,(x) ds=l.

We define fl,(x)=(1/p")(x/p), p+. As Vp<q/4, dom V, EI+Bn/2, we can
define

Vn.p(x Vn [3p)(x) Vx E [ q- Bn/4.
We remark that V.. is infinitely differentiable; fuhermore

o
v,o(x) so

(3.30) Vn,o(x) N Ls(1 + c n) Vx e a + Bn/4,

(3.31)
oil ax II o

As beo[e we compute some bous cocetJ8 V,. Usi8 (3.24), (3.26) ad the

(3.32)

Using (3.27) gives

(3.33) v.,()-e()=((v-e),,)(x)+(e,,-e)()L. +L.
No i (3.5)

a .(, ,)+ (, )-v,,()

-x(. .f(., ul+ (., ul-v(, ,

with

yo(x)
t ox

and from H) and (3.24),

r.(x)l <-- (Ls(1 + c, r/)Ls+

It follows from (3.29) and (3.34) that

(3.35)
V..(x) f(x, u)+ l(x, u)-aVn.(x

>= -rl(Ls(c,My+ L:) + L,) p(Ls( + c, n )Lf + VX -t- Bn/4.
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h

FIG. 6

c) Discretization. In fh we define vh,,o to be the linear interpolation of V,,o, which
coincides with V,,p at the vertices x/h of Oh, i.e.

(3.36) vh,.,,(Xh) V,.o(xh) Vxh f.

Some properties of vh,o(Xh) are, by (3.32),

(3.37) Vs(xh vhn.(xh )l<---- Lsrl + pLs(1 + crl)

and by (3.33),

Vxa.
(3.38) hV,.(xh.)- q,(x/) V,.(x)- 4’(x) ----< Lo(n +) Vx. e n.

On the other hand, from (3.31),

OVh
,,o (Xh, U)" IIf(xh, U)[[

0 V O(xh) "f(xh, U)
OXr OX

(3.39)
0

C4 Vn o[lllh’]]Mf<= c31Ls( + cl rl)llh[[MfOX OXj

in consequence (3.35) and (3.39) allow us to write

OVh

’ (xh U) IIf(xh, )11 / l(x2. )- v.(xp)
axf

OVn’(xh f(xh, U)+ l(xh, U)
OX

(3.40) + (xh, U) [If(xh,
Oxf oX (xh )f(xh’ U)

>- rt(Ls(Lf + c,Mf + L,) p(Ls(1 + c, rl)Lf + L,)

c3Ls(1 + c rl) My Ilhl Vxh fh.
P

d) Definition of Vhs. We define Vx Oh the function Vhs as the linear interpolation
of the values of the vertex given by

V(x)
(3.41’ -{(Ls(clM,+ Lf)+Lt)rl+(Ls(1 +c, rl)Lf +L,,p+caLs(l+c, rI,M",
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We will show that

(3.42) vhs =< hS.
In fact, after (3.38), (3.40) and (3.41) we can easily obtain,

(3.43) 0V
0xx

(xP, u), IIf(xP, u)ll + (xP, u)- Vg(xP)>-_ o,

(3.44) Vhs(xh <-- (xh Vxh vertex offh

SO, Ve W, and by definition of we have V(xh)<--#hs(xh)Vxh 0h.
Furthermore, from (3.17), (3.37) and (3.41),

<-_ v,o(x, )1 + v,o(x,h) V(x,h)l

so (3.22) is proved, as is Lemma 3.1. l-I

Proof of Lemma 3.2. We recall that function Vs verifies (see [9, p. 3])

(3.45) OVs(x)f(x, u)+l(x, u)-aVs(x)=O a.e.x C
Ox

with

(3.46) C {x al v(x) < q,(x)},

(3.47) S {x fl Vs(x) 0(x)}.

In the following we will consider the functions V,, Vn,o and vh,o as they were
defined in the proof of Lemma 3.1. We put

(3.48)

(3.49)

S, {x A,(f)ld(x, S) <-_ rl},

C, {x e A,(n)[x

Let us consider V, and its behaviour in S,, C,. If x C,, it follows that d (x, S) > r/;
so recalling that ]Ix A’(x)]] < r/we have that d(A-’(x), S) > 0, implying A-’(x) C.
In consequence, using (3.28) and (3.45) we have

(3.5o)
Ox

f(x, u) + l(x, u) a V(x)

<-_ l,,,(x)l<= n[Ls(c,M+ t-)+ L,] a.e.xC,.

If x S,, ::l{xe}, xeS, s= 1,2,... such that Ilxe-xll-d(x,S) if
Using (3.14), (3.47), we obtain

Vn(x)- I(X)l [Vs(A;I(x))- O(x)[
lVs(A;’(x))- Vs(x)l+lVs(x)+ Vs(x)l
+Vs(x) (x)l + (x) (x)l
gs + gs x x + g x x

Finally for oe

Vn(x) O(x)[ <= rt(2Ls + L,) Vx S,.
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Now we consider Vn,o(x). We define

(3.52)

(3.53)

If x Co it follows that (x-y) C,, for all y such that IIx-yll <- p. So, using (3.34),
(3.50), we have

Ov.,o(x)
ox f(x, u)+ l(x, u)-av,,o(x)

(3.54) <-((Ls(c,My+ Ly)+ Lt) * ,)(x) + I,(x)l

<- ,((c.M+ Le)+ ,)+(( + c.)+ ,)

If xe So we use a sequence (xe}c S,,/lime_o [Ix-xll:d(x, S,)p; we obtain
(3.24), (3.51). Now

Iv,,(x)-o(x)llv,o(x)- V(x)l+lV(x)- v(xe)l+lv,(xe)-(x)l+l(xe)-(x)l
<= Ls + c [9 "- Ls + c, )!1 x x + (2Ls + L,) + L, x x

and for -o

(3.55) IV,,o(x)-C,(x)l<- (2Ls+L,)+p(2Ls(l +c,)+L,) VxSo.

Finally concerning Vh,.o we define Sh, Ch, sets of vertices of flh, (Sh f’l Ch ),

(3.56) s.={x" " So},

(3.57) c. {x, lx

If xh Sh, as vhn.o(Xh)= V,,o(xh) we obtain, from (3.55),

(3.58) h h hV,,o(X, )- q(x, )l <- (2Ls + L,) + p(2Ls(1 + c, q) +

If xh Ch we have from (3.39), (3.54),

vL(x,, u) h hIIf(x,, u)ll + l(xp, u)- a V,,o(x,
Ox.

(3.59)

OV.,o (xh f(xh u)+ l(xh, U)--aVno(xhOX

(+ca + c, rl)Mfllhll
P

<- (Ls(c,M+ L)+ L)

(+p(Ls(l+c,q)Lf +L,)+c3 l+c,w)Mllhll.
P
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(3.60)

Let us define ffh ff h h WhV,p. As s, we obtain by (3.9), (3.10), (3.58), (3.59),

’h(xh q/(xh )-- V,p(xh <= n(2Ls + Lq,)+ p(2Ls(1 + Cln)+ LO) Vx E Sh,

o(x, u)
ilf(xh h,, u)ll- (x)ox

(3.61) + n[Ls(c,M+L)+Ld+O(Ls(l+Cln)L+L)+c--(l+cn)Mllhll

0 Vx) e C".
Using (3.60), (3.61) and Lemma 2.1 (Discrete.maximum principle), we can ensure

that

h(x)) N n(2Ls + L) + o(2Ls(1 + c, n) + L,)

(3"62)+1{w(t(c,M+ Lr)+ t,)+(L( + c,w)L+ L,)+ cLLs( + cw)Mllhll

Finally (3.37), (3.60), (3.61) give us

(x) ,Vn,o(x,)+ (x)<-: (x)+ Vs(x)+rtLs+pLs(l+c,n)

<= Vs(xhi )-F G2(rI, R, {Ihll) Vxh flh. 0

3.3. Convergence in the framework of prolflem (P). We begin by a lemma similar
to Lemma 3.1 (for the proof see [12]).

LEMMA 3.3. If i), ii) and iii) of 1.1 and H1), H2), H3) hold, there exists a single
real function G3( "rl, p, h [I) defined for p <= /4 such that:

a) v(xh <= h(xh )+ O3(rl, P, Ilhll) Vxh, fh,
(3.63)

b) ifrl =4p, p- Ilhll ’/=,

lim G3(4 h ’/=, h ’/=, h II) o.(3.64)
Ilhll-,o

Remark. With the same technique used in Theorem 3.1, we obtain

(3.65) V(x)<=t3(q,p, Ilhll)+(x) Wx
with t3(7, P, h II) (, p, h II) / L h II.

Furthermore, (3.65) implies

(3.66) lirn h(x) >= V(x).

In view of (3.66) convergence will be assured if we can prove the inequality

(3.67) li--- h(x) <= V(x).

To obtain (3.67), let us consider a suitable sequence of stopping time problems
whose solution is the sequence of functions

DEFINITION OF V,,v,i. TO simplify notation we will suppose that the sets of controls
U and Z are finite sets

U={u; i= 1,"., n,,}, Z={Zk; k= 1,’’’, n}.
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We introduce the set of control policies

(3.68) U,,,, {(u(. ), z(. ))la), b)}.

a) u(.) is a left continuous piecewise constant function with a maximum of
switching points, with values in U and u(O)= ui.

b) z(. has a maximum of/x impulses and z(O) Z.
Corresponding to (3.68) we introduce the functions

(3.69) V,,i(x) inf {J(x, u( ), z( ), O)l(u ), z( )) U,,i, 0 >= 0},

having the following properties as it is easy to verify from the definition (3.69): Vx

(3.70) V,,i(x) <- V,,,(x) if/x > ’,

(3.71) V,,,(x)<-_ V,,,a(x) if ,> ,’ Vj= 1,...,

(3.72) V(x) <- V,.,,(x)

Furthermore, V is the limit of V.,, in the sense specified in the following:
PROPOSITION 3.1. There exists t%,, (x) such that

(3.73) V...g(x) V(x) <-

with lim(,.)_. 6.,(x) 0.
We can also characterize V... as solutions of stopping time problems. In fact we

have as follows using dynamic programming techniques.
PROPOSITION 3.2. V.,.i is the optimal cost function of a stopping time problem

defined by the recursion device

(3.74) V.(x) =min e-’l(y(s) u) ds+ e-q,,,,i(y(O))

with dy/ ds =f(y, u), y(O)= x, and t),,, defined by

O,,,(x) min / min V, _lj(x),
I..j l,nu
j

min (q(X, Zk)+ V,_,,,,(x+g(x,z,)) 4)(x))] ifu>--I
k= l,nz

(3.75)
6o,,,,i(x)=min / min Vo,,_,.i(x)b(x)} if/x=O, u >

.j= 1,nu
js

qS.,o,i(X) min { t.=minl,. (q(X’Zk)+Vu-l’’i(x+g(X’Zk)))’dP(X)} ifu=O, /x>_-l,

Oo,o,,(x) 4(x) if , O, x 0.

In the same way that we established Lipschitz continuity of V(x), it is possible
to ensure:

PgoPOSITON 3.3. V,,, are equi-Lipschitzian more precisely

(3.76) V..,,(x) V..,,(x’)l-< L,,llx x’l[ Vx, x’ a.
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As a consequence of (3.76) and ofarguments similar to those leading to (1.9)-(1.14)
we have

(3.77) Vix,,i is the maximum element of the set Wix,,i with Wix,,i {w:la) b) c)},
a) w Lipschitzian,
b) w(x) <- q,,.,,(x), ’x e 12,
c) (ow(x)/ox) f(x, u,)+l(x, u,)-aw(x)>=o, a.e.
After introducing a triangulation fh in f we set, as in (3.75)

( -h h h h hOh, (xh)=min 6(xh), min wix,_a(xs min (q(x Zk)+ (xs+g(xh,zk))),,i Ix-- l,v,i
j= 1,nu k= 1,nz
ji

ifz >- 1, u -> 1,

(3.78) h h ( hqo,,i(x) =min (x), min (oh,_,j(xh)) if/x =0, ,>-- 1,
j= l,nu
ji

q,o,i(xh) min (xh > v 0), min (q(x Zk)+ g ,o,i(X + g(xh, Zk))) if/z
k= l,nz

h hqo,o,i(xh) b(xs) if/ 0, 0;

where Wix,,i-h is iteratively obtained from (3.78) using (3.79)"
h-h is the maximum element of Wix,,i with

whix, h ’h
C
h

.,i {w -->Rlbh), )},
(3.79)

h hbh) Wh(Xhs)<=h,,,i(Xs), /Xs vertex ofh,
Owh hch) --xc(Xh, U,)l[f(xh, U,)[[ + l(xk, Ui)- owh(x >---- O.

Simultaneously we introduce the functions khIX, ,,
wix,,i is the maximum element of W,,i with
^h(3.80) Wix,,, (wh’ah R[lh),

hbh) wh(Xs)
We remark that the sets (3.79) and (3.80) comprise finite linear elements.

h and hSome properties of,,,i wix,,i. After pointing out that using (3.75) we obtain

qix,,i(x) qix,,i(x’)l -< (max {L6, Lv, Lq + Lv(1 + Lg)}). IIx x’[[,
we can assume as the Lipschitz constant of qix,,i, independent of/x, v,

(3.81 L Lq + Lv( + Lg ).

So, using Lemmas 3.1 and 3.2 applied to the function h and the stopping time
problem (3.74) we can ensure, with L given by (3.81),

h(3.82) max
Xs

with G4(?, p, Ilhll)-* 0, for r/=4p, p Ilhll /2, if Ilhll-->0.
Now, as in Theorem 3.1,

(3.83) max [1 h,,,(x)- v,,,(x)[ <_- G4(, , Ilhll)/ Lllhll G(, p, Ilhll).
xt2

The following four propositions will be presented without proofs (for proofs see [12])
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PROPOSITION 3.4. The approximation solution ffh satisfies
h h(3.84) #h(xh)<-- ff,.,,(Xs) Vxh, V(tZ, U),

PROPOSITION 3.5.

(3.85) hmax (,,,.,(xh) ,.,.,(Xh)) < marx h,....,(x) ,...,(x))/.
xhs

hPROPOSITION 3.6. For all xs and for all i= nu the positive part of bh
I,’,i

has the following bounds

(3.86)

max(qh i(xh)_ h /..,(x))

< max{ max -h h h -h i(x) V/&_ (x))"1- }w..-l.(x)- V. _l.(x))+, max (w._.. .i
",j= l,n x

if/x>--l, v>--l,
h ho...(x )- ,o..,(x 1)+max

Xs
< max (-h h .j(Xh))+ if =0, V >1Wo,_l,(x) Vo -1 tz

h.xs,J 1,

max h,.o.,(x)- x +..o.,())- (x)-V_ (x))+-<_ ma w._l.. .. iftz >-- l, v=O,

h h h +o.o,,(x)) 0 if/x v O.max o,o,i(x
Xs

PROPOSITION 3.7.

(3.87) max (-h
i= l,n

We are now able to conclude.
THEOREM 3.2. The solution h of (Ph) converges uniformly to V(x).
To begin we remark that we can, as in the derivation of (3.20) use (3.64) and

(3.65) to establish that for r/=4p, p Ilhll /=, there exists C5 > 0 such that

(3.88) V(x)- Cllhll ’/<- h(x) Vx f. Vllhll-<-]lholl.
in which ho denotes a fixed "initial" triangulation.

-hTaking into account the affinity of functions h, W,..i, we obtain from (3.84)

w"(x)<-,,,( Vxfh,
which allows us, taking advantage of (3.87), to write

h(x)_-< v,,,(x)/ (1 / /)(, , Ilhll)
and, to ensure the existence of a positive constant C6 such that

(3.89) h(x) <-- v...,(x)/( / /)cllhll
Using (3.73) in (3.89), we have

(3.90) ff’h(X) <--_ V(x)/ (, )/( /
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with

(3.91) 5(tz, v)-0 if(/z, v)-o.

To finish, by (3.91), for all e>0 there exists (z, v,) such that 8(lv)<e/2; if
we choose

IIh ll-min
e (e/2)C6

+/x + v
we obtain, using (3.88), (3.90),

IV(x)-(x)l<- Vxea, Vllhll<_-IIhll,

lhat is, the desired conclusion.

3.4. An estimation of the rate of convergence. We reduce our control policy to
stopping time and impulse controls. Because we do not have continuous control, we
ignore the parameter v in (3.73) and, following the same technique used in [9] we can
show that

Mj) e_p(/x)--<_2 e M,+--
So (3.90) becomes

#h(x)<-- V(x)+2 e M+
(3.92)

Using for tz in (3.92) the integer part of

-1 Csllhll Ill-
-log
p 2e(M,+M1/ot)’

we can ensure the existence of a constant C7 such that

(3.93)

qo
P 2 e(Mt/ a + M,)"

+(l +)C611hll 1/2

V/x 0, 1, , V h h0 II.

l"(x)-V(x)l<-Cllogllhlll.llhll ’/ Vxa,,, Vllhll=<llholl.
Remarks. In [13] we can see an estimation of the rate of convergence of value

functions associated with a discrete-time approximation. The result applies using
bang-bang controls.

We want to also note that in some applications we have solved exactly the fixed
point problem using different types of "one-iteration convergent" algorithms (see [ 14],
[151).
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ON DETERMINISTIC CONTROL PROBLEMS:
AN APPROXIMATION PROCEDURE FOR THE OPTIMAL COST II

THE NONSTATIONARY CASE*

R. GONZALEZ" AND E. ROFMAN

Abstract. We study deterministic optimal control problems having stopping time, continuous and
impulse controls in each strategy.

We obtain the optimal cost, considered as the maximum element of a suitable set of subsolutions of
the associated Hamilton-Jacobi equation, using an approximation method. A particular derivative discretiz-
ation scheme is employed.

Convergence of approximate solutions is shown taking advantage of a discrete maximum principle
which is also proved.

For the numerical solutions of approximate problems we use a method of relaxation type. The algorithm
is very simple; it can be run on computers of small central memory.

In Part [SIAM J. Control Optim., 23 (1985), pp. 242-266] we studied the stationary case; in Part II we
study the nonstationary case and we apply our results to a short-run model of energy production management.

Key words, deterministic control, Hamilton-Jacobi-Bellman equations, finite elements, energy produc-
tion systems

Introduction. In this part we consider the nonstationary case. There are not serious
difficulties in extending the results of Part I (this issue, pp. 242-266) to the case in
which the dynamics depends explicitly on the time t. For the most part we will limit
ourselves merely to stating the results concerning the nonstationary case; we will
comment on and analyse only those aspects for which there are some important
differences.

As an application of the methodology described in Part II we give a solution to
the problem of computing the optimal control of an electrical production system.
Systems with a significant number of thermal and hydropower plants may be optimized
in this way.

1. The theoretical approach.
The original problem and its equivalent formulation. In this case the system satisfies

in absence of impulse controls the differential equation

(l.1)

f(y, u, s) x e fl c R"
ds

y(t)=x, t6[0, T].

u(’) is a measurable function of the time, with values in a compact set U
In a finite set of times 0 (v= 1, 2,...,/z) impulses z(0) Z are applied; the

trajectory jumps are

(1.2) y(0+) y(0-) + g(y(0-), z(0,), 0).

Z is a compact set in [P.
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01-80RA-50154.
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(1.3)

We denote by (u(.), z(. ), z) a control strategy with the stopping time r [0, T[.
The cost associated with each strategy is

J(x, t; u(. ), z(. ), z)= I, e-’(S-l(y(s), u(s), s) ds

+, q(y(O-), z(O), 0) e-(-’)

+ e-’(-b(Y(’r),

with X[t,T[(" a characteristic function of the interval [t, T[.
The optimal cost function is ’(x, t)s Q

(1.4) V(x, t)= inf J(x, t; u(. ), z(. ),

(1.5) Q n x [0, T].

In the following we will suppose:
i) f, l, b, g, q are continuous and .bounded functions; they are Lipschitzian

functions in (x, t).
ii) b(x, T)_>-O
iii) q(x, z, t) >= qo> 0 (x, t) Q, z Z.
iv) ’ t, y(t) l-l, independent of the strategy.
We can give the following characterization of V(x, t).
THEOREM 1.1. V(X, t) is the maximum element of the set W, with

W= {w(x, t)--> (1.6)-(1.10)};
(1.6)

w(x, t) Lipschitzian function in (x, t);

(1.7)
Ow(x, t) lOw(x, t)- min f(x, u, t) + l(x, u, t) aw(x, t) > 0

Ot uu L---x
a.e. (x, t) Q;

w(x,t)<-min(q(x,z,t)+w(x+g(x,z,t),t)) V(x,t)Q;
zZ

(1.9) w(x, t)<--ck(x, t) /(x, t) Q;

(1.10) w(x, T) <-O

The proof follows the method used in [9, p. 29].

2. The discretized problem (Ph).
2.1. Introduction.
a) The set Q is approximated by a triangulation Qh, a union of simplices of

vertices (Xp, tq) p O, Nx q O, NT, tq q 8, 6 T/ NT. This triangulation is "regular
in t" in the following sense:

i) each simplex of Qh has its vertices in two hyperplanes with equations to,
t= tq+ 1.

ii) If a face of a simplex of Qh is contained in the hyperplane {t tq} we will
have a "mirror image" of that face in the hyperplanes {t= tq_}, {t= tq/}; they are
themselves faces of simplices of Qh. An example is shown in Fig. 1.
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FIG.

b) In the set of linear finite elements wh defined in Qh we consider the set W"
Wh {wh,. Qh _, g (2.), (2.3), (2.4), (2.5)},

(2.1)
Owh owh
(xp, tq" u)+ (xp, tp, u)llf(xp, u, t )ll + l(xp, u, tq)
ot

--awh(xp, t)>=O Vu Uh, Vxp, p=O,N,, Vtq, q=O, NT--1.
For example, in the situation depicted in Fig. 2, the expression

Owh Owh

O----(xp, tq; u)+-xf(xe, tq; u)llf(xp, u, tq)]l

(a,t:a)

FIG. 2

is approximated by

wh(a, ta) wh(xp, tq)(2.2)
A

with A - tq,

(2.3)

(2.4)

(2.5)

wh(xp, tq) <-- q(Xp, z, tq) + wh(xp + g(Xp, Z, tq), to)
Vz Zh, Vxp, p O, Nx,

wh(xp, tq) <--_ Ch(Xp, tq) Vp O, Nx Vq O, NT 1,

wh(Xp, trvT) <= 0 Vp O, Nx.
Remarks. Similar observations apply as in d) of Part I, 2.2.
c) We introduce the following partial order "-<""

(2.6)

[ tq, q =0, Nr 1,

wh<lh<::)wh(xp, tq)<h(xp, tq) Vp=O, Nx, q=O, Nr
and we pose the discretized problem:
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(Ph)" Find the maximum element ffh of the set Wh with respect to the partial order

2.2. The solution of (Ph) and its properties. Equations (2.1) and (2.3) will be
transformed into equivalent and more useful relations.

As Fig. 3 shows we express the point (a, ") as a convex combination of points
(x’, tq) and (a’, tq+),

(2.7) (a, t)=--(a ’, tq+)+ 1- (x’, tq).

FIG. 3

Furthermore, taking into account that x’ and a’ are, in general, interior points of
faces (or edges) of some simplex, we will express these points as convex combinations
of the vertices of the faces to which they belong:

(2.8) a’(u) , Aj(Xp, tq, u)xj,
J

(2.9) x’(u) Y (Xp, tq, u)x.

So, because of (2.7) and the affinity of w h, (2.1) becomes

wh(xp, tq) <_ min 1(uet (l + aA) ij(Xp, tq, U)" wh(xj, tq+l)

"(1--)j j(Xp,’q,l’l)wh(lj, lq)-’’Al(Xp, l’l, tq)}
In the same way we put

(2.11) xp + g(xp, z, tq) Aj(Xp, tq, z)x

and (2.3) is rewritten in the equivalent form

(2.12)
wh(xp, tq)<-- mi (q(Xp, z, tq) +E Aj(Xp, tq, z)wh(xj, tq))

zZ

Vp=O, Nx, q =0, Nr- 1.

We will use (2.10) and (2.12) to define the real operator M (wh denotes a linear finite
element in Qh).

if q= Nr (Mwh)(xp, tq)=0,
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if q=0,..-, Nr-1

(Mwh)(xp, tq)=min{dp(xp, tq),minh(q(Xp, Z, tq)+Aj(Xp, tq, z)wh(xj, tq))zZ

(2.13) min [A h

.u + aA -d Aj(Xp, tq, z)w (x, tq+l)

We define Mwh at arbitrary points in Qh by linear interpolations of the values
given by (2.13) at the vertices of the triangulation.

Some properties of Mwh which follow immediately are;

(2.14) W
h >- 1h

--) Mwh >=Mh,
(2.15) wh

E Wh :) wh < Mwh.

Remark. (2.15) gives us a characterization of Who
Finally the most important property is given by:
THEOREM 2.1. There exists ffh, maximum element of wh furthermore h is charac-

terized by the condition ffh= Mff h, i.e.

(2.16) h Mh
_

ih >= Wh /Wh Wh.

Proof. We follow the proof of Theorem 1.2.2, using the following new discrete
maximum principle.

LEMMA 2.1. Let us call Sh a subset of all vertices ofQh and Ch its complement. Let
wh be some linearfinite element defined in Qh such that wh(xp, tNT O, and r: 1 U x-
[0, T]- .

If there exists Up,q c Uh such that for all (Xp, to) Ch,

(2.17)

min [Owh(xp’ t; U) Owh(xp, tq; U)
/ f(xp, u, tq

%, Ot Ox

h" r(Xp, u, tq)--otwh(xp, tq)]
then

(2.18) wh(xp, tq) <--- M-h + M+ T V(Xp, tq) C h,

with

(2.19) M-h maxsh (wh(xp, to) V 0),
(Xp, tq).

M+ max (r(Xp, U, tq) V 0).
(Xp,tq)C

Up,q

We show the lemma. Let us define

(2.21) max
(Xp, tq’)
qq’NT

wh(Xp, to);



272 R. GONZALEZ AND E. ROFMAN

(2.18) will be proved after showing that

(2.22) MG <-_ M- + M+ T- I)

holds for any q 0, 1,..., NT. We will proceed inductively.
We know after (2.5) that (for q= NT)Mc,T-<_O; then

(2.23) Ma + M+( T tNT) M+ >-- 0 >-- Mc.
Now we will suppose that (2.22) holds for q and we will show that such a

supposition implies that it holds for q- 1. Let (xp, tq-l) C h. From (2.17) used in its
equivalent form (2.10), we have

wh(xp, t_) <= min- %,,-, + trA
(2.24)

If V(xp, tq_) C h,

{j Aj(Xp, tq_l, U)wh(xj, tq)

(2.25) wh(xp, tq_) < M-h+ M+ (T-q3),

it follows that, with q-1 in place of q in the second term, it is also true that
+ +wh(xp, tq_)<=Msh+Mr(T-(q-1)3), that is to say (2.22) holds for q-1. If (2.25)

does not hold, there exists (xp*, t*_) such that

(2.26) wa(X*p, t’q_,)= MG_,> Mh+ M+(T-q3)

or, in other words

(2.27) wh(xp, tq_) <-- Mcq_, Vp O, Nx.

On the other hand, as we have accepted that (2.22) holds for q:

(2.28) wh(xp, tq) <- Mh + M+ T- q3)

then, using (2.27), (2.28) in (2.24), we have

Mcq_,<-_ min
G,-, + aA -d(M"+M+r(T-q3))+ l- Mc,,_, +M+A}.

From here, as 1/(l+aA)< 1, A_--<3 we have

Mc,_, <-M+M+r T-(q- 1)3).

2.3. Algorithms to compute w. To compute ffh we can use Algorithms 2.1 and
2.2. These algorithms, similar to Algorithm 2.1 in Part I used in the stationary case,

hdefine increasing elements wp Wn, having as limit.
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ALGORITHM 2.1.

(p+INx) / ((Nx+l)(NT+I)

r’ +(pqNx) / ((Nx+I) (NT+I))

In fact, it is possible to show the following theorems.
THEOREM 2.2. Algorithm 2.1 stops after a finite number of steps at the element

wh ffh or it gives a sequence {wh} convergent to h, i.e.

lim wh(Xp, to)= h(xp, tq) Vp=0, Nx, Vq=0, Nr.

THEOREM 2.3. Algorithm 2.2 stops after a finite number of iterations at the
element ffh which has the following properties"

w e Wh, Ve > O,
-hb) e=<e’h=>w,,

-h hc) limo w ff
Remark. Algorithm 2.2 is an improvement on Algorithm 2.1 which takes advantage

of the paicular structure of nonstationary problems (we use backward solutions).
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ALGORITHM 2.2.

2.4. The convergence of the approximate solutions. It is possible to prove a theorem
similar to Theorem 1.3.2.

THEOREM 2.4. The approximate solutions h converge uniformly to V(x, t), i.e.

lim max,, [h(x, t)-- V(X, t)l =0.
lib II-->0 (x,t)Q

3. An application to the management of energy production.
3.1. Model of the problem (short-run model). The energy production system con-

sists of two thermal power plants (P, P being their level of production) and a dam
(Xh" hydropower stock, Ph" hydropower production). D is the demand of electricity
and we denote by P3 the production of an additional source which is available if it is
required"

(3.1) D= PI + P+ Ph + P3.
The cost of the operation is given by

J: (Clel(t)+c2P2(t)+Ch(Xh(t))eh(t)q-c3e3(t)) dt

(3.2)
+ nk + nEk2.

n, n2 is the number of starts of plants l, 2 in the interval [0, T]; k, k2 the costs of
each start. We suppose c, c, ca constants and Ch(Xh) is a shadow price obtained after
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(3.4)

with

a long-run optimization (about one year). In our problem we will consider [0, T] one
day or one week (cf. 12], 14], 15]).

We will suppose that there are no delays between the start of a thermal plant and
the instant in which it begins to produce energy. The methodology to be used here
can be easily modified to take into account these delays (cf. [11], [12], [16]).

In this form the system will be modeled by its internal state" a discrete variable
E (showing if the plants and 2 are working or not) and a continuous variable Xh
whose evolution equation is

dXh A Ph O < Xh <Xh,ma(3.3)
dt

A(t) is the input of water in the dam.

1, plants and 2 do not operate,

2, plant operates; plant 2 does not operate,
E=

3, plant does not operate; plant 2 operates,

4, plants and 2 operate.

Our aim is to obtain the control strategy giving the minimum of J. The optimal
policy is a decision concerning when plants and 2 must operate and at what level
of production. We look for optimal feedback policies acting on the instantaneous state
E (t), Xh (t)) of the system.

3.2. Optimal feedback policies. Let us consider as parameters the initial state x
and the initial time of the system and let us introduce the optimal cost functions

V(x, t), i- 1, 4, (x, t) Q [0, Xh.max] X[0, T],

V(x, t)= inf J(Xh, i, t, P(. ), P2(" ), Ph(" ))
P (" ),P2(" ),Ph ("

J(xn, i, t, P,(. ), P2(" ), Pn(" ))

(ClPl(S)4- c2P2(s)4- Ch(Xh(S))Ph(S)4- c3P3(s)) ds 4- nl] 4-/12]2

cost related to the policy PI(" ), P2(" ), Ph(" in the interval It, T] with the initial data
(E( t), Xh( t))= (i, Xh).

From V(x, t) it is possible to define the optimal feedback policies (cf. [2], [3],
[9]). So, our problem is to compute V(x, t). We recall for that the following.

3.3. Quasi-variational inequalities (QVI) associated with the control problem and
characterization of Vi. It is possible to show (cf. [5], [9]) that V’s are differentiable in
a.e.(x, t) Q. Furthermore they verify (cf. [2], [9], [12]) the system of QVI:

tgXh
(A- Ph) + CIP + c2P2

(3.6)
+ c3(D- P, P- Ph)+ + Ch(Xh)Ph) -->_0,

(3.7)

4- min
Ot (P1,P2,Ph)Ii(Xh)

V/(xn, t)_-< V(Xh, t)+ kj j i,

(3.8) Vi(Xh, T) O,
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with [i(Xh) the set of admissible levels of production related to the state and the
stock Xh; kj the cost for passing from state to state j.

Remark. In a.e. (x, t) Q, one, at least, of (3.6), (3.7) becomes an equality.
The following characterization of V(x, t) will allow us to compute it using the

method introduced in 2.
V(x, t) is the maximum element of the set,

(3.9) W={w,n’(Q)/w, verifies (3.6), (3.7), (3.8)}, i--1,2,3,4,

i.e.

w,(x, t) <= V(x, t) V(x, t) Q, Vw, W, i=1,2,3,4.

3.4. Discretization of (3.9) and the discrete problem. Let us introduce in Q a
triangulation Q as shown in Fig. 4, and let us consider in it linear finite elements

FIG. 4

with vertices (Xp, tq). The set W is replaced by the approximate set W having as
elements, linear finite elements w (w) satisfying suitable discretizations of (3.6),
(3.7), (3.8):

If A-Ph>=O,

w(Xp+, tq+)- w(Xp, tq+l)
(A- Ph)

W (Xp, tq+l)- W(Xp, ,to, +
tq+l--tq %+1--%

(3.10) + CPl + c2P2+ Ch(Xp)Ph + c3(D- Pl- P2- Ph)+>-0,

(P,P2, Ph)F(xp), /p=0,...,NS-1, q=0,...,NT-1.

If A-Ph<O,

w(x, t+,)-w(x,, t) w(x,_, t)-w(x,, t)q- (A-Ph)
tq+l- q Xp-l-Xp

(3.10’) +ClPl+cg_P2+Ch(Xp)Ph+C3(D-Pi-P2-Ph)+>--O
V(P,P2, Ph)F(xp), Ip=I,...,NS, Vq=0,...,NT-1.
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(3.11) w’(Xp, tq) <-_ w(Xp, tq) + kj Vp O, NS,

(3.12) w’(xp, tNT) O, p O, NS,

We pose the following discrete problem:

(pa): Find the maximum element 1 of Wa.

By Theorem 1.2.2 and Theorem 2.1., we know that ffa exists and it is unique. We
can also introduce an algorithm with the properties remarked in 3. In fact, after a
suitable transformation of (3.10), (3.10’) into relations of the following type

(3.13) w(Xp, tq)

we define:

ALGORITHM 3.1.
Step 0; ff(xn, t)= w’(x,, t)= 0, Vi= 1, 4, Vp=0, NS, Vq =0, NT.
Step 1: q NT-
Step 2:p=0
Step 3:
Step 4: w’(Xp, t)=min{w(xp, t)+ kj(j i); rl,’(w,. ,xn, tq)}
Step 5" ifi=4goto6;ifnot, i=i+l and go to4
Step 6: if ’(Xp, tq) w’(Xp, t), Vi 1, 4, go to 7; if not do ’(Xp, t) w’(x,, to),

Vi= 1, 4 and go to 3
Step 7: ifp=NSgoto8;ifnotdop=p+l and go to3
Step 8: if q > 0, do q q-1 and go to 2; if not, do ff:’(xp, tq)= w’(xp, tq), Vi-- 1,

4, Vp=0, NS; Vq=0, NT and stop.

Remark. The algorithm is very easy to program; it uses only "local" information
(i.e. to compute w"(xn, t) it uses only w(xp_, t), w(Xp, tq_), wa(xp+l, tq+)). SO it
is possible to implement it on computers of small central memory.

We recall also that the algorithm converges in a finite number of iterations to
and limllll_,o max(x,,)o [ff’(x, t)- V(x, t)[ =0, with Ilall the norm of the triangulation
Q’.

3.5. Some remarks preceding the presentation of numerical results. We shall solve
a probleha involving a simplified model and the real demand data considered in [12].
The demand will have the following form shown in Fig. 5. The hydraulic cost will be

(3.14)
Ch Xh Ch "- Ch Ch Xh / Xh

Ch O. 1, Ch: 0.06, Xh 5000 MWh.

Other dates are:

(3.5)

(3.16)

(3.17)

P [Plmin, Plmax] [250, 500]

P2 E [P2min, P2max] I125,250]

Ph - [0, Phmax(Xh)] with

ehmax Xh
S" Xhmax

(MW),

(MW),

S" Xhmax -- Xh Xhmax S 0.3, Phi 250 MW,

VO Xh S" Xhmax

(3.18) A=0MW.
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I0 12 14 16 18 20 22 24

FIG. 5

Knowing , we obtain the approximate optimal feedback policies as follows:
a) We change our policy (that is to say, we start or we stop the operation of a

thermic generator) in the regions where (3.11) becomes an equality. For example, if
our system is in the state (2, Xp, tq) and (Xp, tq) ff(Xp, tq)+ k2 holds, we must pass
to state 4 (starting with central 2). In this form we obtain tables of future states showing
where and how we must switch.

b) When (3.11) are strict inequalities, we must define the production level of
thermopower plants. The optimal level is that giving equality in (3.10) or (3.10’).

c) Finally with the tables concerning future states and optimal production levels
we obtain the optimal trajectories solving the differential equation (3.3).

3.6. Numerical results. The interval of.time [0, T] is taken as 8 days. We use
NT= 192; so the length of the discretized time is hour. We use NS= 18; as

Xhmax--5000 MWh we obtain 277 MWh for each step. We divide each interval of
thermal power production in six values (P 250, 300, 350, 400, 450, 500 MW; P2 125,
150, 175, 200, 225, 250 MW). The values of the cost to start a power plant are

k-l =0.5775 105 /2 0.325 x 105
In the algorithm the iterative part concerns steps 3 to 6. It converges in a finite

number of iterations. An example is given in Table 3.1 (in which the values are divided
by 105).

TABLE 3.1

Number of
iterations w w2 w3 w4

0 0 0 0 0
.325 .325 .325 .325

2 .650 .55917 .650 .55917
3 .975 .55917 .71641 .55917
4 .98241 .55917 .71641 .55917
5 .98241 .55917 .71641 .55917

The program gives as output suboptimal policies (future state Ey and production
level to be generated) as functions of the state Ep, Xh of the system, as shown in Table
3.2.

With these values we prepare the operation tables (as functions of (Xh, t)) that
are shown in the following pages. We have chosen those referring to Wednesday. In
one table of each pair we give the future state; in the other the power level to produce.
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TABLE 3.2

w

00000D+ 01
00000D + 01
.00000D+ 01
00000D + 01

.40000D+ 06
40000D+ 06
.30000D+ 06
.30000D+ 06

00000D + 01
00000D + 01
.12500D+06
.12500D+06

.11670D+05

.11670D+05
00000D + 01
00000D+ 01

.91130D+06

.85355D+06

.90549D + 06

.84774D+06

hydrol:Xlwer
frock

50Wh

2,5.

5Gila

2.5GWh

TABLE 3.3
a. Future states

2222222
2222222
2222222
2222222
2222222
2222222
2222222
2222222
2222222
2222222
2222222
2222222
229999
229999
2222222
2222222
2222222
2222222
2a567

44444244422
44444244422
44444244422
44444244442
44444244442
44444244442
44444244444
44444244444
44444244444
44444244444
44444244444
44444244444
44444244444
44444444444
44444444444
44444444444
44444444444
44444444444

10 ,

222222
222222
222222

222222
222222
222222
222222
222222

222222
422222
422222
422222
422222
422222
422222
422222

21

b. Power level to produce.

P

400 350 300 250 250 350 450 500 500 500 500 500
200 250 250 250 175

400 350 300 250 250 350 450 500 500 500 500 500
200 250 250 250 175

400 350 300 250 250 350 450 500 500 500 500 500
200 250 250 250 175

400 350 300 250 250 350 450 500 500 500 500 500
200 250 250 250 175

400 350 300 250 250 350 450 500 500 500 500 500
200 250 250 250 175

400 350 300 250 250 350 450 500 500 500 500 500
200 250 250 250 125

400 350 300 250 250 350 450 500 500 500 500 500
200 250 250 250 200

400 350 300 250 250 350 450 500 500 500 500 500
200 250 250 250 200

400 350 300 250 250 350 450 500 500 500 500 500
200 250 250 250 200

400 350 300 250 250 350 450 500 500 500 500 500
200 250 250 250 200

400 350 300 250 250 350 450 500 500 500 500 500
200 250 250 250 200

400 350 300 250 250 350 450 500 500 500 500 500
200 250 250 250 200

400 350 300 250 250 350 450 500 500 500 500 500
200 250 250 150 200

400 350 300 250 250 350 450 500 500 500 500 500
200 250 250 250 200

400 350 300 250 250 350 450 500 500 500 500 500
200 250 250 250 200

400 350 300 250 250 350 450 500 500 500 500 500
200 250 250 250 200

400 350 300 250 250 350 450 500 500 500 500 500
200 250 250 250 200

400 350 300 250 250 350 450 500 500 500 500 500
200250 250 250200
"8

00 500 500
125 150

500 500 500
125 150

500 500 500
125 150

500’500 500
125 lb0

500,500 500
125 150

500 500 00
125 150

500 500 500
125 150

500 500 500
’t25 150

500 500 500
’125 150

500i500 oo
125 i75

500 500 500
125 175

500 500 500
"125 175

500 500 500
125 175

400500 500
125 125 175
400 500 500
125 125 175
400 500 500
i25 :125 175
400 500 500

i25 "125 175
400 500 500
125 25
13

500 500 500 500 500 500 500 500 450
200 O0
590 500 500 500 500 500 500 500 450
200
500 00 500 500 500 500 500 500 450
200
500 500 500 500 500 500 500 500 450
200 250
500 500 500 500 500 500 500 500 450
200 250
500 500 500 500 500 500 500 500 450
200 250
500 500 500 500 500 500 500 500 450
200 250 250
500 500 500 500 500 500 500 500 450
200 250 250
500 500 S00 500 500 500 500 500 500
200 250 250
500 500 500 500 500 500 500 500 500
200 250 250
500 500 500 500 500 500 500 500 500
200 250 250 0
500 500 500 500 500 500 500 500 500
200 250 250 250
500 500 500 500 500 500 500 500 500
200 250 250 250
500 500 500 500 500 500 500 500 500
200 250 250 250
500 300 500 500 500 500 500 500. 500
200 250 250 250
500 500 500 500 500 500 500 500 500
200 250 250 250
500 500 500 500 500 500 500 500 500
200 250 250 250
500 500 500 500 500 500 500 500 500
200 250 250 250 0

22 23 dml

E
p



280 g. GONZALEZ AND E. ROFMAN

TABLE 3.4
a. Future states.

5G/h

2.5GWh

44444 444
44444 444
44444 444
44444 4444
44444 4444
44444 4444
44444 44444
4444 44444
44444 44444
44444 44444
44444 44444
44444 444444
44444 444444
444444444444
444444444444
444444444444
444444444444
444444444444

123 56 111

gp=2

17 1819 2021 2 22R

2.5OWh

b. Power level to produce.

400 350 300 250 250 350 450 00 00 00 500 500’00
200 250 250 250 175

400 350 300 250 250 350 450 500 500 500 500 500 500
200 250 250 250 i75

400 350 300 250 250 350 450 500 500 500 500 500 500
200 250 250 250 175

400 350 00 250 250 350 450 500 500 500 300 500 500
200 250 250 250 175

00 350 300 250 250 350 450 500 500 500 500 500 500
200 250 250 250 175

400 350 300 250 250 350 40 500 500 500 500 500 500
200 250 250 250 I75

400 350 300 250 250 350 450 500 500 500 500 500 500
200 250 250 250 200

400 350 300 250 250 350 450 500 500 500 500 500,500
.200 250 250 250 200

400 350 300 250 250 350 450 500 500 500 500 500 500
200 250 250 250 200

400 350 300 250 250 350 450 500 500 500 500 500 500
200 250 250 250 200

400 350 300 250 250 350 450 500 500 500 500 500 500
200 250 250 250 200

400 350 300 250 250 350 450 500 500 500 500 500 500
200 250 250 250 200

400 350 300 250 250 350 450 500 500 500 500 500 500
200 250 250 250 200

400 350 300 250 250 350 450 500 500 500 500 500 400
200 250 250 250 200 125

400 350 300 250 250 350 450 500 500 500 500 500 400
O 200 250 250 250 200 125

400 350 300 250 250 350 450 500 500 S00 500 500 400
200 250 250 250 200 125

400 350 300 250 250 350 450 500 500 500 500 500 400
200 250 250 250 200 125

400 350 300 250 250 350 450 500 500 500 500 500 400
200 250 250 250 200 125

500 500 500 500 500 500 500 500 500 500 450
125 150 200
500 500 500 500 500 500 500 500 500 500
125 150 200
500 500 500 500 500 500 500 500 500 500 450
125 150 200 250
500 500 500 500 500 500 500 500 500 500 450
125 150 200 250
500 500 500 500 500 500 500 500 500 500 450
125 150 200 250
500 500 500 500 500 500 500 500 500 500 450
125 150 200 250 250
500 500 500 500 500 500 500 500 500 500 500
125 150 200 250 250 0
500 500 500 500 500 500 500 500 500 500 500
25 150 200 250 250
500 500 500 500 500 500 500 500 500 500 500
125 175 200 250 250 0
500 500 500 500 500 500 500 500 500 500 5001
i25 175 200 250 250
500 500 500 500 500 500 500 500 500 500 5001
125 175 200 250 250 250
500 500 500 500 500 500 500 500 500 500 500
125 175 200 250 250 250 0 0
500 500 500 500 500 500 500 500 500 500 500
125 175 200 250 250 250
500 500 500 500 500 500 500 500 500 500 500
125 175 200 250 250 250 0
500 500 500 500 S00 500 500 500 500 500 500
125 175 200 250 250 250 0
500 500 500 500 500 500 500 500 500 500 500
125 175 200 250 250 250
500 500 500 500 500 500 500 500 500 500 500
125 175 200 250 250 250
500 500 500 500 500 500 500 500 500 500 500
125 175 200 250 250 250

E =2
P

12 lb 18 19 20 21 time
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hydropower
Itock

5Gk’h

2.

TABLE 3.5
a. Future states.

44444
44444
44444
44444
44444
44444
44444
44444
44444
44444
44444
44444
44444
44444
44444
44444
44444
44444
67

44444444444444
44444444444444
44444444444444
44444444444444
44444444444444
44444444444444
44444444444444
44444444444444
44444444444444
44444444444444
44444444444444
44444444444444
44444444444444
44444444444444
44444444444444
444444’44444444
44444444444444
44444444444444

P

b. Power level to produce.

250 350 500 500 500 500
250 250 250 250 250 125 125 200 250 250 250

250 350 500 500 500 500
250 250 250 250 250 125 125 200 250 250 250

250 350 500 500 500 500
250 250 250 250 250 125 125 200 250 250 250

250 350 500 500 500 500
250 250 250 250 250 125 125 200 250 250 250

250 350 500 500 500 500
250 250 250 250 250 125 125 200 250 250 250
300 250 350 500 500 500 500
125 250 250 250 250 125 125 200 250 250 250
300 250 350 500 500 500 500
i25 250 250 250 250 125 125 200 250 250 250
300 250 350 500 500 500 500
125 250 250 250 250 125 125 200 250 250 250
300 250 350 500 500 500 500

2.SGNh 125 250 250 250 250 125 125 200 250 250 250
300 250 350 500 500 500 500
125 250 250 250 250 125 125 200 250 250 250
300 250 350 500 500 500 500
’125 250 250 250 250 125 125 200 250 250 250
300 250 350 500 500 500 500
125 250 250 250 250 125 125 200 250 250 250
300 250 350 500 500 500 500
125 250 250 250 250 125 125 200 250 250 250
300 250 350 500 500 500 500
125 250 250 250 250 125 125 200 250 250 250
300 250 350 500 500 500 500
125 250 250 250 250 125 125 200 250 250 250
300 250 350 500 500 500 500
125 250 250 250 250 125 125 200 250 250 250
300 250 350 500 500 500 500
125 250 250 250 250 125 125 200 250 250 250
300 250 350 500 500 500 500
125 250 250 250 250 125 125 200 250 250 250

500 400 500 500 500 500
175 125 125 150 200 250
500 400 500 500 500 500
175 125 125 150 200 250
500 400 500 500 500 500
175 125 125 150 200 250
500 400 500 500 500 500
175 125 125 150 200 250
500 400 500 500 500 500
175 125 125 150 200 250
500 400 500 500 500 500
175 125 125 150 200 250
500400 500 500 500 500
175 125 125 150 200 250
500 400 500 500 500 500
200 125 125 150 200 250
500 400 500 500 500 500
200 125 125 150 200 250
500 400 500 500 500 500
200 125 125 175 200 250
500 400 500 500 500 500
200 125 125 175 200 250
500 400 500 500 500 500
200 125 125 175 200 250
500 00 500 500 500 500
200 125 125 175 200 250
500 400 500 500 500 500
200 125 125 175 200 200
500 400 500 500 500 500
200 125 125 175 200 250
500 400 500 500 500 500
200 125 125 175 200 250
500 400 500 500 500 500
200 t25 125 175 200 250
500 400 500 500 500 500
200 125 125 175 200 250

500 500 500 500 450 400 350
250 250 250 173 125 125 125
500 500 500 500 450 400 350
250 250 250 175 125 125 125
500 500 500 500 450 400 350
250 250 250 175 125 125 125
500 500 500 500 450 400 350
250 250 250 175 125 125 125
500 500 500 500 450 400 350
250 250 250 175 125 125 125
500 500 500 500 450 400 350
250 250 250 175 125 125 125
500 500 500 500 450 400 350
250 250 250 125 125 125 125
500 500 500 500 450 400 350
250 250 250 175 t25 t25 125
500 500 50 500 450 400 350
250 250 250 125 125 125 125
500 500 500 500 450 400 350
250 250’250 175 125 125 125
500 500 500 500 450 400 350
250 250 250 173 125 125 125
500 500 500 500 450 400 350
250 250 250 175 125 125 125
500 500 500 500 450 400 350
250 250 250 175 125 125 125
500 500 500 500 450 400 350
250 250 250 125 25 t25 125
500 500 500 500 500 400 350
250 250 250 175 125 125 125
500 500 500 500 500 400 350
250 250 250 175 125 125 125
500 500 500 500 500 400 350
250 25’0 250 175 125 125 125
500 500 500 500 500 400 350
250 250 250 175 125 125 125

v..=3
p

10 11 12 13 16 18 19 22 23 time
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TABLE 3.6.
a. Future states.

b. Power level to produce.

2.

300 250 250 250 250 250 350 500 500 500 500 500 400
"125 125 125 125 125 125 t25 200 250 250 250 175 125
300 250 250 250 250 250 350 500 500 500 500 500 400
t25 125 t25 125 125 125 t25 200 250 250 250 175 125
300 250 250 250 250 250 350 500 500 500 500 500 400
125 125 125 125 125 125 125 200 250 230 250 175 125
300 250 250 250 250 250 350 500 500 500 500 500 400
125 125 125 125 125 125 125 200 250 250 250 "175125
300 250 250 250 250 250 350 500 500 500 500 500 400
125 125 125 125 125 125 125 200 250 250 250 175 125
300 250 250 250 250 250 350 500 500 500 500 500 400
125 125 125 125 125 125 125 200 250 250 250 175 125
300 250 250 250 250 250 350 500 500 500 500 500 400
"125 125 125 125 125 125 125 200 250 250 250 200 125
300 250 250 250 250 250 350 500 500 500 500 500 400
125 125 125 125 125 125 125 200 250 250 250 200 125
300 250 250 250 250 250 350 500 500 500 500 500 400
125 125 125 125 125 125 125 200 250 250 250 200,125
300 250 250 250 250 250 350 500 500 500 500 500 400
125 125 125 125 125 125 125 200 250 250 250 200 25
300 250 250 250 250 250 350 500 500 500 500 500 400
125 1,25 125 125 125 125 125 200 250 250 250 200 125
300 250 250 250 250 250 350 500 500 500 500 500 400
125 125 125 125 125 125 125 200 250 250 250 200 125
300 250 250 ’250 250 250 350 500 500 500 500 500 400
125 125 125 125 125 125 125 200 250 250 250 200 125
300 250 250 250 250 250 350 500 500 500 500 500 400
125 125 125 125 125 125 125 200 250 250 250 200 "125
300 250 250 250 250 250 350 500 500 500 500 500 400
125 125 125 125 125 125 125 200 250 250 250 200 125
300 250 250 250 250 250 350 509 500 500 500 500 400
125 125 125 125 125 125 125 200 250 250 250 200 125
300 250 250 250 250 250 350 500 500 500 500 500 400
125 125 125 125 125 125 125 200 250 250 250 200 "125
300 250 250 250 250 250 350 500 500 500 500 500 400
125 125 125 125 125 125 125 200 250 250 250 200 125
i 10

500 50O 500
125 150 200
500 500 500
125 150 200
500 500 500
i25 150 200
500 500 500
125 150 200
500 500 500
125 150 200
500 500 500
125 150 200
500 500 500
125 150 200
500 500 500
125 150 200
500 500 500
125 150 200
500 500 500
125 175 200
500 500 500
125 175 200
500 500 500
125 175 200
500 500 500
125 175 200
500 500 500
125 175 200
500 500 500
125 175 20O
500 500 500
125 175 200
500 500 500
125 175 200
500 500 500
125 175 200

500 500 500 500 500 450 400 350
250 250 250 250 175 125 125 125
500 500 500 500 500 450 00 350
250 250 250 250 175 125 125 125
500 500 500 500 500 450 400 350
250 250 250 250 125 125 125 125
500 500 500 500 500 450 400 350
250 250 250 250 175 125 125 125
500 500 500 500 500 450 400 350
250 250 250 250 175 125 125 125
500 500 500 500 500 450 400 350
250 250 250 250 175 125 125 125
500 500 500 500 500 450 400 350
250 250 250 250 175 125 125 125
500 500 500 500 500 450 400 30
250 250 250 250 175 125 125 125
500 500 500 500 500 450 400 350
250 250 250-20 175 125 125 125
500 500 500 500 500 450 400 350
250 250 250 250 175 125 125 125
500 500 500 500 500 450 400 350
250 250 250 250 175 125 125 125
500 500 500 500 500 450 400 350
250 250 250 250 175 125 125 125
500 500 500 500 500 450 400 350
250 250 250 250 175 125 i25 125
500 500 500 500 500 500 400 350
250 250 250 250 175 125 125 125
500 500 500 500 500 500 400 350
250 250 250 250 175 125 125 125
500 500 500 500 500 500 400 350
250 250 250 250 175 125 125 t25
500 500 500 500 500 500 400 350
250 250 250 250 175 125 125 125
500 500 500 500 500 500 400 350
250 250 250 250 175 125 125 125

22’ 2

E=4
P
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Example. If we are in table Ep of future states and in the intersection of lines
(Xh, t) we read Es 4; meaning that at time t, if the stock of hydraulic energy is Xh,

both plants 1, 2, must work. To know the production level we obtain from the table
Ep of power production the two values" i.e. if we read 350

125, that means P 350,
P=

If in the table of future states there is no entry we must continue with the same
state Ep.

4. Time of computation and final remarks. The algorithm converges independently
of the choice of (Wh)oE Wh and of the order of numeration of the vertices. Nevertheless
for each problem it is possible to analyse if some special choices give an improvement
of the convergence (and of course, a reduction of the computation time).

In our problem the vertices were ordered in the sense of x increasing but in
decreasing sense for the time.

On the other hand a choice for (wh)o can always be the trivial choice Woh=

-(M/a + M+); looking for better results, we made two choices:
first (w)o 0;

(Xp, tq))O min lP(Xp, tq+l) Vq 0, NT- 1.second
i=1,4

p =0,NS

h tr)--- 0 and functions ,/h(. tq+)The latter choice was possible because #h(Xp,
can be computed, in our algorithm, after knowing #h(., tq,), q’-- q + 2, , NT. Table
4.1 shows that for T (time of operation in hours of our electric system) increasing,
the second choice is much better. Figure 6 points out the (linear and parabolic)

3000"

2000"

/
/

I

24 48 72 96 120 144 168 192

FIG. 6
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TABLE 4.1

computing time in seconds
24 154 221
48 365 472
72 645 713
96 1,013 953
192 3,469 1,943

behaviour of the time of computation. We have used a PDP 11/23 (128 K, operative
system RT 11/XM). As a final piece of information, using a minicomputer COM-
PUSYST2000 (64 K, operating system CP/M, central proc. ZIL06-Z80) for T= 24
hours we need 380 seconds. (On the other hand, using a HB/68 DPS/Multics computer,
we need, for T 192 hours, only 48, 72 seconds.)

The example here presented required at run-time 2,500 memory positions. For
one-day simulations 10,944 file positions are used.

Actually, the numerical approximation method (described in 3.4) needs only 36
central memory positions for the calculation of Wh, at each discretization point.

These numbers show that with this method it is possible to increase the number
of thermal power stations admitted in the system. First results have been recently
obtained in this sense by M. C. Bancora-Imbert at INRIA.

With the use of large scale memory and special programming and simulation
techniques further analysis is pursued to establish the extent and advantages of this
procedure in applications.
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STRUCTURAL STABILIZATION OF UNCERTAIN SYSTEMS: NECESSITY OF
THE MATCHING CONDITION*

IAN R. PETERSEN?

Abstract. This paper investigates one aspect of the problem of stabilizing an uncertain linear system.
That is, the systems under consideration contain uncertain parameters which are unknown but bounded.
The question arises as to whether such a system can be stabilized via feedback control. In some of the
previous papers in this area, the system is assumed to satisfy a so-called "matching-condition;" this type
of assumption is used to assure that the uncertain system can be stabilized. It is known, however, that the
matching condition is not a necessary condition for stabilizability. This paper introduces a strengthened
notion of stabilizability referred to as structural stabilizability via a nominally determined quadratic Lyapunov
function. It is then shown that if a system is to have this stronger property, the matching condition must
necessarily be satisfied.

Key words, uncertain systems, stabilization, Lyapunov functions, matching conditions

1. System and introduction. This paper is concerned with a stabilization problem
for an uncertain linear dynamical system described by

(Y_,) .(t):[Ao+AA(r(t))]x(t)+Bou(t), r(t)t

where x( t) R is the state, u( t) R is the control, r( t) Rp is the vector of uncertain
parameters and t c Rp is a compact uncertainty bounding set. It is assumed that the
matrix function AA(. is continuous and that AA() 0 for some . The function
r(. is restricted to be a Lebesgue measurable function such that r(t) t for all ->_ 0
and it is furthermore assumed that m < n and rank Bo m.

Remark. The analysis can also be extended to handle a class of uncertainties in
the input matrix; i.e., in 4, we consider the case when Bo is replaced by "Bo+ AB."

Associated with (E) above is a known system obtained when AA(r)=0. This
system, described by the state equation

NOM (Z) ( t) Aox( t) + Bou( t)

is henceforth referred to as the nominal system, NOM (E).
When dealing with systems of the form (E), it is of interest to know whether

asymptotic stability can be guaranteed via the application of a feedback control. That
is, can a feedback control be found such that the closed loop system is asymptotically
stable for any admissible uncertainty? In [1], NOM (E) is assumed to be stabilizable
and it is shown that the satisfaction of a "matching condition" by AA(. is sufficient
for stabilizability. More precisely, AA(.) is said to satisfy the matching condition if
there exists a continuous matrix function D(. ):RP-> R" such that

(1.1) AA(r) BoD(r)

for all r Rp. It should be noted that the matching condition above is only sufficient
for stabilizability and not necessary. That is, there exist systems which fail to satisfy
the matching condition and yet are stabilizable. Examples of such systems can be

* Received by the editors December 16, 1982, and in revised form March 12, 1984. This work was
supported by the National Science Foundation under grant ECS-8108804. A preliminary version of this
paper was presented at the 20th Allerton Conference on Communication, Control and Computing, University
of Illinois.

t Department of Systems Engineering, Australian National University, Canberra, ACT 2601, Australia.
This work was done while the author was at the Department of Electrical Engineering, University of Rochester.
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found in [2]-[4]. This paper introduces a stronger notion of stabilizability for which
the matching condition on AA(. is shown to be necessary.

In order to relate this work to existing results, it is important to point out one
salient feature of [1]; that is, if (E) satisfies the matching condition, then stabilization
can be achieved given any uncertainty bounding set t which is arbitrarily large but
finite. The ability to tolerate arbitrarily large perturbations motivates our definition of
structural stabilizability. This concept will be formally defined in the next section.

In [1]-[6], a quadratic Lyapunov function of the form V(x)= x’Px is used to
establish the stability of the closed loop system. Furthermore, the positive-definite
matrix P is also used in the construction of the desired stabilizing feedback control
law. The procedure given in [1] for the construction of the matrix P is as follows"

(i) Find an rn n matrix K such that fi,o
a_ Ao + BoK is a stability matrix.

(ii) Choose any positive-definite matrix Q and solve the Lyapunov equation

A’oP + PAo Q

to obtain the matrix P. Hence, we see that the Lyapunov function obtained by (i) and
(ii) is solely determined by the system NOM (E). In this paper, we consider the problem
of characterizing the class of systems (E) for which this "nominally determined"
Lyapunov function will work; that is, for what class of systems (E) can one use a
Lyapunov function generated from NOM (E)? Uncertain systems having this property
have the advantage that a suitable Lyapunov function is straightforward to find. In
the sequel, systems having this property are formally said to be structurally stabilizable
via a nominally determined quadratic Lyapunov function. The main result of this paper,
Theorem 3.1, can now be paraphrased in a rather compact manner: Namely, (E) is
structurally stabilizable via a nominally determined quadratic Lyapunov function if
and only if AA(.) satisfies the matching condition and NOM (E) is stabilizable. In
contrast to the earlier work dealing only with sufficiency of the matching condition,
this paper establishes the fact that the matching condition on AA(. is also necessary.

2. Definitions and notation. The uncertain system (E) is said to be quadratically
stabilizable if there exists a continuous feedback control function p(. ):R R and
an n n positive-definite matrix P leading to the satisfaction of the following condition:
The closed loop system

(t) [Ao + AA(r( t))]x(t) + Bop(x(t)), r(t)

with Lyapunov function

V(x)= x’Px,

is uniformly asymptotically stable in the so-called guaranteed sense. That is, there exists
a constant /3 > 0 such that for any admissible vector uncertainty function r(.), the
Lyapunov derivative admits the bound

Ilxll = >-- Ze(x, t) A [v V(x)]’[aox + Aa(r( t))x + Bop(x)]

2x’P[ao+ Aa(r( t))]x + 2x’PBop(x)

for all pairs (x, t)e Rn+; see also [5].
If P is an n n positive-definite symmetric matrix such that the above condition

is satisfied, then the uncertain system (2:) is said to be quadratically stabilizable with
Lyapunov function V(x) x’Px.
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The uncertain system (E) is said to have linear uncertainty structure if the matrix
function AA(. is linear. That is, AA(r) can be written in the form

p

AA(r)
i--1

where Am, A2,""", Ap are constant n n matrices and ri is the ith component of the
vector r.

2.1. Systems with linear uncertainty structure. The definitions presented in this
subsection will apply only to systems with linear uncertainty structure. These definitions
will be generalized in the next subsection.

For the linear case, the uncertain system (E) is said to be structurally stabilizable
if for each compact set c Rp, the system (E), with this uncertainty bounding set, is
quadratically stabilizable.

We now define a set 6enom which characterizes the set of nominally determined
quadratic Lyapunov functions. For reasons which will become apparent in the next
section, it is convenient to deal with the inverse of the Lyapunov matrix rather than
the Lyapunov matrix itself. Hence, we define nom as follows" A positive-definite
symmetric matrix S is in the set 6enom if there exists an m n gain matrix K such that
o Ao+ BoK has strict left half-plane eigenvalues and fi.S-m+ S-mfi,o is negative-
definite. (Note that if NOM (E) is stabilizable, then the set bnom will be nonempty.)

The uncertain system (E) is said to be structurally stabilizable via a nominally
determined quadratic Lyapunovfunction if for each compact c Rp and each S nom,
the system (E) with uncertainty bounding set , is quadratically stabilizable with
Lyapunov function V(x) x’S-mx.

2.2. Systems with nonlinear uncertainty structure. We now concern ourselves with
systems which do not necessarily have linear uncertainty structure. The motivation for
our more general definition of structural stabilizability stems from the fact-that it is
more convenient to work with perturbations in the matrix AA(r) rather than perturba-
tions in the parameter vector r, especially when AA(r) depends nonlinearly on r. Given
these possible nonlinear dependencies on the uncertain parameters, there is a possibility
that the matrix function AA(.) may be such that AA(r) remains bounded even if
I[r[[->. Therefore, an arbitrarily large bound on the uncertain parameter vector r,
may not result in arbitrarily large perturbations AA(r). To circumvent this technical
difficulty, w associate the system (E) with a class of systems with linear uncertainty
structure. This class will be denoted SPAN (E) and the definition is motivated by one
simple fact: Instead of dealing with the admissible set of uncertain parameters , it
is equivalent to deal with the set

AA() a--{AA(r).re}c R.
We now provide a definition.

Given any set of basis matrices {Am, A," ",Ak} for the linear space
span AA(Rp) R"", we can generate a system (El) in the class SPAN (E) as follows"
Define a linear matrix function AAI(. )" Rk R by

k

AA(a) A Z Aia
i=1

Given any set Gc Rn, span G is defined by span GA{xR"’x== otigi, where {gi}/k=l c G and

aiR for i=l,2,..-,k}.
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where ai is the ith component of the vector a R k. Then the system (El) is described
by the state equation

(t) =[Ao+ AAl(O(t))]x(t)+ Bou(t).

Given any compact uncertainty bounding set c R k, the vector function a(.) is
restricted to be a measurable function such that a(t) for all >-0. We now make
use of the class SPAN (E) in the following definition.

The system (5;) is said to be structurally stabilizable if each system (with linear
uncertainty structure) (E)SPAN (5;) is structurally stabilizable according to the
definition given in 2.1.

It follows from the above definition of SPAN (5;) that the set AA(Rk) is indepen-
dent of the system (5;1) SPAN (5;). Hence, it is straightforward to verify that if there
exists one system (5;) SPAN (5;) which is structurally stabilizable, then every system
(El) SPAN (5;) will be structurally stabilizable.

The system (5;) is said to be structurally stabilizable via a nominally determined
quadratic Lyapunov function if each system (with linear uncertainty structure) (5;!)
SPAN (5;) is structurally stabilizable via a nominally determined quadratic Lyapunov
function. Again it is straightforward to verify that if there exists one system (E/)
SPAN (5;) which is structurally stabilizable via a nominally determined quadratic
Lyapunov function, then every system (El) SPAN (5;) will have this property.

2.3. Notation to be used in the sequel. We let O be any matrix whose columns
form a set of basis vectors for the linear space

dV[B] =_a {x e R": Bx 0}.

Let k denote the inner-product space of symmetric k k matrices; e.g., see [6]. Given
any matrix M //’k, Amax[M] will denote the maximum eigenvalue of M.

3. The main result. In this section we present the main result of this paper.
THEOREM 3.1. The uncertain system (5;) is structurally stabilizable via a nominally

determined quadratic Lyapunov function if and onl if the following conditions hold:
AA(.) satisfies matching condition (1.1) and NOM (5;) is stabilizable.

Before proving this theorem, we first establish some preliminary results.
Our basic concern is to establish the necessity of the matching condition. As far

as sufficiency is concerned, we shall use the following lemma which is an immediate
consequence of Theorem 4.1 of [3].

LEMMA 3.1. Suppose that AA(.) satifies matching condition (1.1) and NOM (E)
is stabilizable. Then the system (5;) is structurally stabilizable via a nominally determined
quadratic Lyapunov function.

LEMMA 3.2. The matrix function AA(. satisfies the matching condition (1.1) if
and only if every system (with linear uncertainty structure) (E) SPAN (E) is such that
the corresponding matrix function AAI(" satisfies this same matching condition.

Proof (Necessity). If AA(. satisfies the matching condition, then there exists a
continuous matrix function D(.) such that

for all r Rp. Therefore

AA(r) BoD(r)

span AA(Rp) span BoD(Rp) Bo span D(RP).
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Hence, if {A, A2," , Ak} is any set of basis matrices for the space span AA(RP), we
must have

Ai Bo span D(Rp)

for 1, 2, , k. Therefore, there exist matrices D, D2," , Dk in span D(Rp) such
that

Ai BoDi

for 1, 2, , k. This implies that, for the system (El) SPAN (E) corresponding to
this set of basis matrices,

k k

AAl(a) Z BoDiai Bo Z Dizi
i=1 i=1

for all vectors a Rk. Therefore, if we define the continuous matrix function

k

Dl( Ot A ., Diol.i
i=1

it is apparent that

AA,(c BoDl(t

for all vectors a e R k. That is, AAl(. satisfies the matching condition (1.1).
(Sufficiency). We assume that each system (El) in the class SPAN () is such that

the corresponding matrix function AAl(. satisfies matching condition (1.1). Now let
() e SPAN () be one such system and note that the matching condition implies that
there exists a continuous matrix function D(. such that

AAt(a) BoD,(a)

for all vectors a e R k. However, given any matrix AAspan AA(Rp) there exists a
vector a Rk such that

AA AAl(a ).

Therefore, any matrix AA span AA(Rp) can be written in the form

AA BoD

where D is a constant m n matrix. That is, for each re Rp, there exists an m n
matrix D(r) such that

AA(r) BoD(r).

Furthermore, using the fact that rank Bo m, it is clear that the matrix function D(.
is defined uniquely by the expression

D( r) (BBo)- B’oAA( r).

The required continuity of D(. is a consequence of the continuity of AA(. and
moreover,

AA(r) BoD(r)

for all r Rp. Hence the matching condition is satisfied. [3

We shall exploit the following lemma which is established in [2]; for the sake of
completeness we include the proof.



STRUCTURAL STABILIZATION OF UNCERTAIN SYSTEMS 291

LEMMA 3.3. Suppose that the uncertain system (E) is quadratically stabilizable with
Lyapunov function V(x) x’S-1 x. Then

(3.1) q’(R)’(AoS + SA’o)(R)rl + q’(R)’(AA(r)S + SAA’(r))(R)q < 0

for all nonzero vectors rl R and all r .
Proof Using the assumed quadratic stabilizability (defined in the previous sec-

tion), there exists a constant/3 > 0 such that

2x’S-[Ao+ AA(r)]x + 2x’Bop(x) <= -t Ilxll 2

for all x R and all re . If we let y S-x, it is clear that

Sy = 2y’[Ao + AA(r)]Sy + 2y’Bop(Sy)

y’[AoS + SA’o]y + y’[AA(r)S + SAA’(r)]y + 2y’Bop(Sy)

for all y R and all r . In particular, this inequality must hold for all vectors
y [B] such that y 0; that is, it must be true that

y’[AoS + SA]y + y’[AA(r)S + SAA’(r)]y < 0

for all nonzero vectors y [B] and for all r Y2. Now, we make use of the fact that
any vector y V[B] can be represented as y Or/ for some appropriate r/ R"-m.
(Recall that the columns of tO form a basis [B].) Replacing y by Or/in the preceding
inequality yields the desired result. [3

LEMMA 3.4. The set nom is an open set in the space .
Proof Suppose So Onom. Then according to the definition of ’-nom, there exists

an m n matrix K such that Ao Ao+ BoK has strict left half-plane eigenvalues and
the matrix fiSff + S-/o is negative-definite. Therefore, the matrix fioSo + Sofi is also
negative-definite and it follows that

Amax[AoSo + SoA’o] < O.

Now, using the continuity of the/max[" function, it follows that there exists a constant
6 > 0 such that if S , satisfies IIS-Soil < 6, then fioS + Sfi is negative-definite.
Furthermore, we note that the matrix So is positive-definite and the set of positive-
definite matrices is an open set in the space ,; e.g. see [6]. Therefore, there exists a
second constant 62 > 0 such that if S , satisfies IIS-Soil < then S is a positive-
definite matrix. Hence, [IS-Soil < min {61, 62} implies that S 5enom. Therefore, benom
is an open set in the space ,. [3

LEMMA 3.5. Suppose that the system (E) is structurally stabilizable via a nominally
determined quadratic Lyapunov function. Then

span nom---
Proof We recall that AA(r)= 0 for some r . This, together with the fact that

the uncertain system (5;) is structurally stabilizable implies that the system NOM (E)
is stabilizable. Therefore, the set bnom is nonempty. Lemma 3.4 states that the set 5enom
is an open set. Now, given any matrix W , and a matrix X 5enom, one can choose
6 > 0 sufficiently small so as to ensure that

Therefore,

Z A-A-- X -- 6W nom"

Z X
W e span ’-nom"6 6
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It now follows that

span ’nom-- n" [’]

LEMMA 3.6. Suppose that the system (,) is structurally stabilizable via a nominally
determined quadratic Lyapunov function. Then, given any system (El) SPAN (), the
corresponding set of basis matrices {A1, A2,""", Ak} satisfies the following condition"

(3.2) (R)’[AiS + SA](R) 0

for all S 7#, and i= 1, 2,..., k.
Proof. We will first establish (3.2) for all matrices S ’-nom. Subsequently, it will

be shown that (3.2) must hold for all matrices S V,.
Since the system (E) is structurally stabilizable via a nominally determined quad-

ratic Lyapunov function, it is apparent that all systems in the class SPAN (E) must
also have this property. Indeed, let (Et) be any system in the class SPAN (). Then,
for each compact set s c Rk and each matrix S tnom, the system (E) with uncertainty
bounding set /is quadratically stabilizable with Lyapunov function V(x)= x’S-x.
We now apply Lemma 3.3 and infer the following: Given any compact set c Rk

and matrix S 5e,

r/’O’[AoS + SA’o]OI + r/O’[AA,(a)S + SAA(a)]Oq < 0

for all a 4 and all nonzero vectors r/ R"-m. Equivalently

(3.3) q’(R)’[AoS + SA’o](R)rl + max {’O’(R)’[AA,(a)S + S&A(a)]O,} < 0

for all nonzero vectors r/ Rn-re. In particular, if we take the set to be the hypercube
{a Rk" a (a, a2," , ak)’, maxi lail <-- c} and use the linear structure of AA(. ),
inequality (3.3) leads to the following statement: Given any matrix S 5enom, any
nonzero vector r/ R-m and any > 0,

k

(3.4) rl’(R)’[AoS + SA’o]O+ E [)’O’[A,S + SA’]O)I < 0
i=1

where {A, A2,’’’, Ak} is the set of basis matrices corresponding to the system
Since c can be arbitrarily large, the only way inequality (3.4) can hold is if

(3.5) O’[A,S + SA]O 0

for all S ,_no and 1, 2, , k.
The next part of this proof involves extending (3.5) to all matrices Se Vn. For

each integer 1, 2, , k, we define a linear operator " V, ,-m by

4,( S) a__ O’[AS + SA’,]O.

Let W[s] denote the nullspace of the operator ’i" Using this notation and (3.5), it is
clear that

for i= 1, 2,..., k. Hence,

nom ’J[’i]

k

o’Ognom
__
n V[i].
i:l
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Note, however, that N= fl[i] is a subspace of 7/’. and hence

k

(3.6) span aOgnom C
i=l

Invoking Lemma 3.5, we can replace (3.6) by

Therefore,

k. _
N W[].
i--1

(R)’[AiS + SAi](R) 0

for all S 7/’n and i= 1, 2,..., k.
LEMMA 3.7. Suppose that the system (Z) is structurally stabilizable via a nominally

determined quadratic Lyapunov function. Then given any system () SPAN (), the
corresponding set of basis matrices {A1, A2," ", Ak} satisfies the following condition:

(3.7) O’A --0

for i= 1, 2,. ., k.
Proof We proceed by contradiction. Suppose that (3.7) does not hold for some

e {1, 2,..., k}. Then, if we let 0j denote the jth column of matrix (R), there exists
some j { 1, 2, , n m} such that

Let

and

Cj OjAi O.

Wick] ix R’. cjx o}

x[0 ]a{x R". 0jx 0}.

Since cj 0 and 0 0, the two sets W[cj] and W[0j] are (n- 1)-dimensional subspaces
of R n. Therefore, the set N[cJ]U W[0j] R’. Hence, there exists a vector v R" such
that v’c 0 and 0jr 0. We now define the symmetric matrix

S* +/- vv’
) Cj

Notice that this matrix has the property that

v= S*c
and moreover, the (j,j)th element of the matrix (R)’[AS* + S*A’](R) is

O;[A,S* + S*A’i]O; 20;S*c 20fir O.

This implies that the matrix (R)’[AiS*+ S*AI]6) is nonzero which contradicts Lemma
3.6. D

We are now in a position to prove the main result of this paper.
Proofof Theorem 3.1 (Sufficiency). To establish sufficiency, we assume that AA(.

satisfies the matching condition (1.1) and that NOM () is stabilizable; it must be
shown that the system () is structurally stabilizable via a nominally determined
quadratic Lyapunov function. Indeed, let () be any system in the class SPAN ().
Since AA(. satisfies the matching condition, Lemma 3.2 states that AA(. will also
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satisfy the matching condition. Since NOM (El) NOM (E), stabilizability ofNOM (E)
implies stabilizability of NOM (El). Invoking Lemma 3.1, it follows that the system
(E) is structurally stabilizable via a nominally determined quadratic Lyapunov func-
tion. However, recalling that (E) is an arbitrary system in the class SPAN (E), it must
follow that the system (E) is structurally stabilizable via a nominally determined
quadratic Lyapunov function.

(Necessity). To establish necessity, we suppose that the system (E) is structurally
stabilizable via a nominally determined quadratic Lyapunov function; it must be shown
that AA(.) satisfies the matching condition (1.1) and that NOM (E) is stabilizable.
Taking note of Lemma 3.5, it is clear that structural stabilizability of (E) implies that
the system NOM (E) is stabilizable.

Next, let (El) SPAN (E) be a given system with linear uncertainty structure. It
follows from Lemma 3.7 that

(3.8) O’Ai --0

for 1, 2, , k. Recalling that rank Bo rn and that the columns of 19 span V[B],
it is clear that the n x n matrix [Bo" O] is nonsingular. Let the inverse of this matrix
be partitioned as

[Bo" O]-
where F is an m n matrix and G is an (n-m) n matrix. As a consequence of this
partitioning, it is apparent that

(3.9) BoF+ 19G I

and

(3.10) GBo= 0.

Letting g denote the jth row of G, (3.10) is tantamount to

Bg =o

for j 1, 2, , n m. Therefore, gj e [B6] for j 1, 2,. , n m and hence, each
gj can be written in the form gj (R) h for appropriate hj e Rn-". This implies that the
matrix G can be expressed as

(3.11) G H19’

where H has the vectors hj, j 1, 2, , n m as its rows.
For each i {1, 2,..., k}, we define the matrix

Di FAi.

We now claim that Ai BoDi for 1, 2, , k. Indeed, let e { 1, 2, , k} be fixed.
It now follows from (3.9) that

BoFAi + 0GAi Ai

and combining this with (3.8) and (3.11), we obtain

Ai-- BoFAi-- BoDi.
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Therefore, for the system (El), the function AAI(.) is given by

k k

AA,(o) E A,ce, Bo E D,a, a= BoD(a).
i=1 i-1

where ai denotes the ith component of the vector a R k.
We can now conclude that AAI(.) satisfies the matching condition. By applying

Lemma 3.2 it follows that AA(. also satisfies the matching condition.

4. Input connection uncertainty. If one includes input connection uncertainty in
the system (E), the state equations become

(E,) )(t)=[Ao+AA(r(t))]x(t)+[Bo+AB(s(t))]u(t); r( t) e , s( t) b

where s(t) Rq is the vector of input connection uncertainty parameters and 5c Rq is
a compact bounding set. It is assumed that the matrix function AB(.) is continuous
and that s(. is a Lebesgue measurable function such that s(t) 6e for all t_-> 0.

Previous authors dealing with systems of the form (E,) have also required that
AB(. satisfy a matching condition; e.g., see [1] and [7]. This condition is described
as follows: there exists a continuous matrix function E(.):b R such that for
all s 5

and

AB(s)=BoE(s)

IIE(s)ll < 1.

To extend the analysis of 1-3 to handle (E,), we make some observations:
(i) The presence of AB(. only influences the proof of Lemma 3.3.
(ii) Under the strengthened hypothesis that AB(.) satisfies the above matching

condition, Theorem 3.1 remains valid; the proof of this theorem remains the same.

5. Illustrative example. To illustrate the results of this paper, we consider the RLC
electrical circuit shown in Fig. 1.

_v R

FIG.

We define state variables x & V and x2 & iL where vc is the voltage across the
capacitor and iL is the current through the inductor. Using Kirchhoff’s laws, we arrive
at the state equations

-1
9( t) x,( t) +---X2( t),

R2C C

-1 R
(t) =--x(t)---fiX2(t) +-{u(t).
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Suppose now that the resistance R1 is regarded as being an uncertain parameter
and the values of the other parameters are fixed at R2 L C 1. Furthermore, assume
that 0 -<_ R -<_ R where R > 0 is pre-specified. Hence, (4.1) can be viewed as an uncertain
system described by

)/:,(t) -Xl(t) + Xz(t),

:22(t) -X( t) R( t)xa( t) + u( t), R,(t)[O,R].

The nominal system associated with this system is described by the state equations

NOM (Z,)
2,( t) --X,( t) + X2( t),

22(t)=--Xl(t)+U(t).

It is straightforward to verify that the matrix function AA(. associated with the
system (E) satisfies matching condition (1.1). Furthermore, since the system NOM (E)
is stabilizable, it follows from Theorem 3.1 that the uncertain system (El) is structurally
stabilizable via a nominally determined quadratic Lyapunov function. Consequently,
when stabilizing the system (E), the Lyapunov function to be used may be obtained
by considering only the nominal system NOM (E). On the other hand, if R2 happens
to be an uncertain parameter, it is straighforward to verify that matching condition
(1.1) will be violated. In this situation, the system is not structurally stabilizable via a
nominally determined Lyapunov function.

Acknowledgments. Discussions with Professor B. R. Barmish and Mr. C. V. Hollot
are gratefully acknowledged.
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Abstract. In this paper, we give a new proof of Crouch’s theorem on the realisation of finite Volterra
series and extend it to the C case.
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Introduction. In [C], P. Crouch proved an interesting theorem about the reduction
of real analytic input-output systems having a finite Volterra series. In this paper, we
give a new proof of Crouch’s theorem and extend it to the infinitely differentiable case.

Our method, related to the one introduced in IF-K], uses the "observation space"
(IF-K]), that is the functional space generated by the output function under the action
of the Lie algebra of the system. We show that when the Volterra series is finite, this
action factors through the representation of a linear solvable Lie algebra on a finite-
dimensional vector space. The theorem then follows easily from elementary results on
the structure of orbits of linear unipotent groups (see [P, pp. 90-91]). We get a concrete
representation of the minimal realisation in the observation space and avoid the use
of the deep and difficult theorem of Malcev on the structure of nilmanifolds in Crouch’s
proof (see Raghunathan, Discrete subgroups of Lie groups, Springer Ergebnisse Bd 68,
Chap. II).

Finally, we get a canonical form for the system on the minimal realisation which
is "real upper triangular", that is, it is upper triangular except for some 2 x 2 blocks
on the diagonal corresponding to the complex roots ofthe representation ofthe solvable
algebra.

1. Statement of the main results. In this paper we shall consider C or Co, (real
analytic) input-output systems whose state space is a C or Co, connected manifold
M, whose control and output spaces are respectively the euclidean spaces R and R
and whose dynamic is described by the following control-affine system:

dx( t)
X[x( t)]+ E uj( t) Yj[x(t)],

dt j=

(I) x(O) Xo,

y( t, Xo) r[x( t)],

where
1) X, Y,. ., Yn are C or Co, complete vector fields on M,
2) theoutputs u(t)= [u(t),..., Um(t)] are assumed to be piecewise constant,
3) the output function r" M R is C or C’.
In the real analytic case, the output y(t, Xo) of such a system can be represented,

at least for small enough inputs, as a series expansion y(t, Xo) --o Wn(u)[t, Xo] called
the Volterra series (see [B], [C], [K-L]).

In the infinitely differentiable case the functionals Wn (u) can still be defined and
can be used to give partial expansions representing y(t, Xo) similar to the Taylor formula.

* Received by the editors July 5, 1983, and in revised form December 15, 1983. This work was supported
in part by A.T.P. under grant 040 228-18.

" Math6matiques Pures, Institute Fourier, BP74-38402 St. Martin d’Hres, France.
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Each Wn(u) is a functional of the input u that can be represented as an iterated
integral:

W.(u)[t, Xo]

 o’;o lotl tn--I
Ua,(/1) UC.(t) W’(t, t,, t,,Xo) dt,

Ol,O2,’",On<m
l,2,’",n integers

Each W is a C or C function R"+x M- R having the following expression:

W(to, t,,,x)=[O(Z,.(t,,)) O(Z,(tl))r](etoX(x)),
where

1) e tx denotes the flow generated by X and e-’aax the adjoint action of this flow
on vector-fields,

2) Zj(t)=e-taaX(yj), <j<m,
3) 0(V) denotes the derivation operation associated to the vector field V.
DEFINrrON. For any x M, we.call w(x) the smallest integer q such that

W(to,’’., t,,x)=0 for all n>q, all a=(a,...,a,) and all (to,...,t,)R"+ if
such an integer exists and +oo otherwise.

Notation. L will denote the Lie algebra of vector fields on M generated by
{X, Y,. ., Y,,}. S will denote the ideal in L generated by { Y,. ., Y,}.

Basic assumptions.
(i) Hl(x) will denote the statement

"at x M, w(x) < +oo".

(ii) H2(x) will denote the statement

"at x M, S(x) TxM".

Now we are ready to state our main results.
THEOREM 1. Under either of the two following assumptions:
l) we are in the real analytic case, H1 (Xo) is satisfied at one point Xo M and H2(x)

is satisfied at all x M;
2) we are in the infinitely differentiable case andforallx M, H1 (x) and H2(x) hold

there exist:
a) a finite-dimensional vector space H,
fl a Lie algebra representation p: L End(H),
y) a linear mapping 1: H Rc,
t a C’ resp. C) mapping " M H

having the following properties:
(i) All elements from p(S) are nilpotent.
(ii) p(L) is a solvable subalgebra of End (H) whose nilpotent radical is p(S).
(iii) (M) is an orbit of the unipotent subgroup of Aut (H) generated by p( S) and

the mapping : M (M) is a locally trivial fibration.
(iv) Any Z L is V-projectable and (Z) is the linear field induced by p(Z) (this

means that for all m M, d(m)Z(m)= p(Z)(m)).
(v) lo=r.
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(II)

(vi) (M) endowed with the input-output system

x

at ,(X)x’ + E u( t)o( Y)x’,
j=l

y’(t)=l[x’(t)]

is a minimal realization of system I.
As an immediate corollary of Theorem we get the following.
COROLLARY 1. For any v (M) there exists a sequence {Zi, ", Ze} of elements

of S such that, if d) denotes the mapping

R H, (/1,""", /e)--" eXlP(Z) eXeP(Z)(D),
then"

1) is a proper embedding having (M) as image.
2) There exist a linear coordinate system (hi,’", h) on H and a sequence of

integers j(O) =0<j(1) <j(2) <. <j(e) < r =dim H such that:
(i) h O(A 1," ", Ae) is a polynomial in A1," "’, A ifj(s) <j <j(s + 1).
(ii) h (h)-h is a polynomial in A1,’’" As-l ifj=j(s).
(iii) In the coordinates (hi,’’’, he), system II has thefollowing "triangular" form:
l) For each k, l<k<m, the field induced on (M) by P(Yk) is of the form

.e=l Pk O/Ohs, where Pk is a polynomial in (hi,’"", As-i).
2) The field induced on (M) by p(X) is of the form e= (A + B)O/OA where
a) B is a polynomial in (h 1," ", h_l);
b) there exists a sequence < s(1) < s(2) < s(p) < e with s( t) s( l) > 2 for

all > 2, such that:
if s and s-1 do not belong to {s(1),..., s(p)} A(A)= ah with a scalar a,
if s belongs to { s 1),. ., s(p)}

As(A) asAs +/3sAs+l,

As+l(h -shs + Ceshs+l.

The scheme of the proof is as follows: in 2 we prove some auxiliary lemmas
whose purpose is to show that a certain vector space (i.e. Ur) that plays a crucial role
in our construction is finite-dimensional. In 3 we set up the basic constructions and
prove Theorem 1. In 4 we. deduce Corollary from Theorem 1. This proof is
independent of 2 and 3. Finally in 5 we give a simple example.

2. Some auxiliary lemmas. First we introduce a list of notation used in the rest
of the paper:

(i) Notation.
M := C or C (real analytic) connected manifold.
TM := its tangent space.
T M := its tangent space at x M.
Coo(M; E) (resp. CO’(M; E)):= vector space of all Coo (resp. Co’) mappings from
M into the real finite-dimensional vector space E.
C(M; E) (resp. C(M; E)):= space of all germs at x of Coo (resp. Co’) mappings
from a neighbourhood of x into E.
M, := maximal ideal of all germs zero at x.
Joo(M: E):= oo-jet bundle of all jets of Coo or Co" mappings from open sets of M
into E.
jO(M;E) := its fiber at x.
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VFOO(M) (resp. VFO’(M)):= Lie algebra of all C (resp. C’) vector fields on M.
VF(M) (resp. VF’(M)):= Lie algebra of germs at x of Coo (resp. Co’) vector
fields.
ez of exp Z :-exponential mapping of a complete vector field Z.
O(Z) := Lie derivative induced by the vector field Z either on Coo(M; E) or
Co" (M; E), or C(M; E) or C(M; E) or jO(M; E) according to the case.
U := associative R-algebra of differential operators on M generated by O(L).
A := associative subalgebra of U generated by O(S)
U is generated as a vector space by the monomials
{0(Vl)""" O(Vk)O(x)nlVl, VkS} not necessarily distinct, n integer>0}.
Finally J(M; E) is a differentiable vector bundle on M if we endow the fibers
with the topology of the convergence of coefficients.
(ii) To begin with, let us state the following trivial but useful remarks.
LEMMA 1. Let F VFx(M) be a subset such that F(x)= TM. For any f

C(M, R) (resp. C’(M; R)) such that fa MPx-MPx+ for some integer p, there is a
V F such that

[o(v)f](x)O.

COROLLARY 2. Given an integer q_->0, call Eq the subspace of all f C(M; Rc)
(resp. C’(M R)) such thatfor any sequence V, , V, ofelements ofF, with n >-_ q+ l,
[0( VI)0( V2)" 0(V,,)J](x) O. Then the canonical projection 7rq" J(M, E) --> Jx(M, E)
is injective on jE. In particular dimjEq < dim Jq(M, R) c(aq), d =dim M.

ProofofCorollary 2. Assume there is anf Eq such thatjf Ker rq andjf O.
Then there is an integer p > q + such that f MPx MP+. By Lemma there is a
V F such that [0(V)PJ](x) =0. This is a contradiction.

LEMMA 2. Assume Hl(x) and H2(x) hold at an x M. Then
1) For any integer k_->0, Aq+ ideal of A generated by O( V)... O( Vk), k >-q+

v,,. ., vs.
[Aq+,O(X)gr](x) 0 with q w(x) 1.

2) dimjx(Ur) is finite and <--C(dq).
3) In the real analytic case, dim Ur is finite.
Proof of Lemma 2.
1) Take any n>q, any a=(a,...,a,) aj{1,2,...,m} and any fl=

(flo," ", ft,) N"+. Since W:(to,. ", t,, x) 0 for all (t0,- ", t,) R"+ it follows
that

Ot-" :’tn" (0" x)= O.

But this derivative is up to sign [O(adt,X(Yo,)) (adS.X(Yo,.))O(X)t3or](x).
2) This follows from 1) and Corollary 2 applied to F S.
3) This follows from the fact that jx: CO’(M, R’) .--> J’(M, R’) is injective.
The next lemma proves property 3 of Lemma 2 under stronger assumptions. It is

contained in the results proved in IF-K]. For the convenience of the reader we prove
it here.

LEMMA 3. Let E be a vector subspace of Coo(M; R) and F a subset of VF(M),
having the following properties:

l) for all x M. F(x) T,M,
2) for all V F, O(V)E E,
3) for all x M, dimj’E < -c.

Then dim E <+ andfor any x M, jx E ---> J’(M R’) is injective.
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ProofofLemma 3. Call v: M-, N the function v(x)= dimjE. It is obvious that
v is lower semicontinuous. We shall consider a special case first.

Assume v is constant on M. Then / UxJx’E has a natural structure of a
subvector bundle of J(M" Re). J(M; R) is endowed with a natural connection (see
[M, p. 504]) whose associated derivation we denote by D. Since Dj= O, E is stable
under this connection and the induced connection on E is flat. Hence the space of all
global horizontal sections has at most dimension v. Sincej maps E into the horizontal
sections of/, dim E <_- v. Since dim E >_-dimjE for any x e M, dim E v and j is
injective on E.

Let us consider the general case now. Baire’s theorem shows that the set of all
x e M at which v is locally constant is an open dense subset of M. Denote the connected
components of by i, e I. Let Ei be the restriction of E to (i. On each , v is
constant and we can apply our first result to E" dim E < +oo and for each x , j
is injective on E. It is sufficient to prove that M.

We are going to show the following property: let V e F and let y e . Assume that
for all t, 0<t<a, etV(y)e but x=eaV(y)i. Then dimjE =dimjE and j is
injective on E. Assuming this property it is easy to finish the proof: by Baire’s theorem
again, the set to of all x e M- such that the restriction of v to M-7 is locally
constant at x (on M- !) is open dense in M- . Take any x e to. On can choose
elements V,. ., Va e F and a neighborhood A of x such that"

(i) v is constant on A f’)(M-),
(ii) V(x),. ., Vd(X) form a basis of TM,
(iii) The mapping Ba={h eRdh+ "+h< 1->exp (hlVl+.. ""’,dVd)(X)is a

diffeomorphism onto A.
For any h eBa call y the arc {exp [t(hlVl+’’ "+haVd)](x)[O<t< 1}. Since y c A,, is equal to v(x) on ya M- . y f) is a disjoint union of open arcs {yklk e N}.
By the property above, v is constant on the closure of each yk in y. Hence v is constant
and equal to v(x) on y. This shows that v is constant and equal to v(x) on A.
x e f’)(M- )= 0. This is a contradiction.

It remains to prove the above assertion about the flows of the V’s in F. Since
O( V)E c E, and E is finite dimensional. 0(V) induces a linear transformation A of
E. e tV induces a continuous family of isomorphisms bt’Jx,(M; R)->Jy(M; R),
xt=etV(x). It is easy to see that for all te[O,a[cht(jxE)cjE and for all feE,
Ct(jxf)=j(etAf), f=f/C,. By continuity it follows that for all feE, ba(jf)
Jy (etAf). Hence dimjE =dim ba(Jx E)= dimjy E.

COROLLARY 3. If H1 (x) and H2(x) for all x e M, Ur is finite dimensional, and w
is constant equal to q say, and Aq( Ur) {0}.

ProofofCorollary 3. Lemma 3, applied to F S and E Ur, shows that Ur is finite
dimensional and for all x e M. j is injectice on Ur. Let P e Aw(x). For any fe Ur,
jo(pf) P(jxf)- 0. Hence Pf=0. This proves the corollary.

3. The basic construction and the proof of Theorem 1. In this part we assume that
either of the assumptions of Theorem is satisfied. By Lemma 2 and Corollary 2, Ur
is of finite dimension. The Lie derivative operator 0 induces a Lie algebra representation,
0L: L--> End (Ur). Let us call H the space Lin (Ur, R) of all linear mappings
Ur-, R. Or. induces a contragradient representation p" L End (H) since H is just
Dual (Ur)(R) R. M can be mapped into H in a natural fashion as follows: for any
x e M denote by (x) the linear mapping Ur- R defined as follows: (x)[f]=
f(x) if fe Ur. Finally, let l; H-> R be the linear map: l(a)=a(r). We have the
following lemma.
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LEMMA 4.
(i) Any V L is projectable and ( V) is the linear field generated by p(V).
(ii) All elements from p(S) are nilpotent.
(iii) p(L) is solvable and p(S) is its nilpotent radical.
(iv) If N denotes the unipotent subgroup of Aut (H) generated by p(S), (M) i

an orbit of N.
(v) ,I,*() r.

Proof of Lemma 4.
(i) Let V L. For any x M and any f Ur,

(O( V)(x))[f] (x)[0( V)f] (0(V)f)(x),

[etV(x)]-(x)
[dqt(x) V(x)][f] lim [f],

t-o

f[e’V(x)]-f(x)
Ida(x). V(x)][f]=lim df(x). V(x)

t-O

--[O(V)f](x).

(ii) By Corollary 0/.(V)q= 0 on Ur, for all V S, and hence p(V)q= O.
(iii) Follows from (ii).
(iv) N is just the set {e’(v’). e’(v")[V1, V,, S}.
(v) Since S is transitive on M, N is transitive on (M), and (v) is trivial.
Lemma 4 covers the claims (i), (ii), (iv) and (v) of Theorem 1. To complete the

proof of part (iii) one has to show that is a locally trivial fibration. This we leave
to the reader. It remains to prove that II is minimal.

Assume it is not. Then it is easy to see that there exist two points , rt (M)
such that/(g etx)=/(g etX) for all g in an open subset of N and all t, Itl< e. Since
N is connected and linear,/(g e tx ) =/(g etXq) for all g N and all R. Deriving
this relation, we get (f)= r/(f) for all f Ur. Hence :=

4. Proof of Corollary 1. The proof is similar to the one in [P] p with an additional
twist. We shall sketch it briefly, stressing only the points which are different.

Let v q(M). By adding to X an appropriate Z S, we can assume that p(X)v O.
Since p(L) is solvable, by Lie’s theorem there exists a flag of subspaces H=
H H. H’a {0} such that:

(i) p(L)H’k H’k for all k,
(ii) dim (H’_I/H’) is or 2 and if dim (H’_I/H’)=2, the spectrum of p(x) in

the quotient H’_/H’ is complex.
Using Engel’s theorem, this flag can be refined in a flag H Ho H =. = H

{0} such that:
(i) p(S)H, Hk+ for all k.

Denote by 0 < k(1) < k(2) <. < k(p) < cr those k for which Hk is not p(X)-invariant.
For simplicity we call the set {k(1),..., k(p)}, K. Then Hk_ and H+I are p(X)-
invariant and the spectrum of p(X) in Hk_I/Hk+ is complex.

Let : S--> H be the evaluation mapping: ch(V)=p(V)v. Set S &-(Hk) for all
k. Then S So = S =... S and since H is p(S) stable, the S are subalgebras of
S. It also follows that dim Sk-/Sk <= 1.

Since p(X)v =0, (adX) p(X) oh. This implies that if k {k(1),. ., k( p)},
Sk is adX-stable. Moreover if ke{k(1),...,k(p)} and if Sk_i/Sk+#{O}, then
dim S,_/Sk+ 2 and the spectrum of adX on Sk-/Sk+ is complex since the adX
module Sk-/Sk+ is isomorphic via 4’ to the p(X)-module H,_/Hk+.
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Now it is possible to construct a basis (el,’", e) of H and a family of vectors

{Z(k)I1 < k o’, Sk-1 # Sk) of S satisfying the following conditions:
a) For any k>- 1, (ek,’’’, e) is a basis of Hk-.
b) If k {k(1),. ", k(p)), ek-1 //----’ ek is an eigenvector of adX modulo Hk+.
c) If dimSk_/Sk and k{k(1),... ,k(p)), p[Z(k)]V--ek modulo Hk.
d) If k(k(1),...,k(p)) and Sk-#Sk+ p[Z(k>]V-ekmodulo Hk+ and

p[Zk+]V- ek+ modulo Hk+ and Zk) Sk-, Zk+I Sk. It is clear that in case d),
Z(k/X/--1 Z(k+> is an eigenvector for adX modulo Sk+.

Now denote by (h,. , h) the basis dual to (el," , e). Reorder the (Z(k)ISk_I
Sk) in a sequence (Z, , Ze) in such a way that, if Z, Sk then Zt Sk for all >_- n.
I claim that the vectors (ZI,’’ ", Ze) and the linear forms (hi,’", h) satisfy the
condition of Corollary 1.

In fact, as in Pukansky [P, p. 50-64], it can be shown that conditions (i) and (ii)
or Corollary hold. The js are those j such that S_ S. As for condition (iii), let us
denote for simplicity hg by g. Let Z S. Then by the choice of the e, p(Z)ek--
gk+ bgkeg where the bgk are scalars. If the field induced on (M) by p(Z) is

Ec=I Pk(A)/O’k, then

Componentwise;

Choosing i=js, we get

k=l

(1) i--IL k(A)Pk(A) 2 b,japg(A).
k=l j-=l

By induction on s we see that Ps- is a polynomial in (h,-.., h) since
Oh)(h) depends only on (h,..., As-l).

As for X, o(X) p(X) + p(X) where for all k, < k <

p(X)Ee= L agej
j=k+l

agk are scalars, and p(X)lEk akek if k # k(i) or k # k(i)- for some k(i), <-_ p and

p(X)lEk_ ake.k_ bkek,

p(X)lek bke,k_l / ae,

for some scalars ak, bk with bk 0, if k{k(1),"" ", k(p)}. Let }"=1 Rs(h)a/a; and

=1 Qs(h)o/ohs be the fields induced on (M) by p(X)I and p(X): respectively. A
computation similar to the one above shows that Rs is a polynomial in (hi, , As-l).
If j(s) and j(s+ 1) do not belong to {k(1),..., k(p)}, Qs=aj()As+polynomial in
(hi,... ,As-l). Ifj(s) belongs to {k(1),..., k(p)} then Sg(s) Sj(s)+, and Sj(s)-i
Hence j(s+ 1)=j(s)+ and

polynomial in hi, , hs_,

ag(shs+l-polynomial in hi, , hs-l.
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5. An example. Let

__..{_ XiM R3, m 2, c 1, YI Ox’ Y2 OX2 OX2,

X tx -- fix2) O/Ox -- ’)ix tx2) O/Ox2 + 1/2( ")tx + x2) O/Ox

where a,/3, 3’ are constants.
r--Xl.
Then L RX + RY + RYz+ R O/Ox3, 5; RY + RYz+ R O/ Ox3. Ur is the space of

all affine functions in the variables x and x2. H is the dual of Ur. Denote by
z the basis of H dual to the basis 1, x, xz of Ur. On this basis,

t)(x)
0 0

0 a

0 y

0 0

0

0 0

0

O,
0

p( Y)
0 0

0 0

0

0

0,
0

p[a/ax3]= o. It is clear that the subspace H’ of H generated by t and 2 is p(L)-
invariant.

The mapping : M- H is defined as follows:

Hence e dim (M) 2. We choose 0 as the point v. (0) . In order to pursue our
discussion we need to distinguish two cases.

Case 1. p (X) has a real spectrum. Then the space RY + RY2 contains an eigenvec-
tor Z of adX and we can choose a vector Z2 (RY + RYz), linearly independent
from Z2 which is an eigenvector of adX modulo RZ2. We define the basis (el, e2, e3)
of H as follows:

, , p(z,)(), (z)().
If we parametrize (M) by X =(X, Xz)m RZ exp (AZ) exp (X2Zz)(]), the minimal
system can be expressed as follows: A, B, C, D are constants,

dAl dhlah-Au- Buz, h2+ AUl + Btl2,
dt dt

d,2 dh2
-aA2 + Cu -{- Du2, Cu + Du2,

dt dt

if a2--fly#0; if Ct2+fl’y 0;

a an eigenvalue of I LI.
Case 2. p(A) has a complex spectrum. The space CY + CY2 contains an eigenvec-

tor Z + (x/-)Z2 where Zl, Z2 (RYI + RY2). We define the basis (e, e2, e3) of H as
follows: e 1, e2 p(Z)(’), e3 p(Zz)(’). If we parametrize (M) by A(A, A2)
exp (AZI). exp (A2Z2)(1) the minimal system can be expressed as follows: A, B, C, D
constants

aA bA2 + Au + Bu2, a +x/ b an eigenvalue of Z, + (x/)Z2,

bh + ah + Cu + Du2.
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STOCHASTIC CONTROL AND EXIT PROBABILITIES
OF JUMP PROCESSES*

SHUENN-JYI SHEU"

Abstract. A stochastic control problem is formulated for some problems related to Markov process.
This formulation is in some sense a generalization of one used in [2], [3], [4], [8] for diffusion case. We
apply this to study the asymptotic behavior of exit probabilities of a family of jump processes depending
on a small parameter e as e-> 0.

Key words, jump process, exist probability, stochastic control, large deviation

Introduction. In [2], [3], [4], [8], some problems related to exit probabilites for
diffusions were considered. They found certain control problems were naturally associ-
ated to these problems. This observation is basic for their solutions to the original
problems. We may conjecture the similar phenomenon exists for some other problems.
Indeed, in this paper we will show it is possible to formulate a stochastic control
problem for some problems. This observation is applied to provide another approach
to the problem considered by Ventsel’ in [7] about large deviations concerning the exit
probability of jump processes depending on small parameter e > 0. This is the main
body of the paper.

In 1, we present briefly the properties of jump processes.
In 2, some preliminaries about exit probabilities for jump processes are given.
In 3, a stochastic control problem and a determinisitc control problem are

formulated. Some basic analysis for these two control problems is also given in this
section.

In 4, we give the assumptions and main results. The proof of these results will
follow the same ideas as in the aforementioned work. However, here we need to
formulate the control problems mentioned above. In the rest of this introduction, we
will give the basic idea for this.

The main idea is as follows. We have a certain family of functions b (t, x), 6 R/,
x E a certain metric space, e > 0. For each fixed e > 0, b(t, x) b (t, x) satisfies an
equation

(1) --d--- (t, x) Lb Ldpt(x), > 0
dt

where L is an operator on a certain function space B on E. Usually B is a dense
subspace of C(E)-collection of bounded continuous functions on E. Now we assume

(2) b>0 on R+ E.
The first step is to apply a logarithmic transform to b and get q, i.e.

(3) q, -og 6.
We have the following equation for q,

dO(4)
dt
--eLe-

* Received by the editors January 31, 1983, and in revised form. This work was supported by the
National Science Foundation under grant MCS-7903554 and the Air Force Office of Scientific Research
under grant AFOSR-81-0116.

" Mathematics Department, Brown University, Providence, Rhode Island 02912. Current Address:
Institute of Mathematics, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China.
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We hope that there are operators L on a certain subspace of C(E) and function
k on E dependi.ng on a certain parameter u, such that -eL e-+ inf, [L" / k"]. Then
for fixed T> 0, 0t qr-t satisfies the following equation

(5)
dq,
-t- inf [L"q, + k"] O.
dt

We recognize this as the dynamic programming equation of a certain control problem.
The concept of control method appears in this sense.

To simplify the argument we assume L" C(E) - C(E) is bounded. The following
condition is crucial for the existence of L" and k".

(6) L satisfies a positive maximum principle, i.e., if f C(E), take a nonnegative
maximal at Xo; then Lf(xo) <= O.

The following example will indicate how one chooses L and ku.
Example. Consider E {1,..., N}, C(E) is nothing but R u. Let L be given by

(Ly), , qoY, y (y, y), i= 1,..., N.

qij >= 0, j, qii qij.
j

L is just a generator of N-state continuous Markov chain
Let

/) (Vl,""" VN) RN, eV (eV,,..., eVN),

H(v) -eLe i.e.

H(v)i - qije’-j= -{qii+ Y. qo eV’-5}ij

We want H(v)i min [kS +i q(v- vi)]. We note, by duality for convex functions,
that e maXw>o [w w log w + wr], -e infw>o [w log w w wr].

If we let
qo=qiwj, i#j, w (w)ej-> 0,

k -q, + (w log wo wo)qo
j

(w0 log w w0 + 1)q,
i#j

then H(v) minw [/w + 2jfi’(v vi)] where the minimum is attained at w* (w),
w e*,-; u*i / u, u/* e’. Hence

H(v)i=min[k+ q(v-vi)] =min[k+(L"v)i],
ij

u=(u,. .,uu)>=O,

Ui
q o q
k=-q./ij (u lg--- q log-----+ qq,

u i" u u
u(L"v), =, .qouj(V-V,).
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We then observe that

Make a change u- l/u. Then

LUv)i --(L( uv)i (vL(u))i),

For our operator L we can still define L" and k" for u being a positive continuous
function analogously as follows

L"f=l(L(uf)-fL(u)), k"= L"(log u)-lL(u).
U U

Then under condition (6) we have the following
LEMMA. inf, [LUf+ k] -eSLe-Jl
Proof Fix x and consider the function

F(y) ;(xi ((uf)(y) f(x)u(y) + (u log u)(y) -(log u(x))u(y) u(y))

+ exp (f(x) -f(y))

u(y) u(y) u(y) u(y)
(f(y) -f(x)) + log --+ exp (f(x) -f(y)).

u(x) u(x) u(x) u(x)

We have F_->0 and F(x)=0, i.e x is the nonnegative maximal point of-F. Therefore
LF(x) >-0 by (6). This is equivalent to

L"f(x) + k"(x) >- -eSLe-l(x).
Now by taking u(y)= exp (-f(y)), we get F---0, then LF O. This again is equivalent
to

L"f+ k" -eJLe-.
Example. We consider the operator

Lf(x) 1/2a(x)f"(x) + b(x)f’(x) c(x)f(x), c >= O, a > 0

which is the generator of a one-dimensional diffusion with killing rate c. E R in this
case and L satisfies the condition (6).

L"f(x) - a(x)f"(x) + b(x) + if(x),

k"(x)=-a + c.

Therefore L corresponds to a change in the drift. Usually it takes the following form,
which corresponds to changing the drift

f 1/2a(x)f"(x) + v(x)f’(x).

If v b + au’u- then L and k takes the familiar form

k" flc 1/2a(a-’(v b))2 + c.
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Remark. Although L in the previous example is not bounded as was required in
the lemma, the argument can still be applied to L forf C2b(R), the set of all functions

f with f’, f" bounded and continuous.
Remark. The change of generator from L to L means to change the probability

measure from P to pU. We refer the reader to [10] for the explanation.

1. Preliminaries. In this section we will briefly discuss some results about jump
processes. For more detail on the properties ofjump processes we refer to the book [5].

Let 7r(x, dy) be a kernel on R", i.e. for each x R", r(x, is a probability measure
on R" and for each Borel set B R ", 7r(., B) is Borel measurable. We assume also
7r(x, {0})= 0. a(x) is a bounded Borel function. Then we have the following theorem
for existence and uniqueness of a jump process corresponding to (7r, a).

THEOREM 1. There is a unique homogeneous Markov process (x(.), Ft, Px) with
state space R such that

(a) x(. is a jump process, i.e. x(. are right continuous step functions for a.s.
(b) For bounded Borel function f on R", we define Ttf(x)=Ex[f(xt)]

f(y)P(t, x, dy). Then Ttf is a continuous differentiable function oft and satisfies the
following differential equation

dr,f(x)
dt

a(x) I Ttf(x + y)- Ttf(x))’rr(x, dy).

Proof. For the uniqueness, we note that if we takef In the characteristic function
of a Borel set B, then Ttf(x) P(t, x, B). Therefore the transition probability P(t, x, B)
satisfies equation (1.1) with initial condition Tof(x)= In(x). It has a unique solution.
This means P(t, x, B) is unique (cf. [5, p. 27]).

For the existence, we need the following more general construction theory for
jump processes. It will be useful in the following. We present it here briefly. For more
detail we refer to [5, Chap. III].

Let 7r(t, x, B) be a kernel with R/, x R ", B Borel set on R" such that for
each fixed B it is a Borel function on (t, x) and for each (t, x) it is a probability
measure on R ". Assume 7r(t, x, {0}) 0 for > 0 and a(t, x) is a bounded Borel function.
Define (r,, X(’in))= to be a Markov chain with state space R/ R" and transition
probability Q(.z,/), z R+’x R, / Borel set on R+ R". Q(z, ) is defined~ by (1.2)
for z (s, x), B [a,/3) x B, 0 < s, a </3. We can extend this to general B as usual.

Q(z,/)= exp a(O,x) dO a(t,x)er(t,x,B-x) dt if s<-_a,

0 ifs>fl.

We can see that this Markov chain (’i., x(’i.))= has the properties

From this a continuous time process x(. can be constructed as follows.

X(t) X(’in), "in <- <

This process is a jump process in the sense that for a.s. and any > 0, :1 h > 0 depending
on sample such that x(t)= x(s) for s It, + hi. Also it is a Markov process, as stated
in the following theorem.
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THEOREM 2. {X(" ), Ps,x} is a Markov process where the Ps, are defined as follows:

Ps,x( t, B)=- P(s, x, t, B)= q(y, v, t) Q(n)(s, x, dv, dy),
n=0 B

(1.3) Q(n+l)(z’/) I Q(")(z, d)Q(, B), Q()= Q,

q(y, s, t) exp a( O, y) dO

The proof of this theorem can be found in [5, Chap. III].
Remark 1. z, is the nth jump time of the process and x(z) is the state of x(.)

following immediately after the nth jump. 1/a(.,.) is the expected time the jump
occurred. 7r(t, x, describe the probability of where the process will go after the jump.

Remark 2. The reason we construct a process in this way is intuitively clear as
we explain in Remark 1. Theoretically it follows from the theorem [5, p. 19 l] that any
jump process can have a Markov chain naturally associated to it. The construction
above is just the reverse procedure of this. But the relation and (1.1) is not very clear
from this construction. We will show below that the probability measure of x(. above
is a solution of a "martingale problem", in modern terminology.

In the following, x(.) will be the Markov process constructed as above. Es,
denotes the expectation with respect to the probability measure of x(. starting from
x at s./.( t, x, B)= a(t, x)Tr( t, x, B).

We begin with defining the operator L B(R) B(R) as follows:

(1.4) Lf(x)=a(t’x) I (f(x+ y)-f(x))Tr(t,x, dy).

LEMMA 3. f(xt) Lf(xo) dO is a martingale forf B(R").
Proof.

Es,x[Lf(xo)] dO

Lf(y)P(s, x, O, dy) dO
R

f(y+ z)u,(o, y, dz)P(s, x, O, +) dO

f(y)a(O, y)P(s, x, O, dy) dO.

Using the decomposition

P(s, x, O, dy)= exp a(a, y) da Q"(s, x, dv, dy)
n=0
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and the relations

f(y+ z)/.,,(O, y, dz) exp a(a, y) da Qn(s, x, dr, dy) dO

Q(")(s, x, dr, dy) f(y+ z) exp a(a, y) da g(O, y, dz) dO

Q()(s, x, dr, dy)E,y[f(x.,); , t]
(1.6)

,xE,Ef(x); t]; t]

,xEf(x+); + t],

f(y)a(O, y) dO exp a(a, y) da Q()(s, x, dr, dy)

Q(s, x, dr, dy) a(O, y) exp a(a, y) da dO f(y)

(1.7)

.,xf(x.); +, t][[, x.]]

.x[f(x.); +, t],
we have

Z Es,x[f(x.); ’.<=t]-Es,x[f(x.); r.+,<=t]-E,x[f(x); Zo<=t]
n=O

Z F-,,,x[f(x,,); ’, <- < 7"n+l]-f(x
n=0

Z E,x[f(xt); %, <= < 7"n+l]--f(x
n=O

=Es,),[f(xt)]-f(x).
LEMMA 4.

f(t, Xt)-- t---+ Lfo(Xo) dO

are martingales forf bounded, absolutely continuous in 0 with Of(O, x)/O0 bounded.
Proof We first consider the case where f is continuously differentiable with

bounded derivative.

f(t, xt)-f(s,x)=Ef(ti, x,,) f( ti_,, x,,_,), where s= t, <t2<’"<t,=
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is a partition of Is, t].

"f( ti, x,,) f( t,_,, x,,_,) =f( ti, x,,) f( ti, x,,_,) + dO.
t,_, O0

By applying Lemma 3 we have

E,,x[f( ti, xt f( /i-1, xt,_,)]

x A(xo o + of(o, x_, o
’i--I ti O0

&x (, x, -f(, Xs (o, x + fo(xo o

=E Es.x (L,-L%)(xo) dO+E,.x ’(O, xg)) 7(O, xo) dO
ti-

where x")=x,,_, for ti_ O<ti. Since x(.) is right continuous, x")(O)+ x(O) as
max (ti-ti_)O. Passing to the limit, we have

E, f(t, x, -f(s, x (’ Xo + Cfo(xol o o.

For the general case we choose g(, f( as follows.

g( bounded pointwise in (0, x),
00

f((t,x)=f((s,x)+ g((O,x) dO,

with f((s, x)f(s,x) bounded pointwise, g( bounded continuous.
The above discussion guarantees that. f((,x,-f((s,x,- O0 (O, xo+f(o o =0.

Letting n , we have

s. f(, x,l-f(s, x,l- oo(O, Xo+ fo(xo o =0.

Remark 3. For the case that L is independent of t, we can get (1.1) easily from
Lemma 4.. ExR rbbflRy. We will consider the exit probabilities of a family of jump
processes depending on a small parameter e > 0. Our model is as follows. We note
that this has been studied in [7] by another method.

Let a(. be a positive Borel bounded function on R; (x, dy) is a kernel on R
satisfying (x, {0})= 0. Define operators L L

f(x a(x (f(x + yl f(xll(x, ,
Lf(x) =a{’x)e (f(x + ey) f(x))(x, dy).
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We know that these operators generate jump processes x(.), x(.). So does L. u is
a positive Borel function such that u, u -1 are bounded, and L is given by

Lf(x) U(x) (L(uf)(x)-fL(u)(x))

(X) [ u(x +
d u(x)

(f(x + ey)-f(x))’rr(x, dy).

Therefore L L with u--- 1. In addition we need Lf,u,

t,7,f(x)
u,(x) L(utf)(x) -fL u, )(x)),

for a positive function u,(x) =- u(t, x) on R+ x R". We denote E,;’[. as the expectation
with respect to the probability measure of the Markov process x(. constructed from
L according to Theorem 2 with x(s)= x; here u= u(t; x), a function as above. The
abbreviation E s".x[" ] will be used occasionally if we fix e in the discussion. E ,[. means
E ’" when s 0, u -= i.e. E[x(. B] E),[x (.) B].S,X

DEINIa’ON. We fix a bounded open subset 1) of R ". -, called the exit time from
[l, is defined as r=inf{t;x(t)C:f} if {t;x(t)f:Ft}fg and oo if it is empty. Let

6(t, x)=
1,

for > 0 and x f,

We are interested in the behavior of b(t, x) as e- 0. For the case where x(.) are
diffusions, the behavior of b(., ,) as e 0 has been studied in [2]. We will follow
the ideas in [2] together with the general formulation of control method presented in
the introduction.

In the rest of this section, we will mention some properties of b.
LEMMA 5. dch t, X)/ dt L49 (x) for x f.
Proof We only give the proof for e 1.

b(t,x)= Z Ps[’,+.’.+%<-t,x(’i)6a, i=l,...,n-l,x(r,)_f]
n=l

Px[’r t, x(’rl) I ]

n=2

1,..., n 2, x(Z,_l) 1"/]; x(’l) e 12, rl ----< t]
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Note that b(s, z) if z f. From this relation, $(s, x) is a continuously differentiable
function in s. Differentiating both sides of the above equation, we get

(2.1) d---( t, x) a(x) 49(t, x + y)r(x, dy) a(x)ck( t, x) LOt(x).

As was mentioned in the introduction, we are trying to apply a logarithmic
transformation to b ", i.e., we shall consider @(t, x)=-e log thE(T-t, x) where T is
fixed and < T. The reason why we consider b(T-t,.) instead of thE(t," will be
apparent later. Also we will see why we consider e log b instead of log the. Another
problem concerning us is that we do not know whether b> 0. The following device
is commonly used for applying this procedure. For each d > 0, a small number, let
b(s, x) be the solution of the differential equation

d--f(t,x)=Lc(t,x), xl,

(2.2) (0, x)= d ’/,
the(s, x) 1,

LEMMA 6. 49( t, X) >--_ d/ for all >= 0 and --<
Proof We note that (t, x)= E[f(x,)], 6(t, x)= E[fo(x,)] where

{1; x,l),
fo(y)f’(Y= a, xea, o, xea.

Then the result follows easily.

3. Control pLoblem. The basic approach is the following. First we show under
some conditions (t, x)=-e log (r-t, x) converges to a limit I(t, x)NO which is
independent of d for d being small enough. This means (t, x) exp (-I( T- t, x)/e).
Then by Lemma 6, the difference between (t, x) and (t, x) is d l/e which is very
small compared to exp (-I( T- t, X)/e) for d small enough. This will imply (t, x) > 0
for e small and that " (t, x) converges to I(t, x).

Before we give necessary conditions such that the above procedure works, we
state one more propey of .

dt

where

(t,x) ee’/Le-’/ e min [L(-) + ]k =-min[L(q)+ k],

x
a(x) f u(x+ey)

Lf( )=
e u(x)

(f(x + ey)-f(x))r(x, dy).

(3.1) k(x)=a(x)I(u(x+ey) u(x+ey) u(x+eY)+l)Tr(x, dy
u(x)

log
u(x) u(x)

where u F if u, u- are positive bounded Borel functions on R".
For the time being we drop e; then the equation for , becomes

(3.2)
dq
dt min[LU()+kU]=0’,F t[0, T].
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Let

{od/( T, x) W(x)
-log d

We recognize that this is just the dynamic programming equation of the following
stochastic control problem:

(3.3) J(s, x) inf Esx kU’(xt) dt + W(xt^r)
UE"

where u if u, U
-1 are positive bounded Borel functions on .[0, T] x R n.

We have the following result describing the relation for 0 and ., similar to the
so-called "verification theorem."

LEMMA 7. ,(t, x) J(t, x).
Proof. For each u F, we apply Lemma 4 to get

Esx q,(rA T, X.^T)-- L"d/o(Xo)+-(O, Xo) dO g/(s, x).

By (3.2), dOL"O+ k">=O. These two relationships imply

(s, x) <- Es", k"(Xo) dO+ W(x,^r)

i.e. (s, x) <_- ](s, x) by taking the infimum over u e/3.
On the other hand, u* =exp () gives us the optimal control as shown in the

following.

u. kd/(s,x) E,x (T^ T,x,^r)+ *(xo) dO >-J(s,x)

holds as above. This time we use d/dO+ L"*o/+ k"*o 0. We then get (s, x)= J(s, x).
Remark 4. Following the same argument we can show that

J(s, x) <-_ E",, k"’(x,) dt + W(x,^r)

for those u such that k",(x) is bounded as a function of (t, x).
Now we plan to see how J q depends on e; therefore rewrite (3.3) again as

J(s, x) inf E ’",x k(x,) dt + W(x,)
ue

(3.4)
inf E [,

Here, in order to simplify the notation, we agree to use the second form on the right
if it will not give any confusion. Otherwise we will write down all necessary parameters
to make the argument clear.

Associated with these control problems, there is a deterministic control problem

(3.5) J(s,x)=inf kU(xt) dt+ W(Xr^T)
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where xt satisfies

dx(t)
dt

(3.6) x(s)=x,

v(u, z)= a(z) I u(y)yr(z, dy),

kU(x) a(x) f (u(y) log u(y)- u(y)+ 1)-tr(x, dy).

There is a little difference between k and k. The choice of k in this form is indicated
by the following example.

Example. Consider the one-dimensional case with a(x), r(x, B) described as
follows

a(x)’n’(x,.{l}) a+(x),

a(x)’tr(x, {-1})= a-(x),

r(x,. concentrated on { 1, },

a+, a- positive, bounded.

Under Es;, x(. is a process with state space {x + ne, n is integer} D.

w+(y )L’f(y) =1 a+(y (f(y+ e)-f(y))+ a-(y)
w-(y)

e w(y) w(y)(f(y- e)-f(y))

y6D, f is a function defined on D. w+(y)=w(y+e), w(y)-=w(y-e) in terms of
original notation. Take f(y)--y; the above takes the form

Lf(y) (a+(y)u+(y)- a-(y)u-(y)),

k(y) a+(y)(u+(y) log u+(y) u+(y)+ 1)+ a-(y)(u-(y) log u-(y)- u-(y)+ 1).

Here we change the notation u+(y).-w+(y)/w(y), u-(y)-w-(y)/w(y). Then we
expect that J(s, x) converges to J(s, x),

J(s,x)=inf ,, k"(x,) dr+ W

T

J(s, x) inf kU(xt) dt +

Here, in the stochastic control case x(. is such that

X( t) {a+(xt)u+(xt) a-(xt)u-(x,)} dt

is a martingale with variation being O(e), whereas in the deterministic case

x(t)= x+ {a+(x,)u+(x,)-a-(x,)U-(X,)} dt.

Remark 5. In the one-dimensional case, and also in the n-dimensional caSe with
7r(x,. concentrated on some atoms, we can show that b is larger than zero. Then
we do not need to use the device sketched at the beginning of this section.
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We go one step further, by formal calculation, to look at a property of the
deterministic control. We write

(3.7) J(s,x)= inf inf
dxt/dt=v(t) v(t)=v(ut,xt)

This form suggests that we consider

(3.8)

kU,(xt) dt + W

k(v,x)= inf kU(x), v Rn,
o=v(u,x),

u>_O

v(u, x)= a(x) I u(y)yTr(x, dy).

Fix x R n, and call a(x)Tr(x,. )=/x(. ). At this moment, we assume

(3.9) f eI’:lyltx(dy) < : VK > O.

Denote

k"= I (u(y) log u(y)-u(y)+ 1)/x(dy), u>0

k(v)= inf k, vR,
v=v(u),
u>=O

v(u) f u(y)ylz(dy).

LEMMA 8. If there is c R"such that u*= ec’y satisfies v(u*)= v, then k(v)= k*.
Proof. Let u be such that u >- 0 and v(u) v. Denote h u u*, us u* + ah for

0_<- a =< 1. We have v(us) v, us >- 0 and

dol I h(y) log (e c’y + ceh(y))tx(dy)

>- I h(y)c, ylz(dy)

c. f h(y)ytz(dy)=0,

k >_- k*. Here we use r log (e + r) >-- ra if e" + r >= 0.
Remark 6. There is at most one u satisfying u>=0, v(u)=v, k(v)=k in the

following sense. If there is a u* as in Lemma 8 and another u satisfies the above
condition, then u* u a.s./z. The proof is given as follows. Let us u* + ah, h u- u*,
0=<a-< 1. Since ku= ku* and k is convex in u, we must have ku k= k* also.
Therefore

O=da h(y) log (eCY + ah(u))tx(dy) >- h(y)c, ytx(dy)=O.

This implies

h(y) log (e c’y + th(y))tx(dy)= f h(y)c, ylx(dy).
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Now we use the property h(y) log (ey + ah(y)) >= h(y)c, y; equality holds if and only
if h(y)= O. Then from these two properties it is clear that we have

u-u*=h=O a.s. Ix.

Remark 7. If u ey satisfies v v(u), then k(v) k takes the following familiar
form which states that k(v) is the dual to Laplace transform of Ix(+const)

k(v)=k"= J (eY log eY-eY+ 1)ix(dy)

c" I e’yix(dy)- I eYix(dy)+ a

c. v- I eYix(dy)+ a

=sup(z’z v-I eZ’Yix(dY)) +a’
where a IX(R").

4. Assumption and main results. We make the following assumptions.
A1. There are a probability measure ,r on R", a function g(x, y) on R" R and

a function a(x) on R" such that

r(x, cly)= g(x, y)(ay).

A2. The convex hull of the support of r contains a neighborhood of the origin.
There is an a > 0 such that

A3. There are Cl, c2, K > 0 such that

C g(X, y) <-- c2, Cl <- a(x) <- c2,

Ig(xl, Y)- g(x2, Y)[ <- glx,, la(x,)- a(x2)l <= KlXl x2l.

Integrability of exp (cz[yla) with respect to r seems to be a very strong condition
which is ne.eded in proving (4.2) below. It seems that integrability of exp (K[y[)V K
is enough. On the other hand, (4.2) enables us to control some processes.

We state first some easy consequence of the assumptions.
LEMMA 10.

(4.1)

(4.2)

exp (c. y)e L(r),

2ix(x, dy)<-cl f (g(y)log g(y)-g(y)+ 1)IX(x, dy)+c2,

where g >= O, Cl, C2 are constants which are independent ofg, Ix(x, dy) a(x)Tr(x, dy). Also

(4.3) g(y)Ix(x, dy)-g(y)Ix(), dy) <--clx-; f g(y)Ix(x, dy),

where g >-_ O.
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Proof. (4.1) follows from A2; (4.3) follows from A3. As for (4.2), we note that

g(y)y2(x, dy)= fy2<logg(y g(y)y2tx(X dy) + fCly2>__log
g(Y)

g(y)yE(x, dy)

= g(y) log g(y)/a,(x, dy)+ y2 exp (fly2)/a,(x, dy)

<-- c, f (g(y) log g(y) g(y) + 1)/x(x, dy) + c2

if we take/3 < a in A2.
In the next paragraph we are going to show lim J(s, x)<-J(s, x). Under condition

A2, (3.9) is satisfied. Then we have the following alternative formula for J(s, x).
THEOREM 3. J(s,x)=infd,,,/dt=,O,x=,, {.J^7" k(v(t),x(t)) dt+ W} where v(t) is a

bounded function on Is, T],

k(v,x)= inf
v=v(u,x),
uO

(u(y) log u(y)-u(y)+ 1)/x(x, dy)

as in (3.8).
We first indicate the following lemma in convex analysis.
LEMMA 1. Let F" R

_
R be strictly convex, differentiable and satisfy

lim -F(Ac)=c ’qc0.

Then VF: R"-. R is one-one onto and the conjugate F* has the same properties as F.
F* is given by

F*(c*) sup {(c*, c)-F(c)}.

Moreover F*(c*)=(VF(c), c)-F(c) if c*=VF(c). Thus we also have VF*(c*)=c.
We refer to [6, p. 259] for the proof of this lemma.
Proof of the theorem. We now apply Lemma 11 to the function

F(c) F(c, x)= I eC’Ytz(x’ dy).

Under our condition A2, F, as a function of c, satisfies the conditions in Lemma 11.
In fact, strict convexity of F follows from the fact that 7r({y; c. y =0}) # 7r(R") /c # 0,
and the property lim ((1/A)F(Ac)=o follows from 7r({y; c-y>0})>0. Lemma ll
tells us that for each v R", x R" there is a unique c such that

V VF(c)= f eC’Yytx(x dy) v(u, x), u e c’y.

Following Lemma 8, we have

(4.4) k(v,x)= f (eC’Y(c y)-eY+ 1)/x(x, dy)=F*(v,x)+a(x)

by Remark 7. Clearly

J(s, x) >- inf k(:( t), x( t)) dt + W
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by the construction of k(v, x). On the other hand, if dxt/dt v(t) with v(t) bounded
in Is, T], then we can choose u, =ec,’y with c, satisfying v(t)=VcF(c,,x,)= v(u,,x,).
Clearly

dxt -v(u,,x,),
dt

k(2(t), x(t)) dt + W= kU,(x,) at + w.

Thus the reverse inequality holds and this ends the proof of Theorem 3.
In the following, if we want to emphasize the dependence of J, J on d we write

J(s,x;d),J(s,x,d).
THEOREM 4. lim_.o J(s, x, d)<- J(s, x, d) for d small enough.
Proof. Clearly O<=J(s,x, d)<-J(s,x, d’)<=J(s,x, 0)<eo if d>-d’>O. Consider

J(s,x, d) =inf kU,(x,) dt+ W(x,^r)

with W(x) 0 if x f and -log d if x e lI. We see if - > T, then r k", (x,) dt +
W(x,^ r) >-_ -log d. This will be larger than J(s,x,O) if d<-d, where do is a small
number depending on T-s. From this it is not difficult to see that

d<-do

that
For a small number i>0, there is v(t)= v(u,, xt), u,= e ct’y with c, bounded, such

ro

kUJ(s, x) >- (x,) dt- 8,

(4.5) dx
dt

l)(Ut, Xt)= I eCt’yYtz(x" dy),

o<T, ’o the exit time of x,.

Let E s.x be the expectation with respect to the probability measure of the Markov
process x with generator L, uT(y)= u,(y/e). Then

d(xT-x,)2= d(x)2-2xt dx-2x dx,-2x, dx,

2x I yut(y)lx(x, dy)-2x," ;yut(y)lx(xT, dy)

-2x" I yu,(y)(x,,dy)+2xt" I yut(y)l(x,,dy)

+ e f y2u,(y)t.t(x, dy)+ dM(t).
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M(t) is a martingale. Here we make use of Lemma 3 for calculating dx and d(x)2.

E((x-xt)2)<-2E Ix-xtl yut(y)ia,(x, dy)- yut(y)tx(xt, dy) dt

Using then

+ eE y2ut(y)la,(x, dy

+c u,(y(x,,dy.

[ylut(y)t.,,(xt, dy)<=c3kU’(xt)q-c4,

lYlu,(y)(x,, dy) <= c3k"’(x,)+ c4,

let E((x-x,)2)=f,, c3kU’(xt)q-c4 gt. We get

ft <- Cl fogo dO + c2e go dO.

Gronwall’s inequality implies

ft <= 2e go dO exp c go dO <- cse
(4.6)

for t T,

E((xT-xt)2)<-_cse, t<- T.

By changing the value of ut after ’o, we may assume for some ’o< To<
T, d (XT-o, ) r > 0. Using the martingale property as in the proof above gives

J(s,x)<=E k(YT) dt+ (To, YTo)

{ ift<
yT=

=z

ift>z

k(x) ifxe ,(x)
0 ifxa.

Equation (4.6) implies E[r> To]0 as e 0. Then for fixed d, je being bounded
by -log d and J (s, y) 0 if y a, implies [J To, Y))] 0 as e 0.

T
( Y, dt E[( Y, )] dt < k(x,) dt.lim J (s, x) lim E[

The last inequality is due to E[k(Y)] E[k(x)]- k(xt). Since To can be chosen
arbitrarily close to to, we have

limJ(s,x)N (x) dtNJ(s,x)+
i.e.

limJ(s,x)NJ(s,x).
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JRemark 8 We can show lim,_.o (s, x, d) <= J(s, x, d) holds for all d > 0., In fact,
if instead of (4.5) we have

J(s, x) >- kU(xt) dt-log d t$, ’o > T,

then using the same notation as in the proof, we have

J(s,x)<-E k(Y) dt+J*(T, Yr) <=E

limJ(s,x)<-limE k(Y)dt-logd

<- k"(x)dt-logd<-J(s,x)+ V>O.

fc(Y) at log d ],

by using

M
(4.8) Ps,x[ A T> 0k] <---k’

then we have

(4.7)

W.(y) { 0, Y f-,
W(y), y 6 f,,

’. exit time of x, from ..
We complete the proof of lim J(s, x)>= J(s, x) by showing the following two results.

LEMMA 12. lirnJ(s,x)>--J,(s,x)In.
LEMMA 13. lim.,_ J,(s, x) J(s, x).
ProofofLemma 12. Taking u(x) exp (J(t, x)/e) (cf. proof of Lemma 7), then

Here we omit e in u if we fix e in the discussion. Define the stopping time Ok

0k=inf <- " ^ T k xt dt >- k

M =sup J(s, x) < c;
e>0

kPs,,[r ^ T> Ok] <= E ,x k"

< E k"(x,) dt < J(s, x) < M.S,X

This implies lim J(s, x) <= J(s, x).
Next in order to prove lim J(s, x)>= J(s, x), we use the following procedure. Let

12, c 12,/1 c. c 12 be a family ofdomain with smooth boundary such that d (12,, 0f)
6, > 0, Ufl, fl where 0f boundary of 12. Define J, (s, x)

inf kU’(xt) dt + W..(s, x)
,,/,,,=,,,,,,,,
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Define two processes xt, t

(4.9)

dx, f u,(x + ey)
dt ut(xT)

ylx(x,, dy), x x,

dt I u,(xT + ey)
dy), s x.dt- ut(xT)

ytx(xT,

Here we see dx,/dt= V(,, x,), u,(y) ut(x + ey)/u,(xT). We want to show that xt, t,
x7 are close to each other. First apply the martingale property to get

+ ey)
d(xT- ,)2= e yzl(X7 dy)+ am, g, t<_T.

We then use the martingale inequality

(4.10)
P[sup

tO Is’ f ut(x + ey)(, x;)-- dy)
u,(xT)

YZlz(xt’

u,(xT+ey)
_-<-E ()ok x;k)2 + e y)tx(xT,, u,(xT)

As was explained in Lemma 10,

ut(x7 + ey) y2tx(x, dy) <= c,k(xT)+ c2.

Putting this into (4.10) gives

(4.11) P[sup (:t-xT)2>=6+(Clk+C2)e]<=Z-(clk+c2)e.
Apply Lemma 10 again to get

IsfUo(Xo+ey)It--Xtl <-- c
Uo(Xo)

dO.

Using the same argument as in proving Lemma 10 (4.2), gives

Uo(Xo + ey)
Uo(X;)

lyl(x;, dy) - clkue(xo) 4I- C2.

Using also I),- x, _-< Ix7 x,I + 12,- xTI, we have

[XT--X,l<=C (clkue(xeo)-t-C))lXo-Xol

which takes the familiar form

f <--_ c fogodo + p,

p sup 12t- xT[.
tN Ok



324 SHUENN-JYI SHEU

We apply Gronwall’s inequality to obtain

(4.12) Ixr-x,lNoexp c (Clk(xo)+c)dO <-oexp(ck+c4).

For given 0< r < l, if we choose k to be large enough such that M/k < r, then (4.8)
implies

M
(4.13) P,,<[’r ^ T> Ok]<----< r.

Fix n, and choose 6 and eo such that

(26) 1/2 exp (c3k + c4)

(cik + c2)e < <3, 2(ck+c2)e<r for e <= eo.

Then (4.11), (4.12) imply

(4.14)
P[sup I,-xTI >= ()’/-]_-< ,

sup Ix; x,I-<- r6, if sup I,- xTI--< (28) ’/2.
tO tO

Together with (4.8), for e _<- eo

P(" ^ T 0k, sup I,- x;I < (26)’/2) >= 2r,

^ 7" o, sup I,- xTI < (26) 1/2 implies sup Ix7 x,I <
Ok to

We will say that condition (*) holds if " ^ T= Ok, sup,=<ok I,-xl < 26i/2. Then (*) will
imply r, ^ T -< - ^ T,

mAT
J,(s, x) <-_ kC’(x,) dt + W(x,.^r)

fsl
ka(xt) dt if -< T and (*),

[f ka(x,)dt+W(x) ifr>Tand(*)

Note that P(" T)= 0 and

kC’(x,)=I(u’(x+eY)u,(x)
u,(x + ey) u,(x + ey)

t-log I Xt, dt)
u,(x) u,(x)

<- + clx, x:l) f ( u,(x: + ey)
u,(x)

u,(x7 + ey) u,(x + ey)
log

u,(x) u,(x) +l)(x,dy)
(1 + clx,- xTI)k"(xT).
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Therefore

(1M+crt$n) kU(x) dt + W(x^r) if (*) holds, e _-< Co.

J.(s,x)<-
otherwise,

J(s, x) <_- (1 +cr)E, k(x) dr+ W(x;^r)

+ MP,{(*) does not hold}

<-(l+cr6,)J(s,x)+2rM, e<=eo,

J,(s,x)<=(l+cr6,)limJ(s,x)+2rM V0<r< 1.

J x) > x) which ends the proof of Lemma 12.Letting r 0, we get lim -.o (s, J, (s,
In order to prove Lemma 13, we need some properties of F(c, x) introduced in

the proof of Theorem 3.

F(c, x)= | e(x, dy).

As was pointed out there,

k(v, x)= F*(v, x)+ a(x),

F*(v,x)=sup{c. v-F(c,x)}.

In the following, V denotes the gradient with respect to c.
LEMMA 14. Fix r > 0; there is K > 0 and M > 0 such that

(c, VF(c,x))>--KlclF(c,x) if lxl<=r,[cl>=M.

Proof. Suppose not. Then there are c,,eR", x,,eR", e, > 0 such that

Ic.l- , e.- 0,

(c., VF(c., x.)) <- e.lc.lf(c., x.),

(4.15) f c,, y exp (c,, y)lx(x,,, dy) <-_ enlc,,l l exp (c,, y)lx(xn, dy).

By using the fact that

inf I (c. y)lz(x, dy) > O,
Icl =l .Ic.y>-O

it is easy to see that (c,. y)eC"Yla.(x,,, dy)o. Then both sides of (4.15) tend to as
n . Therefore we can assume

I (c"’y) exp(c’Y)lZ(x"’dY)<=e"’c"’I exp(c,,.y)tz(x,,,dy).
Cn’y>O Cn’y>O

From this, for any k > 0

Icn’Y >= ken cn
((c," y)-.lc.I) exp (c,,. y)lx(x,,, dy)

exp (c,. y)l(x,, dy).
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Then

or

(k- 1)e,,Ic,, exp (kelc.l)x(x.. {y; c..y> ke.lc.I})

<= e,,Ic,, exp (ke.lc.I)tx(x,,, {y; O< c,,. y < ke, lc, I})

(4.16) (k-1)/ x., y;l" y>ke, <=tz x,, y’O<=-l, y<ke

Now we can assume c,/Ic, I-. Co with ICol and x, Xo with IXol <-- r. Then (4.16) implies

(k-1)tX(Xo;{y; co" y>O})<-lZ(Xo,{y;O=co" y}) Vk>l,

i.e.,/Z(Xo" {y; co’y > 0})= 0, which is a contradiction to assumption A2.
LEMMA 15. Given r>0, then for any e>0 there is R>0 such that Ixl-<_r,

Iv,-v21_-< and Ivl>=R imply F*(v,,x)<-(1 +e)F*(vz, x).
Proof Take M, K as in Lemma 14, and write F(c, x) as F(c).

F*(v) sup ((v,, c)-F(c))

(v, c)- F(c), v VF(c) as in Lemma

=<v-v. c,)+<v2, c,)-F(c,)

<=Ic,I+F*(v2) since Iv,-v21 <- 1.

By Lemma 14

(4.17) (c, VF(e))>= K[clF(c), IcI>= M
since v =VF(c)= eC,Yy(dy), there is R such that

(4.18) Ivl > R implies [c, > M.

Using (4.17), (4.18) and F*(v)=<e, VF(c,))-F(c,),

F*(v,) >-<c,, VF(c,)>-Klc, l(c,.

1-K]c,i <c,.VF(c,)) => 1-Kic,
Since F(c)- as Icl-, we can choose M to be large enough such that (1-
1/KlCll)KF(c)> 1/3 for a fixed small number which will be chosen to be e/(1 +e).
Then Icl<-_6F*(v). After combining this with F*(vt)<=lcl+F*(v) we get (1-
6)F*(v)-<F*(v2), i.e., F*(v) =< (1 +e)F*(v2) if we take 3= e/(1 +e).

LEMMA 16. Fix r > O. Then for any e > O, there is > 0 such that

a(x)+F*(Vl, X)<-_(l+e)(a(x)+F*(v2, x))+e iflvl-vzl<i5, Ixl<=r.
Proof First we choose R as in Lemma 15, 3 < 1. Then obviously the inequality

holds for Iv[ >- R, ]xl<-r. As for Ivl<-_R, the continuity of F* implies F*(v,x) <-_

F*(v,x)+e if Iv-v21 <- & Again this gives the above inequality.
Remark 9. We did not indicate the continuity of F*(v, x) with respect to the joint

variable. But it is obvious once we note that F(c, x)/lc[oe as Icl-oe uniformly for
x in a bounded set and if(v, x)= sup {(v, c)-F(c, x)}.
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Let . sup {[x y[ x OlI, y e Of.}, 6. inf {lx y[, x e aO, y Of.}. Then
/3,, , --> 0.

LEMMA 17. If T-s> d(x, Ofl), x f, then J(s, x) < cd(x, Ofl) where c is indepen-
dent of s, x.

Proof. x f, x* Of such that Ix- x*l d(x, Of). Let v (x-
dx(t)/dt=v, x(s)=x. Then X(to)=X* where to-S=lX-x*l=d(x, Of)<T-s, i.e.,
to < T and to is the exit time of x(t) from f. Now it is easy to see that

I ’J(s,x) <- f*(v,x,)+a(x,) dt<-c(to-s)=clx-x*l.

Finally it is time to prove Lemma 13, i.e. lim._. J.(s, x)= J(s, x).
Proof of Lemma 13. Since J.(s, x) increases with respect to n and is smaller than

J(s, x), therefore there exists a limit A lim J.(s, x) <- J(s, x). It remains to show that
A>=J(s,x).

Let e > O; for each n there is a v(t)= v(t), bounded in Is, T], such that

Xt)+a(x,) dt+ W(x.^T)<A+e,
(4.19)

dx,, :--- ,(t).

We consider the following cases of %.
(i) Assume % > T for some n. Then

J(s,x)<- (F*(.(t),x.(t))+a(x.(t))) at+ W(x.(T))<A+.

(ii) Assume r.-< T for all n. Let a > 1. With this a we define )?(t)= x(at). Then
(t.)eOf. where t.= r./a and hence J(t,,,(t.))<-c. by Lemma 17. Therefore, we
obtain

(4.20) J(t,,(t,))O as noe.

Now considering

J(s,x)<= (F*((t),(t))+a((t))) dt+J(t,,(t,))

(F*(a2(t),x(t))+a(x(t))) dt+J(t,,,(t.)),
Ol

and applying (4.19) and the following inequality:

(4.21) F*(av, x) + a(x) <- c(a) + (1 + c(a))(F*(v, x) + a(x)),

we can get J(s, x)<= A + 2e by first choosing a > but close enough to 1, and then by
letting n- oe. Here we only note that the proof of (4.21) is similar to that of Lemma
15. Finally, we conclude from (i) and (ii) J(s, x)<=A, i.e., J(s,x)= A.

We can now combine Theorem 4, Lemma 12, and Lemma 13 to get
THEOREM 5. lim J (s, x, d) J(s, x, d) for every s < T, x 11, d > O.
THEOREM 6. For any > 0, x 11, there is eo > 0 such that

tb(t, x) > 0 fore<eo.
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Moreover lim {-e log b(t, x)} exists and is equal to

inf k,(x,) dt inf k(2,, x,) dt.
"rt

Proof. As was indicated at the beginning of 3, Theorem 5 and Lemma 6 are
sufficient for getting the result if we note that J( T- t, x, d) inf,<t k(t, x) dt for
d small enough.
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A SURVEY OF SOME RESULTS IN STOCHASTIC ADAPTIVE CONTROL*

P. R. KUMAR"

Abstract. Some results in discrete-time stochastic adaptive control are surveyed. The survey divides
itself into two parts--Bayesian and non-Bayesian adaptive control. In the former area, the problems of
converting an incompletely observed system into a completely observed one, multi-armed bandit processes,
Bayesian adaptive control of Markov chains and Bayesian adaptive control of linear systems are exposed
and surveyed. In the latter area, non-Bayesian adaptive control of Markov chains and the self-tuning regulator
are dealt with. Proofs are given, where appropriate, to illustrate the methods involved.
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1. Introduction. We shall be concerned with the control of discrete time stochastic
systems. The distinguishing feature of the class of problems we address is that the
system under control is unknown. In spite of this, we desire to design control laws
which will result in adequate behaviour of the system. The adequacy of the system
behaviour will, in turn, be mainly measured by a given cost criterion.

We shall not deal with the problem of adaptive control of deterministic systems.
Rather, random or noisy behaviour will be an essential feature of the systems we study.
We shall also not deal with continuous time stochastic systems.
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The survey divides itself naturally into two parts--Bayesian adaptive control
problems (BACP’s) and non-Bayesian adaptive control problems (NACP’s). We shall
suppose, throughout, that the system behaviour depends on a parameter 0, and it is
the fact that the value of 0 is unknown to us which makes the system unknown. Now
we can distinguish the essential difference between the Bayesian and non-Bayesian
formulations. In the former, we are given a probability distribution qo(dO) for the
value of the unknown parameter 0. In the latter, we are not given any such initial prior
distribution. Rather, we are only given a set 6) and a guarantee that the unknown
parameter 0 is some element of .

The Bayesian N-armed bandit problem and the "dual" control problem are
examples of BACP’s. The self-tuning regulator and the non-Bayesian adaptive control
problem for Markov chains are examples of NACP’s. All these topics and others are
surveyed in what follow. In 2-5, we survey BACP’s and in 6-8, we survey
NACP’s. Each section is addressed to one type of problem.

Some comments on the goal and style of this paper are in order. It has been a
primary goal in writing this paper to produce an expos6 of the field which will cover,
in an understandable way, some of the problems, ideas and mathematical techniques
of this field. To achieve this, proofs of several results are provided throughout the
paper. (However a theorem or proof attributed to an author is not necessarily an exact
replica of the original; some modifications have sometimes been made in the interests
of brevity, clarity, etc.). No attempt has been made to provide an exhaustive list of all
papers in the field. Such an approach, it was felt, would only tend to make the narrative
very disjointed. The emphasis, instead, is on the coverage of ideas. Apologies are thus
owed to several authors for such omissions. Lastly, we have made no real attempt at
attribution of results to authors.

2. Formulation and reduction of the Bayesian adaptive control problem. The
Bayesian approach to adaptive control is this. There is a stochastic dynamic system
which depends on a parameter 0. We are given an initial probability distribution (a
prior distribution) qo(dO) for the unknown parameter. At each time instant l, 2, 3,
we obtain a noisy (or, as a special case, perfect) observation yt of the state xt of the
system. Our goal is to minimize some given cost criterion, such as E o fltc(xt, ut).
Here ut is the control input that we apply to the system on the basis of the observations
(Uo, y, u, Y2," Yt-, ut_, Yt) made on the system./3 with 0</3 <_- is the discount
factor. The heart of the problem is that the expectation in the cost criterion
E o fl c(x, u,) is taken not only with respect to the random behaviour ofthe stochastic
system, but also with respect to the random choice of 0 according to qo(d0).

The standard approach to solving this problem is to transform the BACP into an
equivalent dynamic programming problem and then to bring to bear the well-developed
theory of dynamic programming. The "state" of this new dynamic programming
problem, which we shall refer to as the hyperstate, will be the conditional prob-
ability distribution of the old state and the parameter value given the observations
made.

However, in achieving this transformation, some delicate measurability questions
must be resolved in order to ensure that one obtains a mathematically well formulated
dynamic programming problem. It is one of the accomplishments of the past two
decades that this problem of converting a partial or imperfect observations stochastic
control problem (for this is what a BACP is) into an equivalent dynamic programming
problem has been more or less satisfactorily resolved.
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The problem to be examined below is, in some sense, purely technical, and it is
somewhat unfortunate that in order to preserve logical continuity this purely technical
problem is the first issue examined in detail in this survey. The reader without an
appetite for technical issues may wish to gloss over this section and proceed to 3
and the rest of this paper where, in contrast to this section, purely structural issues
are addressed.

The development we follow is due to Bertsekas and Shreve [1] and consists of
the following"

i) X, Y, U, 19 are Borel spaces (i.e. homeomorphic to a Borel subset of some
complete separable metric space) which are, respectively, the state space, observation
space, control set and parameter set.

ii) qo(dxo, dO) is a given probability distribution for the initial state Xo and the
parameter 0.

iii) p(dx,+lx,, u,, O) is a Borel measurable stochastic kernel (i.e. p(BI’) is Borel
measurable for every Borel set B c__ X) which specifies the probability distribution of
the new state xt+ given the previous state xt, applied control u, and the parameter
value 0.

iv) r(dy,, xt, u,_, O) is a Borel measurable stochastic kernel which specifies the
probability distribution of the observation yt given the state x, and control U,_l.

v) c(x,, u,) is a lower semi-analytic function which is the one-step cost function.
(This means {(x, u)" c(x, u) < a} is an analytic set for every a. A subset of A is analytic
if it is the projection on A of a Borel subset of A x B where B is some uncountable
Borel space.)/3 (0, 1] is a discount factor. If/3 1, we assume that either c ->_ 0 always
or c_-< 0 always, c will always be assumed to be bounded.

vi) A policy 7r is a sequence 7r=(Tro, ,r,...) where each zrt(du, lqo, Uo, y,
Ul,"’, y,) is a universally measurable stochastic kernel (i.e. r(BI.) is universally
measurable for every Borel B c__ U. A function f is universally measurable if the inverse
image of every Borel set is measurable with respect to the completion of every Borel
measure). Let II be the set of all such policies.

vii) For every zr II and qo, one can define the associated cost function J(zr, qo)=
E Yo fltc(xt, ut). Let J(qo)=infn J(Tr, qo) be the optimal cost function.

The interpretation of this model is as follows. At time 0, the initial state Xo and
the parameter value 0 are distributed according to qo(dxo, dO). Based on qo, the
controller chooses a Uo U according to the distribution 7ro(duolqo). Based on (Xo, Uo, 0)
the new state Xl is distributed according to p(dxlxo, Uo, 0). Based on (x, Uo, 0) the
controller receives an observation y distributed according to r(dyllXl, tto, 0). Based
on (qo, Uo, yt) the controller chooses u according to *r(dUllqo, Uo, y) etc.

THEOREM 2.1 (Bertsekas and Shreve).
i) There exists a Borel measurable stochastic kernel q,(Alqo Uo,"" ,y,)=

E(1A(X,, O)lqo, Uo," ", y,) for all 7r, qo and a.e. (Uo,. ", y,). Here E,,(. is the
conditional expectation under the probability measure induced by the policy 7r and 1,(.
is the indicator function of the set A.

ii) There exists a Borel measurable stochastic kernel (dq,+lq u) such that
/(0lq, u)-- E(lo(q+l(’lqo, y+))lqo, q(’lqo,""" y), u) for every ,r, qo and
a.e. Uo, ", y).

iii) There exists a lower semi-analytic function 3(q, u) such that 3(q, u)=
E(c(x, u)lqo, q(. Iqo," Y), u) for every r, qo.

iv) Let II be the set of all policies =(o, ,’" ") such that r,(dulq) is a
universally measurable kernel. For everypolicy zr I, there is apolicy 7r Tro, 7r, .) II
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such that rk(dUk ]qo, Uo," Yk) "kk (dUk qk (" ]qo, UO," ", Yk))" Thus fi can be identified
with a subset of II.

v) If .k I is nonrandomized, then the corresponding element r II with which it
is identified is also nonrandomized. (A policy " (ro, r,. .) is nonrandomized if each
rk is a degenerate probability distribution concentrated on just one point.)

vi) Let (.k, qo)= Es(Yo (qk, Uk)klqo q) be the cost function of a dynamic
programmiflg problem with transition kernel fi, policy set -I, and cost function . Then
J(.k, q) J(.k, q) for every .k -I and q. (In the left-hand side, by .k we mean the element
of II with which it is identified.)

vii) For every q and r H, there exists a .k e I such that J(r, q)=..(, q).
viii) Let J(q)=infsOJ(r, q). Then J(q)= J(q) for every q.
ix) If.k* satisfies A.J(r q) ](q) (or<-J(q)+e) forevery q, thenJ(.k*, q)=J(q)

(or <=J(q) + e for every q.
x) For every e > O, there exists a .k I which is nonrandomized, such that.(.k, q) <-

J(q) + e for every q.
Proof See [1, Lemma 10.2 and Propositions 10.2, 10.3, 10.5].
The interpretation is as follows, qk(dXk, dOlqo, Uo, , y) is the conditional proba-

bility distribution of (Xk, O) given the initial probability distribution qo(dxo, dO) and
the observation history (Uo, Yl," Yk). This will be the hyperstate of the new dynamic
programming problem..(dqk+[qk, Uk) specifies the transition probability function for
this new problem while (qk, Uk) is the new one-step cost function. Together, (i)-(iii)
show that qk, , satisfy the assumptions to provide us a well-formulated dynamic
programming problem which is of the type studied in [1]. The main point is that the
hyperstate is completely observed.

The relationship between this new dynamic programming problem and the original
BACP is provided through (iv)-(x). (iv) shows that any policy for the new dynamic
programming problern can also be implemented on the BACP. This is clear in the
sense that policies in II are only allowed to depend on (qo, ql," ", Uo, Ul,’" ") while
policies in II are allowed to depend on (qo, Y, Y, Y3,""", Uo, Ul,’" ) and each q, is
itself calculated on the basis of (qo, Y," , y,, Uo," , u,_). Thus lI can be identified
as a subset of II. (vi) shows that the cost of using in the new dynamic programming
problem is the same as using it in the BACP. (vii) is a deep result which shows that
for the BACP, every policy r II can be replaced by a policy .k e lI which has the
same cost. The advantage of this is that one may then restrict attention to policies
-k lI which depend only on the hyperstate, thus rendering the hyperstate a "sufficient
statistic" in some sense. (viii) and (ix) complete the process of identifying the BACP
with the new dynamic programming problem. (viii) shows that both have the same
optimal cost functions. (ix) shows that a policy -k II optimal (or e-optimal) for the
new dynamic programming problem is also optimal (or e-o’ptimal) for the BACP. (x)
is a consequence of our allowing universally measurable policies and shows that there
exists an e-optimal nonrandomized policy for the new dynamic programming problem
(and therefore also for the BACP). A development similar to the above can also be
given for the finite horizon case, see [1].

For other treatments of the conversion of an imperfectly observed problem into
a completely observed dynamic programming problem, the reader is referred to Bellman
[2], Dynkin [3], Aoki [4], /str6m [5], Shiryaev [6], Striebel [7], [8], Hinderer [9],
Sawaragi and Yoshikawa [10], Rhenius [l 1], Martin [12], Rieder [13] and van Hee
[14]. [2]-[5] are early references featuring examples. [7] examines the concept(s) of a
"sufficient statistic". [10] deals with countable state spaces and shows versions of (vi)
and (vii) above. [l 1] considers the same issues for general Borel spaces. [12]-[14] also
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achieve the conversion to a completely observed dynamic programming problem,
making specific reference to the BACP. We have chosen here to follow the approach
of [1] because its allowance of universally measurable policies gives the useful and
reassuring property (x) above.

3. Bandit processes. As we have seen in 2, a BACP can, like other imperfectly,
observed problems, be replaced by an equivalent dynamic programming problem.
However, since a BACP is a special type of an imperfect observations problem, the
question naturally arises as to whether and to what extent we can take advantage of
the special structure.

There is one class of problems, the multi-armed bandit problems, which is very
special even within the class of BACP’s and for this class of problems we can exploit
this highly special structure to provide a rather deep theory.

Suppose that there are N (slot) machines. For machine i, <-i <- N, Oi is the
probability that, if it is played, it yields a reward of one unit, while (1- 0i) is the
probability that it yields no reward. The parameter 0 (01, 02," ", 0N) is unknown.
At every time 0, 1, 2,. one of the machines has to be played, and suppose that
the reward accrued at time is ct. The goal is to choose which machine to play at each
time 0, 1, 2, so that E o tCt is maximized./3 (0, 1) is a discount factor.

We are not told of the value of 0, but instead, we are given a prior probability
distribution of qo(dO)= q(dO1)q(d02)’" q(dON) for the value of 0. This immedi-
ately renders this a BACP.

As in the previous section, we therefore define the hyperstate q- (ql, qZ,...,
where each qi(dOi) is the conditional distribution of the value of 0i. This gives a dynamic
programming problem characterized by the following dynamic programming equation"

J(q)= max O,q’(dO)+ fl O,q(dO,)J(ql, q:Z, q,-,, S(q), q,+, qN)

+ (l_Oi)qi(dOi)j(q q2,.., qi-l F(qi)qi+, qN)

where

and

S(q)(dO) Oq(dOi)[Io

F(qi)(dO,) := (1-O,)q’(dO,)[fo (1

The interpretation of this equation is straightforward. If machine is played, then the
probability that it yields a reward of one unit is o Oiq(dO), and such an occurrence
will cause us to revise the posterior distribution of the probability of success on machine

to S(q) by Bayes’ rule. Thus the state q=(ql,...,q,...,qN) changes to
(ql,..., S(q),..., qN). A similar analysis holds when a failure results from our
playing machine i. J(q), the optimal reward for the problem starting in the hyperstate
q, thus satisfies the given dynamic programming equation.

However, this dynamic programming equation, as written, is a rather formidable
functional equation to solve. Through the work of Gittins and Jones [15], there is now
a deep theory for this problem.
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THEOREM 3.1.
i) (Gittins and Jones). There is a real valued indexfunction y(. with the property

that if at any time t, the hyperstate is q(t) q (t), , qN (t)), then it is optimal to play
any machine (there may be more than one) for which y(qi(t)) is largest.

ii) (Gittins and Glazebrook). Suppose the state of a machine (it does not matter
which one) is q. Let {do, d, dE,’’ "} be the stochastic process representing the successive
random rewards obtainable by continuouslt, playing this machine. Let t:
tr(do, d,. ., dr) be the g-algebra generated by the reward sequence up to time t. en

7(q) max

will suce in (i), where the maximum is taken over all stopping times of {}.
iii) (Nash). In (ii), let q(t) be the hyperstate of the machine at time (after

successive plays of the machine). en a maximizing stopping time in (ii) is given by

=inf{t 1: T(q(t)) (q)}.

iv) Consider a problem for which there is oMy one machine which initially, as in
(ii), has a hyperstate q. At any given time, one may either continue to play the machine
or collect M units ofreward and quitforever. Let V( q, M) be the optimal expected reward
for this optimal stopping problem. en

V(q,M)=max M; Oq(dO)+ Oq(dO)V(S(q),M)

+ (1-O)q(dO)V(F(q), M)

v) (Gittins and Jones). (. ), the index function of (i) and (ii) is given by

(q)=inf{M(1-): V(q,M)=M}=sup{M(1-): V(q,M)>M}.

vi) (Whittle). e optimal reward function J is related to V by

ff21--")-I 1j() (1 _)- V(q, .
Proo It is clear that (q) in (ii) is well defined. It can be shown that this optimal

stopping problem of (ii) actually has a maximizing stopping time, which demonstration
we omit. Now we will show that the r defined in (iii) attains the maximum in (ii). Let

be any optimal stopping time (we have already assumed that there exists at least
one such). Then consider the new stopping time := r . Elementary calculations
show that

E E fltdt E Z fit -E fltd, E
0 0 0

E-1(<) d,’ E ’-E
0 0

EZtE
0 0
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<r) t EE

/ [ 1 ] I 1 ]}I 1 1-1-->- 7(q)E l(r<cr) fit -E l(r<tr)3,(q(z)) fit E /3’
0- 7(q)E l(r<tr) ]3’ -E l(r<o’)7(q) 13’ E Y /3’

0

This shows that if tr is optimal, then r ^ z =/z is also optimal. We now show that/x r
a.s. Suppose not, then P(/x < r)>0, i.e. P(y(q(u))> y(q))> 0. For some e >0, there-
fore P( y( q(/x )) > y(q) + 2e~ > 0. Define f := {o" y( q (/x,)) > y(q) + 2e } and a new stop-
ping time sc by ::=/x on fc, and ::=/x + a(q(I.,.)) on 12, where a(q(t.,,)) is e-optimal
starting from the state q(/z), i.e.

E Z fl’d,l, E Y’, .., >= 7(q(/z))- e >= 7(q)+ e on

Another calculation shows that

7(q) >= E td, E
0 0

E ’dt+E l(sC>/z) E tdt E ., ’+E l(sC>/x) E fit
0 0

0

> (q,

which is impossible. This shows that r a.s., showing that is optimal. This proves
(iii).

Now we follow essentially the interchange argument of Glazebrook [19], which
in turn is essentially the argument in [15], in showing (i) and (ii). Let be a paicular
policy satisfying (i) with defined as in (ii) and which breaks ties between competing
maximizers by choosing the lexicographically smallest machine. Suppose that chooses
machine at time 0. Then (q(0))=max (q(0)).

Consider k i, and let be the (nonstationary) policy which chooses machine k
at time 0, and thereafter proceeds according to . Note that under , machine k
will be chosen at times t=0,..., -I where r:=min{t 1" (q(r))N (q(0))}
if k>i or r:=min{tl’(q())<(q(O))} if k<i. Thereafter, under ,
machine will be chosen at times t=r,...,+r-I where r+r=
min {t> r" (q(t)) N (q(r)) (q(0))}.

On the other hand, consider the policy which chooses machine at times
0, , r and thereafter chooses machine k at times , , + 1. After
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this, 7r coincides with . Hence

0 0

E# tdt + Z fl’dt E Z ’dt + Z fltdt
i 0 Tk

i k k- i-

0 0 0 0

E E #’d,[1 E,#] E E #’d,[1 E,]
0 0

ri rk ri

0 0 0 0

0.

Thus s an improvement of .
Our main goal is to show that is an improvement of . Now, at time r, might

not use the machine that does. In this case, by shifting the time origin to ri and by
repeating the above argument, one can obtain an improvement
will coincide with over a strictly longer initial time segment than does. Continuing
in this way, we can obtain policies which coincide with over arbitrarily large initial
time segments and which are improvements of . Since this is a discounted cost problem
with discount factor fl < l, it follows that itself is an improvement of

Since (o, , , ," ") where (, , ,. .), it follows by standard results
on the discounted cost problem that is optimal.

was special in that it used the natural ordering of {1, 2,..., N} to break ties.
Clearly any ordering of {1, 2,..., N} could have been used. Standard results again
show that at any given time t, one can use any machine with the largest value T(q (t))
and still achieve optimality. This proves (i) and (ii).

For (v), consider the problem equivalent to (iv) where the option of retiring and
collecting M is replaced by a machine which has a known probability M(1-fl) of
success (for 0M 1/(1-fl)). By (ii) the index of the known machine is M(1-fl).
By (i) the index of the unknown machine is therefore that value of M(1-fl) when
one is exactly indifferent to playing the unknown machine once or the known machine
once.

The result (vi) is from Whittle [18] and for a proof we refer the reader to Whittle
[20] or Ross [21]. (In the attribution of (iii) we have followed [16]).

The above results possess some very special features which we now discuss. First,
(i) shows that to each machine one may assign a (desirability) index T(q) which just
depends on the state of the machine and nothing else. The optimal rule then, according
to (i), has the intuitively appealing interpretation that at any given time one should
merely compare the indices of the available machines, and then play the machine with
the largest index. Thus, we have the very useful propey that the problem of dealing
with N machines simultaneously, with attendant state q q , qN) simplifies (or
decouples) into N separate machines each with state q’, N.

Second, the index of a machine which from now on we refer to as its Gittins
index, can be interpreted according to (ii) as the maximum reward per unit time (where
both rewards and time are progressively discounted by a factor fl) given that one may
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stop anytime. Thus the problem of computation of the Gittins index is an optimal
stopping problem.

Third, (v) affords yet another interpretation of the Gittins index. Consider the
problem of (iv) where there is a machine and a retirement option of M units. Then,
the Gittins index is that value of M(1 -/3) at which one is exactly indifferent to retiring
or playing the machine once and preserving the retirement option.

Last, (vi) shows that one can actually obtain an expression for the optimal reward
function J(q) of the N-armed bandit problem in terms of the optimal reward functions
of single-armed bandits with retirement options. This is quite remarkable in view of
the formidable functional equation defining J(. ).

From the characterization of " in (iii) it follows that for o-< -, ),(q(cr))> y(q(O)).
Thus at any time prior to ’, the Gittins index is larger than the Gittins indices of the
other machines if it were so at time 0. Hence, one should play the machine with the
largest index continuously for a period of at least z units. Then only need one consider
changing machines.

This result can be generalized in several ways. The first is as follows. Consider
the situation where there are N Markov processes with states q(t), q2(t),..., qN(t).
At each time one can choose to let one of the processes evolve while freezing all the
rest. If process is chosen for evolution, then the next state qi(t + 1) is chosen according
to a transition probability function Pi(dq’(t + 1)]qi(t)) and a reward (or a cost) c(q(t))
is obtained. All other processes have qJ(t + 1) qJ(t) for j i. The generalization here
is that the process {q (t) } need not represent the "hyperstates" or conditional probability
distributions of some other process and the transition probability function Pi(. ].) can
be quite general. Further, the reward function c( can also be general. This general
version is the one treated in 15] and it is quite clear that the proof above works without
modifications. One can also consider an adaptive version of this problem where the
transition probabilities are unknown, see [16].

The next generalization is to allow each of the above Markov processes to be a
Markov decision process, i.e., after choosing one process for evolution, one also has
to choose a control action to apply to this process, see Gittins [15] where each process
is now referred to as a "superprocess". Now, however, it is not generally true that the
index result generalizes; some restrictions have to be imposed. Whittle [18] shows that
if each individual superprocess with a retirement option of M units has an optimal
stationary policy (in the sense of Markov decision processes) with the property that
it is optimal for all values of M, then an index rule is optimal. (Note that in the
previously considered processes the control set is a singleton and so clearly this
condition is satisfied.) Glazebrook [23] shows that this condition is both weakly and
strongly necessary in a certain sense.

Another generalization of the bandit problem is to the case where new (slot)
machines arrive in the course of time; this is treated by Whittle [24].

Varaiya, Walrand and Buyukkoc [25] consider a different sort of extension and
show that the process involved need not even be Markov. They also exhibit certain
problems which are equivalent to bandit problems, but which are nevertheless more
useful from the viewpoint of certain applications.

There are many applications of these results in the areas of stochastic scheduling
(ofjobs by a server), searching (for an object hidden in one of several boxes), planning
of research (which option should be investigated next), design of experiments etc. Just
as an illustration; if there are many customers and only one server, then the problem
of deciding which customer to serve is analogous to deciding which of several machines
to play in a bandit problem. We refer the reader to [19] for references.
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Let us revert to the N-armed bandit formulation. For each /3(0, 1), the
implementation of each fl-optimal policy converges a.s. onto some machine, i.e., after
some time only one machine is exclusively played and the others are ignored (under
some technical conditions), see Rothschild [26] and Kelly [27]. Thus every/3-optimal
policy experiments with the machines for only a certain amount of time after which it
settles down to playing some machine exclusively, i.e., stops experimenting. It is of
course of interest to obtain the probability P that the fl-optimal policy will settle
down ultimately to playing the machine with the largest probability of success. As
/3 it is shown in [27] that Pt 1. However P < for all/3, see Rothschild [26].

Now we consider another aspect. First we define a policy, the "least failures
policy", which operates as follows. At each instant of time we play the machine with
the least number of previous, failures, except that if there is more than one such
machine, then we select the one with the greatest number of successes, and again if
there is more than one such, then we choose in a uniformly randomized way from
among all the contenders. Kelly [27] shows that as /3- l, the fl-optimal policies
evaluated at each state converge (but not uniformly over all states) to the least failures
policy (we assume all machines start alike).

For/3 close to each fl-optimal policy therefore plays the least failures rule for
a certain amount of time (until it leaves a certain set of states over which the/3-optimal
policy coincides with the least failures rule). Thus we now have a very nice interpretation
of the behaviour of the fl-optimal policies. There are three phases of behaviour. During
the first phase, there is experimentation with the various machines (because the least
failures rule constantly switches between machines). Then there is an intermediate
period and finally, in the last phase, learning completely stops and the policy only
plays one machine to the exclusion of all others. This explanation of Kelly [27] is as
good and rigorous as any we have seen regarding the so-called "dual" effect in Bayesian
adaptive control, see 5.

There is a discontinuity in the behaviour at/3- 1. As /3 l, the limiting policy,
the least failures rule is not optimal with respect to maximizing the average reward
per unit time. However for/3 close to l, the fl-optimal policies do perform well with
respect to the average cost criterion in the sense that P 1.

This discussion has shown that we can obtain policies which are optimal with
respect to the discounted cost criterion and close to optimal with respect to the average
cost criterion. The converse can also be done. By considering randomized policies,
Glazebrook [28] shows that one can obtain policies which are optimal with respect to
the average cost criterion and close to optimal with respect to the discounted cost
criterion; see also Bather [29].

As we have seen in the above theorem, we can reduce the N-armed bandit problem
to N separate one-armed bandit problems of the type featured in (iv) of the theorem,
which, of course, leaves us with the task of dealing with these one-armed bandit
problems. Gittins [15] shows how one can develop recursive approximation schemes.
Glazebrook [20] shows how the index results can be used to obtain bounds on the
quality of any stationary strategy.

Explicit analytic results on these one-armed bandit problems are available in the
case of "improving" or "deteriorating" arms, see [15]. In [31 by using careful bounds
for the dynamic programming equation it is shown that if the known arm has a
probability m(n + m) of success where m and n are relatively prime integers, then if
the unknown machine has a probability of success which is Beta distributed with
integer parameters x and y, then the optimal policy is to play the unknown machine
orthe known machine, respectively, according as x/(x + y) >-_ m/(m + n) or x/(x + y) <
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rn/(m + n) for all 0 </3 -< / (n + 1). Another result in the same vein is described in
[30] where it is indicated that by computation it was determined that for all 0 </3 < 0.801
and m n 1, the optimal policy is to play the unknown machine until it has more
failures (x) than successes (y).

4. Bayesian control of Markov chains. As we have seen in the previous 3, the
bandit family of problems possesses a highly special structure which can be usefully
exploited to provide a deep theory. What results are available in the general BACP
where such special structure does not exist .9 If one considers either the total discounted
or total undiscounted cost criteria, deep results do not appear to be available, other
than in highly degenerate situations, some examples of which are given in van Hee[14].

Attention has therefore been turned to the problem of obtaining accurate approxi-
mations to the solution of the dynamic programming equation. We consider below the
case where one obtains perfect (as opposed to noisy or incomplete) observations of
the state of the system. In such situations one can take advantage ofthe special structure
with which BACP’s are endowed.

Let X, U, O, all finite, be the state, control and parameter spaces, and suppose
that the transition probabilities are given by the function p(i,j, u; 0)=
Prob (Xt+l -jlx, i, ut u, o). The cost function is E o fltc(xt, ut, Xt+l) where 0 </3 < 1.

First consider the problem of (nonadaptive) control when the parameter value is
known to be 0. Let II:={TrlTr:X--> U} be the set of stationary policies, J(i, O) the
expected cost when 7r is employed and the initial state is i, and J(i, O) the optimal
cost function.

Turning now to the BACP, let P((R)) be the set of probability measures on O and
let J(i, q) be the optimal cost function where q is the prior distribution. (We have
used the same notation as for the nonadaptive problem since one can identify a known
parameter 0 with a degenerate distribution concentrated on 0.) Define T, the standard
dynamic programming operator by

(TV)(i, q):min q(O)p(i,j, u; O)[c(i, u,j)+flV(j, S(i, u,j; q))].
U 00jX

Here S(i, u,j; q) P(tg) is the posterior distribution of 0, if q is the prior distribution
and a transition of the state from to j under u is observed. For a standard reference
on discounted dynamic programming, the reader is referred to Blackwell [32].

THEOREM 4.1 (van Hee). i) Let

Then

L(i, q):= q(O)J(i, 0),

U(i, q):=min E q(O)J( i, 0),
rH 00

T := nth iterate of the map T.

L(i, q)<- TL(i, q)<-. .<= TnL(i, q)-<_lim TNL(i, q)=J(i, q)
N

lim TNU(i, q)<- T"U(i, q)<-... <- TU(i, q)<- U(i, q).
N

ii)

sup IT"U(i, q)- TnL(i, q)l=</3 sup
i,q i,q
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Proof. The lower and upper bounds L(i, q) _-< J(i, q) -< U(i, q) are obvious. It is
well known that TJ J. Since T is monotone, it follows that TnL <= TnJ J <- T"U. Now

TL(i, q)=min E q(O)p(i,j, u;O)[c(i, u,j)+L(j,S(i, u,j; q))]
U 00 jX

=minEE q(O)p(i,j, u; O)[c(i, u,j)+fl E S(i, u,j; q)(O’)J(j, 0’).
0 0’0

By Bayes’ rule we can obtain

Ep(i,j, u; O)q(O)S(i,j, u; q)(O’)=q(O’)p(i,j, u; 0’).
o

So

TL(i, q)= min E E q(O)p(i,j, u; O)[c(i, u,j)+ flJ(j, 0)]
o

>= q(O){min p(i,j, u; O)[c(i, u,j)+ flJ(j, 0)]}
=2 q(O)J(i, 0)= L(i, q).

o

By the monotonicity of T, it follows that L<= TL<= TZL<= <= T"L. Also

TU(i,q)=min 2 2 q(O)p(i,j,u; O)[c(i,u,j)+U(j,S(i,u,j;q))]
U 00jX

min Y Y q(O)p(i,j, u; u,j)+/3 man Y S(i, u,j; q)(O’)J(j, 0’)]
0 [.. -rrl-I 0’O

_-< rain min Y q(O)p(i,j, u; O)[c(i, u,j)+fl S(i, u,j; q)(O’)J=(j, 0’)]
"rrH 0 [. O’

min min Y q(O)p(i,j, u; O)[c(i, u,j)+flJ=(j, 0)]
’II 0 j

<_-min Y Y q(O)p(i,j, r(i); O)[c(i, r(i),j)+flJ=(j, 0)]
rH 0

=min q(O)J=(i, 0)- U(i, q).
rH 0

Again by monotonicity and contractivity of T, the result follows.
The usefulness of the above theorem lies in the fact that T"L and T"U are lower

and upper bounds for J for every n, which moreover converge monotonically to J as
nooo. How does one use these results? First, J=(i, O) and J(i, O) are obtainable by
standard algorithms such as the policy iteration algorithm, see Howard [33]. Thus
L(i, q) and U(i, q) are obtainable by standard methods. The determination of T"L(i, q)
(or similarly of T"U(i,q)) for a fixed (i,q) clearly requires the values
T"-L(j, S(i, u,j; q)) for every (i, u,j), of which there are finitely many. To see exactly
what is involved in the computation of T"L(i, q), define R(q):= i,,a {S(i, u,j; q} and
R (q) R(Rj- (q)) image of Rj- (q) under R). Thus R (q) is the set of posterior
distributions which could possibly result after j stages. It is clear that the data needed
for the computation of T"L(i, q) for fixed (i, q) are )"__-1 {T)L( )" gt R"-(q)}. In
theory, therefore, one can calculate T"L(i, q) after a finite set of computations. Since,
by (ii) of the theorem, or by any other way, one can choose n so large that T"U(i, q)
T"L(i, q)<-e, it follows that one can approximate J(i, q) to within an error of e.

However, one should note that the computation of T"+L(i, q) requires the data
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j"-- { TJL( ", q)" R"+ l-j (q) }. Since R"-(q) and R"+1-j (q) are different sets, and
quite possibly disjoint sets, it follows that one cannot proceed from T"L(i, q) to
T"+l L(i, q) in a recursive way.

Thus, the above process of approximation can be quite cumbersome. Some special
situations are identified in [14] where one may use simpler procedures. [14] also
considers a discretization approach when (R) is not finite.

Martin 12] and Satia and Lave [34] have provided other upper and lower bounds.
The bounds in [34] are obtained through an intermediate process (involving a worst
case choice of 0 and a best case choice of 0, i.e., by solving a min-max and a max-max
situation) and are generally poorer than the bounds L and U given above.

A branch and bound algorithm. An interesting "branch and bound" algorithm to
obtain an e-optimal control for the state (i, q) is given by Satia and Lave [34]. This
uses, in an essential way, upper and lower prior bounds for the optimal cost function,
and we may suppose here that these bounds are U and L. Basically, one examines
the possible branches (trajectories) leading out of the state (i, q). At any node, say
state (j, q), one has, at each stage, bounds for the costs of the states resulting from
the application of, say, u. One can clearly eliminate from consideration those u’s for
which the lower bound on the cost-to-go is larger than the upper bound on the cost-to-go
available through some other control. Thus, at each stage of the algorithm some
decisions at nodes are eliminated from consideration and, in addition, the upper and
lower bounds at all nodes are refined. Then the decision tree is extended by considering
one more time unit of horizon. The prior bounds for these newly introduced nodes
are U and L, and the whole process of eliminating decisions and refining the bounds
is carried out all over again.

The algorithm is guaranteed to yield an e-optimal decision in a finite number of
iterations. Systems with four states and two decisions are described as being ofmoderate
size, and for such systems the algorithm is regarded as being efficient [34]. However,
convergence is reported to be slow when/3 is close to 1.

In contrast with the discounted cost problem considered above, optimal policies
for the BACP are obtainable when the cost criterion is of the average cost type"
E lim /N c(x,, ut). This sort of a cost criterion is however more properly examined
within a non-Bayesian context, as we see in 6 and 7.

5. Bayesian adaptive control of linear systems with quadratic costs. An example
will clarify the situation vis-a-vis BACP’s in this category. Consider the _Auto _Regressive
_Moving _Average System with E_Xogeneous Inputs (ARMAX) system,

y(t + l)= aoy(t)+. "+any(t- n)+ bou(t)+" "+ bnu(t- n)+ w(t + l)

where (ao, al, , an, bo, bl, , b,) 7" := 0. 0, the unknown parameter, will be regarded
as having a prior distribution which is normal N(0, E). {w(t)} is a sequence of
independent, identically distributed N(0, cr2) random variables, i.e., white Gaussian
noise. The goal is to minimize E Yly2(t) (say). (We assume that
(y(0), y(-1), ., y(-n- 1), u(0),..., u(-n- l) are known initial conditions.)

We have seen in 2 that a central part of the BACP is to obtain the posterior
distribution of the unknown parameter 0, given the observations y(0), u(0),
y(1), u(1),..., y(t), u(t) made up to time y. To solve this problem of obtaining the
posterior distribution, we rewrite the above system as

O( + O( t), 0(0) 0 ( 0-,
y(t+ 1)= ’(t)O(t)+ w(t+ 1)
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where ck(t):=(y(t), y(t-1),...,y(t-n), u(t), u(t-1),...,u(t-n)). Now it is
clear that the posterior distribution is a normal distribution, the mean (t) and
covariance 2(t) of which are obtained through the Kalman filtering equations.

(If 0 initially is not normally distributed, then some recent results for the con-
tinuous time problem, Makowski [35], may prove useful.)

The hyperstate for the BACP is thus (0(t), 2(t), y(t),. ., y(t n), u(t),. ., u(t-
n)). Thus it is perfectly clear that in view of the highly nonlinear manner in which the
variables 0(t) and Y,(t) depend on the past (y(t), u(t), y(t- 1), u(t- 1),...), we really
have a highly nonlinear system with a quadratic cost criterion. Indeed one can solve
the problem of minimizing the finite horizon cost criterion Y y2(t) when N 1, but
no analytical solutions are available when N->_ 2, see str6m and Wittenmark [36].

This lack of solutions has spurred many attempts at qualitatively understanding
the nature of the optimal input sequence. The two qualitative features which are most
popular are "caution" and "probing", which we shall briefly explain. Consider the
simplest system of the type considered"

y(t+ 1)= y(t)+ bu(t)+ w(t + 1)

where the prior distribution for b is N(b, 2) with b>0. {w(t)} is, as before, an i.i.d.
N(0, 0.) sequence, y(0) is known.

First consider the cost criterion E(y2(1)). The optimal value of u(0) is easily
calculated to be

u(O)= 6+Z y(O).

Thus we note that as increases, ]u(O)] decreases, i.e., as the uncertainty (here, variance)
of b increases, the control (in absolute value) decreases. The controller is said to be
cautious.

On the other hand, if the cost criterion is E(y2(2)), then we know that

(1)
0-

2minus1) E[y2(2)Iy(O)’ u(0), y( )] =/2( + 2(1)
y2(1) +

where /(1)= E(blu(O),y(1)) and 2(1)= E[(b-(1)):lu(O),y(1)]. Thus at time t= 1,
it is preferable to have a smaller value of 2(1)--all other considerations remaining the
same. Since 2(1), the conditional variance of the estimation error, is given by

X(1) 0-2 + u2(0)E

it would appear at first sight that choosing a large value of lu(0)l is helpful. The choice
of large values of the control input to enhance identification is called "probing".
However, increasing ]u(0)l could also increase ly(1)l( ly(0) + bu(O) + w(1)[) and hence
also y2(1). This of course makes the cost larger. Thus there is a tradeoff between
increasing the control to probe the system and decreasing the control to reduce the
uncurred cost. This sort of a problem is therefore referred to as a "dual control"
problem, in view of the possibly dual purposes in applying a control action.

For another discussion of the "dual" control effect, the reader is referred to that
portion of 3 where the work of Kelly [27] is discussed.

Problems of the type described here have been considered by Feldbaum [37],
Jacobs and Patchell [38], Tse and Bar-Shalom [39]-[41], Bar-Shalom and Tse [42],
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Wittenmark [43], Wenk and Bar-Shalom [44], Bar-Shalom [45], Deshpande, Upadhyay
and Lainiotis [46], Lainiotis [47], Dersin, Athans and Kendrick [48]. [37] is an early
reference. [38] treats an incompletely observed problem which allows computation of
the optimal solution and examines the nature of resulting optimal control law. [39]
proposes a control law based on replacing the nonlinear system by a version linearized
(in some sense) around a trajectory resulting from a nominal control law. [41] and
[42] show when one may expect a certainty-equivalence control law to be optimal. In
[45] a decomposition of an approximation of the cost-to-go function into three com-
ponents is made, which supposedly reflect caution, probing and the residual cost. In
[44] the performance of an approximation of [46], [47], which consists of using a
control which is the weighted average (given by the posterior distribution) of the
optimal controls for the various parameters, is examined as well as another algorithm
which first averages over the parameter values and then chooses the control based on
it. [48] examines a particular problem and evaluates the results of [45].

In the continuous time case, Rishel [140] has recently shown that the optimal
control can be written in terms ofthe solution ofa certain stochastic two-point boundary
value problem. Also, Hijab has shown that for a particular measurement equation,
and a particular cost criterion including an entropy term, the optimal control is
the conditional mean of the optimal controls in the various parameter values, see
[141].

6. Non-Bayesian adaptive control. In the Bayesian adaptive control problem
(BACP), the specification of the problem is fairly rigid. Given an a priori probability
distribution for the unknown parameter, one has to obtain a control law which
minimizes the expected value of a certain cost criterion.

In the non-Bayesian adaptive control problem (NACP), more flexibility is allowed
in the design of control laws. However, the designed control law must meet certain
other (asymptotic) criteria in order to be deemed acceptable. To illustrate some of the
central concepts, we start with a very simple example due to Robbins [49]rathe
non-Bayesian two-armed bandit adaptive control problem.

6.1. The non-Bayesian two-armed bandit lroblem. There are two slot machines: A
and B. When machine A (or B) is used, one obtains one unit of reward with probability
PA (or PB) and zero units of reward with probability PA (or pB). Without loss
of generality, we assume PA > P.

Consider first the case when PA and p are known. If at each time t- l, 2, 3,..
we play machine A exclusively, then lim (1/N) 1 rt PA a.s., where rt := random
reward earned at time t. This is, almost surely, the maximum long-term average reward
that one could possibly gain even by switching between machines, and obviously this
is achievable by playing machine A exclusively.

Suppose now that we do not know the values of PA and pn. All we know is that
PA E (0, l) and Pa E (0, 1). (Note that we are not provided with an initial probability
distribution for 0 := (PA, PB). This is what distinguishes this from a BACP.) However,
we are as ambitious as before. We would still like to have a policy of playing the
machines which ensures that lim (1/N) rt max (PA, Pn) a.s.

We now exhibit a policy which achieves this goal. Let ut {A, B} be the control
input chosen at time t, where ut A or B according to whether A or B is played. Let
yt {0, } denote the observation made at time t, where y 0 or according to whether
a reward was not earned or was earned at time t. Here r y,.

To define the policy, we first choose any increasing sequence {a,} of positive
N

integers, such that lim (1/N),= l(t=ai for some i)=0. At each time t, we make
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"estimates"/3a(t) and/3n(t) of PA and Pn respectively, by

:= Yto- l(un A, y, 1)
and fin(t):=yt- l(u, B, y, 1)

A(t) Eo l(u =A) E’o- l(u, B)

We note, in passing, that these are the maximum likelihood estimates of PA and ps.
We now choose u, according to:

A if(t=a, for some n) or(t#a, for all n andA(t)ffn(t)),
u,=

B if(t=a+ for some n) or(t#a, for all n andA(t)<n(t)).

Basically, except for the times a, a, a3," we play whichever of A or B has the
larger "estimated probability" of a win. However, the times a, a, a3,"" are
reserved for experimentation.

Now we show that the above policy attains our goal lim / N) r, max PA, Ps)
a.s., and does so without knowing the values of (pA, PS). TO see this, first note that by
the reseation of the experimentation times, each of A and B is played infinitely often
(i.o.) a.s. By the law of large numbers therefore, ff(t)p and fin(t) fin a.s., and so
for all tsome T(o), A(t)>s(t). SO, A is exclusively played after time T, except
at some of the reserved times. But these reserved times are so sparse, that they make
no contribution to the average cost. More precisely:

N N

r, A, y,

=lim l(u, A)lim E l(u, A)
N

lim N-T-2 l(t=aforsome i) =pa a.s.

Three propeies of this non-Bayesian adaptive control scheme should be noted.
i) lim (l/N) r =max (p,p) a.s. Thus, the cost of this scheme is optimal,

i.e., it could not be bettered even if we knew the values of p and p.
ii) lim (a(t), (t)) (p, p). Thus the parameter estimates are consistent, i.e.,

the true parameters are identified.
iii) lim u, does not exist. Hence the control scheme does not converge, and

therefore, of course, it does not converge to an optimal control scheme. (However, it
does converge in a Cesaro sense, lim (1/N) l(u A) a.s.).. N-Besh fie erl erss Besh fie etrl. We shall
discuss some of the dierences between the Bayesian and non-Bayesian approaches
to adaptive control.

In the previous section, we have obtained a policy for which

lira r, max (p, p) a.s.

A more precise way of stating the above fact is as follows. There exists a policy
such that

lira r, max J(0), P0-a.s. for every 0 e O.
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(Here 0: (PA, Pn), J(0) := max (PA, PB), O--(0, 1) x (0, 1) and po is the probability
measure induced on the trajectories of the system by the policy 7r when the parameter
value is 0.) This clearly shows that no matter what the value of 00 is, the policy r
attains the maximum reward attainable for that value of 00 In non-Bayesian adaptive
control with respect to an average cost criterion, we shall frequently impose such a
requirement on a policy, viz. it should be optimal uniformly for all 0e 19 a.s.

If the requirement above can be met by some policy 7r, then it is clear that all
Bayesian problems with the above cost criterion are also immediately solved. The
reason is that if q(0) is the prior distribution of 0, then the policy r, when implemented,
attains the expected cost Y.0 q(O)J(O), and clearly no policy can do better. (Thus r
attains the obvious lower bound in Theorem 4.1 of 4.) Hence 7r is optimal even in
a Bayesian framework irrespective of the prior distribution q.

We will show in the sequel that one can often obtain a policy 7r meeting the
requirements above, and frequently there will be several 7r’s which do so. Thus, insofar
as just the long-term average cost criterion is concerned, the non-Bayesian formulation
is unquestionably superior to the Bayesian formulation.

Optimal policies for the long term average cost criterion are nonunique in an
essential way, since what happens in the initial period does not alter the cost. Since
one is often (practically) interested in attaining a fast rate of convergence to optimal
control laws (or a fast rate of convergence of the parameter estimates etc.), one may
choose between several 7r’s meeting the above requirement by imposing some other
criterion, such as rate of convergence, to judge them. Alternatively, one could pose,
as in 3 in the discussion of [27]-[29], the problem of obtaining a policy which is
optimal for the average cost criterion and nearly optimal for the discounted cost
problem or vice-versa. Or, one could study the rate at which the difference between
the finite horizon cost of adaptive control and its optimal value grows with the horizon.

However, if the cost criterion is of the discounted type o fl’c(x,, ut), then the
BACP and NACP are rather different. For the NACP, it is clear that one cannot expect
that Yo tc(x,, u,) will converge a.s. to a constant, as it did in the average cost case.
If we replace this by the requirement that E oO o ’c(x,, ut) J(xo, 0) for all 0 19,
then this is clearly too strong to be met by a single 7r. So finally, we arrive at a
requirement of the type,

lim E oO , t-Nc(xt, Ut)- E ooJ(XN, 0) 0 for all 0 e 19
N N

which is of a reasonable nature, see Schil [63].
So far, however, we have only paid attention to the convergence of the costs, and

not the controls. So, we now address the problem of convergence of control laws in
a NACP. For each 0 O, let 7r be an optimal stationary policy for the discounted
cost problem (and for simplicity of discussion we assume that it is unique). Then one
can ask the following question: Is there a policy r (Tro, r,...) for which

lim {’trN(Xo, Uo, Xl, U, XN)--Tr(XN)}=O, Po-a.s. forall 0O ?

Thus we are requiring that the controls generated by the adaptive scheme 7r should
converge asymptotically to the optimal controls, uniformly for all 0 O. This, again,
is a reasonable requirement in many instances.

Since the asymptotic requirements on the costs and the controls are closely related,
we shall refer to either of these requirements (perhaps with slight modifications), in
an NACP, as a self-optimizing requirement. One of the main goals of non-Bayesian
adaptive control is to obtain a self-optimizing policy.
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This situation is in contrast to the BACP’s for which, frequently, the optimal
policy is not self-optimizing. An example is given in [26], and the reader is referred
to the discussion in 3 on [26], [27].

From a practical point of view, in a BACP, one is typically faced with problems
where the computational burden is very high. For an NACP, one is typically interested
in the rate of convergence of the self-optimizing policy, if indeed one can obtain one.

7. Non-Bayesian adaptive control of Markov chains. To begin, we consider the
case where the state, control and parameter spaces, X, U and O are all finite. The
transition probabilities are given, for each 0(R), by {p(i,j, u; 0): i,jX, u U}. The
value of the true parameter is 0. All we know is that 0 is some element of O. Our
goal is to design a policy 7r which a.s. attains the minimum of lim (1/N) l c(xt, ut),
where c(i, u) is a one-stage cost function.

We start by considering a scheme that, at first sight, looks very reasonable. At
each time we will have accumulated a history (Xo, Uo, Xl, Ul,’’’, ) and we can use
this history to form (say) a maximum-likelihood estimate (MLE) 0t of the unknown
parameter. Thus, we choose 0 O so that

t-I t-1

I-I p(xs, xs+, us; )>= I-[ p(x, xs+, us; o) for all 0O.
=0 =0

(In the event that there is more than one maximizer of the likelihood function, one
can choose a particular maximizer according to some prespecified priority order on
elements of t9.) Then we choose a control input u, which is optimal if the parameter
value was 0t, i.e., we choose

where, for each 0 19, q(., 0)" X U is an optimal stationary control law (policy).
Many questions arise.

i) Does 0, converge a.s.?
ii) Does 0, converge to 0 a.s.?

iii) Does b(., 0,) converge a.s.?
iv) Does b(., 0,) converge to b(., 0) a.s.?
v) Does lim (1/N)Y c(x,, u,) converge a.s.?
vi) Does lim (l/N) Z c(x,, ut) converge to J(O) a.s.? Here J(O) is the optimal

cost achievable for the parameter 0, and we assume that it does not depend on the
initial state Xo.

vii) At what rate do these quantities converge, if they do so?
In a nice counterexample, Borkar and Varaiya [50] demonstrate that (ii) need not

hold. We provide below a counterexample in a similar vein, from [51], to illustrate
that (ii), (iv) and (vi) do not hold.

Counterexarnple. Let X { 1, 2}, U { 1, 2}, 19 { 1, 2, 3}, 0 1. The transition
probabilities are p(1, 1,2; 1)=p(1, 1,2;2)=0.8, p(1, 1,2;3)=0.2, p(2, 1, u; 0)= for
all u, 0. The cost function c(x,, u,,x,+) is c(i, u,j)=3+(2-i) (7.8-0.3u-b). It is
easily calculated, see [33], that the optimal policies are b(i, 1)= 1, b(i, 2)= b(i, 3)= 2
for all X.

To see that 0, need not converge to 1, consider the starting values Xo 1, Uo 1.
With probability 0.5, the next state is x 1. But then 2. Hence u 4(1, 2) 2. It
can then be checked easily that 0, 2 for all >_-1. Thus, there is a probability of at
least 0.5 that lim t, # 0. This shows that the answer to each of the questions (ii), (iv)
and (vi) is a no.
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The basic problem here is that one cannot fully identify a process in closed loop.
Borkar and Varaiya [50] show the best that one may expect.

THEOREM 7.1 (Borkar and Varaiya). Ifp(i,j, u, O) >- e for all i,j, u, 0 then lim
a.s. and p(i,j, oh(i, 0), O)=p(i,j, b(i, 0), 0oo) a.s.
Proof. Define L (O) := I-I t-1__oP(X, X+l, u; O)p (x, x+, u; 0), the likelihood

ratio. For each 0O, {L(0),} is a positive martingale (where :=
tr{Xo, Uo, x, u,. , xt} is the r-algebra generated by the observedast). Hence_ {L(0)}
converges a.s. for every 0 O. Fix to, the sample space. If {0t(to)} has 0O as a
limit point, then 0*t(to) i.o. Since Lt(O,)>= Lt(O) 1, it follows that L(, to) >- i.o.,
and so lim L,(O, to)_-> (as long as to is not in a certain null set). This shows that
p(xt(to), xt+,(to), ut(to); ff)p-’(x,(to), Xt+l((l)), /,/t((/)); O).-Lt+l(, to)L?l(ff, (.0)-- 1.
Hence, for all t>= T(to), p(xt.(to), Xt+l(tO), Hi(to), )=p(xt(to), xt+,(to), ut(oo),_ 0). If
is any other limit point of {Or(to)}, then a similar result holds for all t->_ T(to). Hence
L,(O-, to)= Lt(, to) for all t_>max (T(to), (to)) =: (to). Since one always breaks ties
by picking the particular maximizer which is highest in the priority ordering, it follows
that 0 0, showing that 0,--> 0 a.s. Hence we obtain p(xt, Xt+, tlt’, 0)
p(xt, x,+, u, 0) a.s. By the Martingale Stability Theorem, lim (1/N) Es (x, i, X+l
j)- E(l(x i, x+ =j)]-l)= 0 a.s. and since E(l(x i, x+--j)[,_) >- e it follows
that (x, i, xt+ =j) i.o.a.s. Hence, the result follows.

The above result is fundamental and needs elaboration. Why does 0, not converge
to 0? The answer is this. If one could guarantee that (x, i, u, u) i.o. for every (i, u),
then one could hope to identify p(i,. u;_0). But in closed loop one uses only those
ut’s for which ut qb(x,, t). Thus if O, O, then (xt i, ut u) i.o. only if u b(i, ),
and so one can only hope to identify p(i,j, 4,(i, ); 0), and this is the content of the
above theorem.

Sagalovsky [52] treats the situation where the unknown probabilities depend in
an aftine way on a real valued unknown parameter, and shows how this structure can
be exploited. [53] shows what further difficulties are encountered in generalizing
Theorem 7.1 to the case where O is compact, instead of finite as above. Borkar and
Varaiya [54] consider the situation where the state space is countable.

Earlier, Mandl [55]-[57] had considered the problem where U, O are compact,
p(i,j, u; O) and c(i, u) continuous and, for simplicity, p(i,j, u’, 0)>0. [55] considers
the class of estimators based on general "contrast" functions. This class includes the
maximum likelihood estimator considered above, if the following assumption is made.

Identifiability condition. For every 0, 0’ O and 0 0’, there exists an i(0, 0’) X
such that for every u U, there is a j=j(i, u, O, 0’) X with p(i,j, u’, O) p(i,j, u’, 0’).

THEORE 7.2 (Mandl). If U and 0 are compact, p(. ), c(. ), oh(" and g(. (see
below) are continuous, p(i,j, u; O)> 0 and the Identifiability Condition is satisfied, then

i) For any policy 7r= (Tro, 7r,...), lim 0t 0 a.s.
ii) If 7r, (Xo, Uo, x1," ", xt) := qb (x,, t), and qb is continuous, then

lim (l/N) Yl
N c(x,, u,)=J(O) a.s.

Proof. The proof of part (i) is omitted, because the reader can deduce that at least
for the policy of (ii), and when O is finite, Theorem 7.1 and the Identifiability Condition
give the required result. For (ii), we use the theory of the long-term average cost
criterion [33] to note that there exist {v(0): i X} satisfying

J(O)+ v,(0)= c(i, oh(i, 0))+E p(i,j, dp(i, 0); O)v(O)

<= c(i, u)+E p(i,j, u; O)v(O) for all u, i, 0.
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Defining g(i, u, 0):= c(i, u)+Ej p(i,j, u; O)vj(O)-J(O)- v,(0), wesee that g(i, u, O) >= 0
and g(i, u, b(i, 0))=0. Now note that if y(t+ 1):= c(x,, ut)-J(O)+v(xt+l, 0)
v(x,, O)-g(xt, ut, 0), then E(y,+llO,) =0, and since {yt+l} is bounded, it follows by
the Martingale Stability Theorem that lim (1/N) y,+ lim (1/N) E(y,+,l,)=
0 a.s. Hence, substituting for Y,/l and noting that {vi(0)} is bounded in i, gives
lim (l/N) Yl c(xt, ut)=J(O)+lim (l/N) E g(x,, u,, 0). By part (i) however,
lim (ut , (xt, 0)) lim (b (xt, t) b (xt, 0)) 0, and so, by continuity of b and g,
lim g(xt, u,, 0) O. [-]

Note that a result such as (i) is very strong, since it guarantees that 0t--> 0 a.s.
for all policies r. This of course points to the restrictive nature of the Identifiability
Condition. However, in some problems, for example, in the control of queueing systems,
such a condition is satisfied.

Kurano [58] considers a similar problem. Kolonko [59], [60] determines the
appropriate generalization of the Identifiability Condition and other regularity assump-
tions which are sufficient to ensure that results such as (i) and (ii) of the above theorem
hold in the adaptive control of Markov renewal processes. Applications to the adaptive
control of queueing systems are also studied. Georgin [61] also considers the generaliz-
ation of the above theorem to more general state spaces. Baranov [62] considers a
different scheme where even the control laws are obtained by a recursive process.

(i) of the above theorem also has implications for cost criteria other than of the
long-term average type. For example, consider the case of a discounted cost criterion,
and suppose that the policy r (Tro, r, 7r2," ") is such that ’rrt(xo," , xt) k(xt, Or)
where 4(’, 0) is a stationary control law which is optimal for the discounted cost
problem. Then, under reasonable continuity conditions, b(., t,) b(., 0). Under
appropriate conditions, it then also follows that E Y [3 "-tc( x,,, u,)- EJ(xt, 0) - 0 a.s.
Such a generalization is carried out in Schal [63].

How does one deal with the general situation where an Identifiability Condition
may not hold? This is a difficult problem and essentially requires some procedure for
overcoming the fundamental closed loop identification problem. There are several
ways of doing this, which we now take up for consideration.

7.1. Forced choice schemes. Here, just as in the non-Bayesian bandit problem of
6.1, some time instants a, a, a3, are set aside for experimentation. At these

times, one must use forced choices of all the elements of U in (say) cyclic order. Thus,
since (xt=i, ut=u) occurs i.o.a.s., it follows that 0,->0 a.s. However if
lim (1/N)N (t ai for some i) 0, then the control actions taken at timest=l

a, a2," do not make any contribution to the avenge cost. At other times one just
uses the control inputs u, b(x,, 0). Since one has 0,--> 0 a.s., it follows that optimal
cost can be obtained. An approach of this type is followed in Fox and Rolph [64] for
Markov renewal processes. Van Hee [14] considers a comparable scheme albeit in a
Bayesian formulation.

7.2. Randomization schemes. These are schemes for which each
7rt(" ]Xo, Uo, x, , xt) is allowed to be a probability measure on U according to which

ut is picked. Since ut is random, every u U has (in some sense) a positive probability
of being applied at each time.

Doshi and Shreve [65] impose a less restrictive condition than the identifiability
condition given earlier. At each time instant t, a parameter Ot is randomly chosen from
among all those which very nearly maximize the likelihood function. This is then
shown to overcome the identifiability problem. Borkar and Varaiya [54] also consider
similar randomization schemes for countable Markov chains.
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Sato, Ake and Takeda [66] have proposed quite a different scheme for the
discounted cost problem, which we now describe. Let us assume that:

i) p(i,j, u; 0)>0 for all i,j, u.
ii) There is an unique optimal stationary control law b(., 0) for the parameter

value 0.
The algorithm to generate the controls proceeds as follows.

SATO, ABE, TAKEDA ALGORITHM
Step 1. Set 0 and choose {/o(i, j, u)}, "estimates" ofthe transition probabilities,

so that there is an unique stationary optimal control law bo for these estimates.
Step 2. Choose {no(i, j, u)} and {no(i, u)}, all positive, so that /o(i, j, u)

no(i,j, u)nl(i, u) for all i,j, u.
Step 3. Choose 3,0> 0 so small that if one defines

no(i,j, u) no(i,j, u)+ g(3,o)
So( i, j, u) := and Bo(i, j, u) :=

no( i, u) + g(3,0) no(i, u) + g(3,0)
where g(3,):= 3,/(1- 3,), then "for all models M satisfying So<.M <= Bo", the policy
bo is still optimal. By a model M, we shall mean a set of transition probabilities
{p(i,j, u)} satisfying p(i,j, u)>=O and jp(i,j, u)= for all i, u. By So<-_M<-Bo we
shall mean So(i, j, u) _<- p(i, j, u) _-< Bo(i, j, u) for all i, j, u.

Step 4. Apply ut bt(xt) with probability 3,t and all other elements of U with
equal probability.

Step 5. Set t=t+l.
Step 6. Set nt(i,j, tt)=nt_l(i,j, u)+ l(xt_l=i, xt=j, Ut_l--/) for all i, j, u and

nt(i, u) nt-l(i, u)+ l(xt_l i, ut-1 u) for all i, u.
Step 7. Set

nt(i,j,u)
St(i,j, u):= for all i,j, u,

nt(i,u)+g(yt-l)

nt(i,j,u)+g(yt_l)
Bt(i,j, u)= for all i,L u.

nt(i,u)+g(y,_)

Step 8. If there is a single control law bt which is optimal for all models M with
St --< M _-< B,, then set 3,t h(3,t_l) where h(3,) := (1 + 3,)/2 and go to Step 4. If a bt as
above cannot be chosen, then set 3,t := 3,t-, bt := bt_ and go to Step 4.

THEOREM 7.3 (Sato, Abe, Takeda). Assume
i) p( i, j, u 0)>0 for all i, j, u
ii) for 0 there is an unique stationary optimal control law b (., 0) for the discounted

cost problem.
Then for the above algorithm, lim b, b(., 0) a.s.

Proof. First note that {3,t} is an increasing sequence. Assume that on a subset_
of the.sample space of positive measure, 3,t - 3,o < 1. By Step 4, u, u i.o. for

every u on , and by our assumptions nt(i, u)c. By the law of large numbers,
therefore, nt(i,j, u)/nt(i, u)-: t(i,j, u) p(i,j, u; 0) on . This means for every to ,
for every e>0, there is a T(to) large enough so that [St(i,j,u),Bt(i,j,u)]_
[p(i,j, u; O)-e, p(i,j, u; 0)+ e] for all > T. Now note that by (ii), all control laws
other than b(., 0) produce a cost strictly larger than b(., 0) does. By continuity,
therefore, this must also hold for all models M with p(., 0) e _-< M <_- p(., 0) + e for
e > 0 sufficiently small. Hence, for all t_-> some T’, b(., 0) is optimal for all models
M with St <= M <= Bt on 1. Hence by Step 8, it must be the case that 3,t--h(3,t-) for
all => T’ on 1. But this shows that 3,t --> on , contradicting our original assumption.
Hence we can deduce that 3,t --) a.s.
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For every (i,j, u), either lim nt(i,j, u)= +o or not. If the former, then we have
already seen a demonstration that [St(i,j, u),B,(i,j, u)]c_.[p(i,j, u; O)-e,
p(i,j, u; 0)+ e] for all t->some T. If the latter, then since yt 1, it follows that
g(%)-->+o and so by Step 7, St(i,j, u)-->O and Bt(i,j, u)- 1. In either case therefore
we see that [p(i,j, u; O)-e, p(i,j, u; O)+e]fq[S,(i,j, u), Bt(i,j, u)] is nonempty for
all t-> some T. Choose e > 0 so small that &(., 0) is the only stationary control law
which is optimal for all models M with p(., 0) -e =< M <-p(., 0) + e. Then, for all
t---some T, the only stationary control law which is possibly optimal for all models
M with St <- M <= B,, is &(., 0), provided there is one such control law.

Now let b* be any limit point of {bt}. Since the set of stationary control laws is
finite, it follows that b*= bt i.o., and since y(t)-, 1, it follows that b* is optimal for
all models M with St-<- M-<_ Bt for some t-> . Hence 4* b(., 0), showing that
b, b(., 0)a.s.

Another approach to the problem of generating an adaptive control policy is by
using methods common in the theory of learning automata. Lyubchik and Poznyak
[67] have proposed several such schemes. No proofs are provided and the identifiability
issue is not alluded to. E1-Fattah [68], [69] has analyzed one recursive identification
and control scheme, which we now examine.

Assume that (R)R" is a Cartesian product of closed intervals. Consider the
following stochastic approximation type scheme, see Tsypkin [70], [71 ], for the genera-
tion of the parameter estimates:

Ot+i Ot"-7’
V(E,p(x,, x,+,, u; O)r,(ulx,))

Here 7rt(ulxt is the probability of using the control ut u at time t, given x. This is
a reasonable updating scheme since, at each time t, we take a step (0t+- Or) in the
direction of the gradient, i.e., in the direction in the parameter space in which the
probability ofthe transition from (xt, ut) to xt/ increases most rapidly. The probabilities
{zrt(ulx); u U, xX} which specify the randomization scheme, are updated as
follows"

7r,(ulx) if x # xt,

aA
t+l

aA
t+l IUl-1

if u ut and x x,,

if u # ut and x xt (I UJ cardinality of U).

Here A:=fx,.u,(zrt, Ot+) where we have assumed that there are functions Fx(r, 0) and
f,,,,(m O) satisfying F(r, 0)>0 and such that OJ(Tr, O)/07r(ulx)= F,(’, O)f,.,(,rr, 0).
Here J(zr, 0) is the cost of using the stationary policy zr when the parameter value is
0. Ignoring this assumption on the representation of OJ(’, O)/07r(ulx), the updating
scheme for z6/l(ulx is reasonable because it merely increases the probability of using
u in state x, if this tends (infinitesimally) to reduce the cost. The term 1! (t + 1) tends
to reduce the "step-sizes" at a rate appropriate for convergence, and is standard in
stochastic approximation theory.

THWORV.M 7.4 (E1-Fattah)..Consider the following conditions:
i) 0

_
g" is a Cartesian product of closed intervals.

ii) p(i,j, u; O)>O for all i,.h u, O.
iii) For each state x X, there is a possibly empty set S,, c__ { 1, 2, , n} such that
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kJ Sx (1, 2, n} and there is a c > O such that

Y R(x, O)(ok--oOk)N--C Z (ok--oOk)2 for all r, ifA=Sx
kA kA

Here
0 for all r, ifA S.

rvv O "n’( u ]xt
R(x, 0):= E| -"--p--’--’’ x’+l’- U;

L 2,,p(x,,xt+l, u; xt x, 0

iv) There exist ;t > O, A2 > 0 so that, for every k 1, 2, , n tr K (x, 0) -<_ A +
AII o- o11 fo all r, where

K(x,O)

E[(V Zup(Xt, Xt+l, u; O)’a’(UlXt))(VrZuP(Xt, Xt+l, U; O)’tr(UlX,):--
k (2p(x,,x,/, u; O)r(ulx,)) xt x, 0].

v) There existfunctions F(r, 0)>0 andf,,,,,(r, O) such that OJ(r, O)/Ocr(u]x)=
Fx(r, O)f,u(cr, O) for all r, O, u, x.

vi) There exists C > 0 such that

Y (fx,u(m 0)-fx,,(r, 0))2<-c Y (ok--ok)2 for all xeX.
kSx

vii)

Z (f,u(r, O))2r(u[x) >- h > 0 for all x e X.

Then:
viii) If (i)-(iv) hold, then for any nonanticipative randomized policy,

E, "- 0)Z (0 < a.s.lira =0 a.s. and
kSx,

ix) If (i)-(vii) hold, then the adaptive scheme above is such that
lim (l/N) c(x,, u)=J(O) a.s.

Proo Define the "stochastic Lyapunov function", E := 0ll 2. By calculation,
we obtain (with := (Xo, uo, x,. .,

T2k oOk t2V (0- )gk (x, 0)+(t+ 1)2tr
K’(x" 0)

2c 0o).NV l+(t +1)2]+(t+1)2 (t+l)kSx,
Hence, { V,, ,} is "nearly a positive supermaingale" in the sense of Neveu [72] or
Robbins and Siegmund [73]. Applying the convergence theorem for such, we deduce

kthat { V} converges a.s. and , / (t + 1)kS, (0 0 2 < m a.s. By positive recurrence
k 0k 2of {x, x} for ery x, [68] deduces that lira nfkS (0, 0 =0 a.s. for every x e X.

Then lim inf 0,- 0112 0 a,s. also follows, and since { V,} converges, shows that E 0
a.s. This completes the proof of pa (viii). The proof of pa (ix), being algebraically
tedious is omitted; the reader being referred to [68].

It is clear that (viii) is a strong result which shows that under the conditions
(i)-(iv) one can identify 0 under any policy. Thus, it is clear that even though the
assumptions (iii) and (iv) are not identical to Mandl’s condition [55], they are nevehe-
less restrictive. (iii) is the "pseudo-gradient" condition of Polyak and Tsypkin [74] and
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guarantees that the expected value of the step 0,+1- O, forms an "acute angle" with
the desired direction 00- 0,. The strict negativity for A Sx in (iii) appears therefore
to play a role analogous to that of an Identifiability Condition.

The proof used here is remarkably similar to the proof of Goodwin, Ramadge
and Caines [75] in their treatment of their version of the self-tun!ng regulator. This
only serves to illustrate how closely connected all these problems are.

7.3. The cost biased maximum likelihood method. This approach requires no restric-
tive identifiability condition of any sort and is motivated by the following argument.
Without the imposition of identifiability conditions of any sort,^many reasonable
parameter identification schemes will provide a limit 0* of {0,} which satisfies
p(i,j, d)(i, 0"); O*)=p(i,j, qb(i, 0"); 0) (Theorem 7.1 for example). This has an
immediate consequence, to see which we define

7r(i, b, 0):= steady state probability of when control law b is used in 0
(for simplicity we assume p(i,j, u; 0)>0);

J(b, 0):= long-term average cost of using b in 0;

b0 := optimal control law for 0;

J(O) := optimal long-term average cost for 0.

Now,

.(o*) (4,o., o*)

7r(i, qbo., O*)p(i,j, qb(i, 0"), O*)c(i, qb(i, 0"))
i,j

=2 7r(i, cko., O)p(i,j, qb(i, 0"), O)c(i, dp(i, 0"))
i,j

r( 6o*, o)
_> (0).

Here we have used the well-known, see [33], representation of the long-term average
cost in terms of the steady state probabilities and the implication {p(i,j, d)(i, 0"); 0")
p(i,j, ok(i, 0"); 0) for all i,j}{Tr(i, cko., 0*)=Tr(i, b0*, 0) for all i}. So 0,-
{0: J(O) >= J(0)}. To capitalize on this, one can "bias" the parameter identification
scheme in "favour" of parameters 0 for which J(O) is small, knowing of course that
0 has the smallest value J(O) in {0: J(O)>= J(0)}. However, this biasing has to be
done delicately, so that we do not destroy the parameter identification scheme itself.
This is done below.

THEOREM 7.5 (Kumar and Becker). Let
i) p(i, u; 0)>0 for all i, u, O;
ii) c(i, u) > 0 for all i, u;
iii) 19 befinite;
iv) o(t) be such that lim o(t) +oo and lim -lo(t) 0. Choose O and u, so that

t--1

0= argmaxJ(O)-’) =oP(X’X+’us;O) fort=O, 2,4,6,...,

,-1 fort=l,3,5,...

and u, d(x, 0). (If there is more than one maximizer above, choose one according to
some prespecified priority order on @.) Then"

v) lim (1/N) c(x,, u,)=J(O) a.s.
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vi) lim (1/N) 1(0 0") for some O* a.s.
vii) p(i,j, (i, 0"), O*)=p(i,j, dp(i, 0"), 0) a.s.
viii) qS0* is opt,,imal for 0 a.s.

Proof Since 0, is a maximizer of the criterion according to which it is chosen,
t--I t--I

J(t)-(t) I-I p(Xs, Xs+l, Us; O"t)>-J(O)-(t) I-I p(Xs, Xs+l, Us; 0).
=0 =0

Taking logarithms,

o(t)
log + log7 =o p(x, Xs+l, Us;

e O.

Hence, if t O* i.o., for some o e the sample space, it follows that

N-1

liminf- 0 log
p(xs, Xs+l, us 0")

> O.
p (xs, xs+ 1, Us 00)

By the Martingale Stability Theorem, it follows that for every 0 19,

’C-J p(xs, xs+l, us O)
lim

o p(x. xs+l, us; 0) a.s.

Putting these two facts together and making use of the positive recurrence of each
event (x, i), it follows that a.s. p(i,j, oh(i, 0"); O*)=p(i,j, c(i, 0"); 0) whenever
lim sup (l/N) -1 1(0= 0") > 0. On the other hand,

J( Ot) / =o p(x, Xs+, u
1.

Since we know that

{till p(xs, xs___2._, us 0)}o p(xs, xs+l, Us 0)

is a positive martingale and therefore converges a.s., we see that if 0, 0* i.o., then
J(O) >= J(O*). Together with the argument preceding this theorem, this shows that
lim sup (1 / N) Yo-l (0 0") > 0 implies b(., 0") is optimal for 0. The argument in
Theorem 7.2 can now be used to show (v). (vi), (vii) and (viii) will follow if we can
show that a.s. 0* is unique. This is a consequence of the priority ordering of elements
of 19. The full details are in [51].

The unique feature of the adaptive control scheme given here is that without
resorting to either forced choices or randomization, it can attain optimal performance.
Condition (ii) of the theorem is unnecessary and condition (i) can be replaced by a
positive recurrence condition, see [51].

In [76] the above result has been generalized to the situation where 19 is not finite,
but is the class of all models. In [77], the generalization to the case where X and U
are Borel spaces is developed. The case of linear systems with quadratic cost criteria
is analyzed in [78] when the parameter set 19 is finite. In this situation, an additional
complexity is to prove that the system is stable as well, and this is also done in [78].

If 19 is not finite, then implementation of schemes of this type will depend on the
availability of methods to perform the requisite on-line computations. In the general
case such methods are not yet available. In some specific situations however, see [79],
explicit solutions can be obtained.

The above approach can also be used for discounted (or other, for example, finite
horizon) cost problems to obtain adaptive policies which converge in a Cesaro sense
to the optimal policy. This is done in [77].
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Before ending the topic of this section, we note the early work of Riordan [80]
who has also simulated the control of a heat treatment process by modeling it as a
problem in the adaptive control of Markov chains.

8. Self-tuning regulators. This class of non-Bayesian adaptive control problems
(NACP’s) has recently enjoyed much practical success. See [81]-[85] for a sampling
of some of the applications culled from the last two years’ issues of one journal.

The basic problem can be posed as follows. There is a system
p

y(t+l)= aiy(t-i)+ . b,u(t-i-d+l)+ c,w(t-i)+w(t+l).
=o =o =o

Here u is the input, y the output and {w(t)} is a "white" noise sequence (defined more
precisely later on). d -> is called the delay, and is assumed to be known. The problem
is that the coefficients {ai, bi, ci} of the linear system are unknown. In spite of this, the
goal is to choose u(t) based on (y(0), u(0), y(1), u(1),..., y(t)), for each t, so that
lim (l/N) y2(t)--the sample path variance of the output--is almost surely a
minimum. As is clear, this is a standard NACP of the sort defined in 6.

To obtain a full appreciation of this problem, however, it is necessary first to
understand the complexities involved in a) identifying the coefficients of an _Auto
_Regressive _Moving _Average System with E_Xogeneous Inputs (ARMAX system) and
b) the problem of controlling such processes. Accordingly, we first take up these two
issues.

8.1. Least squares estimation of coefficients. We shall very briefly explain the
various issues involved in identifying the coefficients of an ARMAX model.

8.1.1. Suppose that we have available a finite sequence {y(-n), y(-n+l),., y(- )} {y(0), y( 1),. ., y(N)} and we wish to model this sequence by a relation-
ship ofthe form y(t+ 1)toy(t)+aly(t-1)+...+t,y(t-n) for t=0, 1,2,..., N-
1. The question is: What are the "best" coefficients (ao, al,"" ", an) to choose? One
way, of course, is to select them so that they minimize (y(t)-aoy(t-1)-
ay(t-2) a,y(t-n-1))2. This is a standard "cue fitting" so of procedure
which seeks to minimize the sum of the squares of the errors of "fit".

Note that this method of fitting a model to data is totally nonprobabilistic.
One way of solving the minimization problem is to define _l:=(y_l,

Yt-2,’" ",Yt-,-t) and 0:= (ao, a,’’., a,) (We use both y(t) and Yt interchange-
ably.) Then the goal is to choose 0"+1 to minimize I(Y,Y2,"’,Y)-
0r(o, ,. ., _). A standard application of the projection theorem shows that
the minimizing 0, denoted by 0, is given by

0 ((0, 1,""", N--I)(0, 1,""", N-1)T)-1

(0, ,’’’, N-I)(Y,Y,’’’,YN)T

o o

o o

This will be called the "least squares estimate".

8.1.2. Suppose one more piece of data yv+ becomes available; then one can
)2. Theobtain another estimate 0+ which minimizes 1+ (Yt a0Yt-i anyt-,-i
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relationship between ffv+ and N can be written in a recursive manner as

N+I N "t- Rv N(YN+I qN)
Nwhere RN :=

One can also obtain a recursive expression for R as

RI+I R-1
N--

This is done by using the well-known Matrix Inversion Lemma.

$.1.3. So far we have only examined the question of fitting a model to data,
without mentioning in any way whatsoever, how the data were generated in the first
place. Let us suppose that the sequence {Yt} is actually generated by the system

Yt+l aoyt + alYt-I +" + a.yt_. + vt

where {v} is "white" noise.
By employing the ergodic theorem (assuming all roots of the polynomial aoz-

az a.z"+l are strictly outside the unit circle) it can be seen that

lim- bib rlj_kl where r E(yyt-j) in steady state.
i=0 jk

Also

N-I dPiYi+l (rl, r2, rn+l)lim- o

Now we can examine the probabilistic behaviour of the sequence { v}. From the
above it follows that

lim =[rlj_kl]-(rl, rz,’’’, r,+l) r.
Since y,_yt+ t=o ayt_yt_ + y,-Vt+l, taking expectations, gives r+l =o air_ for
j>=O. Hence (r,..., r,+l)r=[rlj_kl](ao,], ’’, a,) r and so (ao, , a,)r=
[rlj_kl]-l(rl, rn+l) r. This shows that lim 0r (ao, a,..., a,) r a.s.

To summarize, if the noise entering into the system (here vt) is "white", then least
squares estimates of the parameters { 0r} are consistent.

For a general treatment of this, the reader is referred to Lai and Wei [86].

8.1.4. Crucial use was made in the above of the fact that {v,} was a "white" noise.

Suppose now that it is not white; then, in general, Eyt_vt+ 0 forj-> 0. It then follows,
that 0r (ao, a, , an)r + A where A 0. See Goodwin and Payne [87] for an
example.

Now if V+l W+l +=o cwt_ where {w,} is "white", then {vt} is a moving average
of white noise and is not itself white. Thus if one uses the least squares procedure to
obtain estimates {0rq} of the coefficients (ao, al," an) in the system

y(t+ i)= aiy(t-i)+ . c,w(t-i)+w(t+ 1),
i=O i=O

then the least squares estimates are asymptotically biased.

$.1.5. For a system of the type just mentioned one might also be interested in
estimating the coefficients (Co, ct, , c,) in addition to the coefficients (ao, a, , a,).
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If one had access to (Yo, Y," ", YN) and (Wo, w,. ., wN), then one could form
asymptotically (as N-> c) consistent estimates (ao, , a,, 3/0, , 3’,,) by minimizing

N

(y,- aoy- a,y,_,_- OWt_l 1Wt-2 mWt-m-l)2"

However {w,} is not generally available to observe. It is merely an innovations
representation of the coloured noise v, w, + CoW,_+ + CmW,-m-1 in the system. But
one could estimate w, by y,-dp,_lOt_l or y,-dprt_O,, and use these in place of the true
values of

A scheme of this general sort is examined by Solo [88]. It is shown that a sufficient
condition to obtain strongly consistent estimates is that the polynomial C(z)=
+ CoZ +" + CmZ

m+ satisfies the condition

Re
C(e’)

>0 for all to.

(Here x/----i-.) Note that since v,+ w,+ + CoW, +" + C,,W,_m is just a representation
of {v,}, we can assume without loss of generality that all roots of C(z) are outside the
unit circle, see str6m [89].

Conditions of the type Re (C e’) > e, called Positive Real Conditions, occur in
other analyses of identification algorithms also, see Solo 148]. Proofs, both in identifica-
tion and adaptive control, as we shall see in 8.4 and 8.5, have been built around
such conditions. To this author, however, the full extent of their role is not completely
clear: some insights, however, are offered by Ljung [94]. It should be noted that the
Positive Real Condition also plays a role in deterministic adaptive control, where it is
used via the concept of "hyperstability".

8.1.6. Suppose that we also have control inputs {u,} in the system, i.e.,

p

y(t+l)= a,y(t-i)+ b,u(t-d-i+l)+ c,w(t-i)+w(t+l).
=0 =0 =0

In such a case, besides estimating {ai, ci} we may also wish to estimate {b}.
Clearly, if u, 0 for all t, then one could not possibly identify {bo,..., bp}. Thus,

some "excitation" conditions have to be imposed on {u,} in order to guarantee
asymptotic consistency of the estimates of {ao," ", a,, bo, ", bp, Co," ", Cm}. These
sufficiency conditions are usually of the form

N

lim -- dp(t)c r(t)
1

is positive define

where cl,(t):=(y(t), ..., y(t-n), u(t-d+l), u(t-d-p+l), w(t),
w(t m)) 7- and are called "persistency of excitation" conditions, see/strSm [90] and
Solo [88].

8.2. Minimum variance control of an ARMAX model. We now examine the problem
of control of an ARMAX model, when the coefficients {a, b, ci} are known. We shall
proceed by examining a sequence of special cases until we obtain full generality. Only
the fully general case is proved; for the special cases we provide informal arguments
which are quick and easy to understand.
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8.2.1. For the system

Yt+l aoYt +" "+ anyt-n + bout +" + bput-p + Wt+l

where {w,} is "white" noise, it is clear that the control law

-1
ut --o aoYt +" "+ a,yt_,, + b Ut_ +" "+ bput_,

minimizes the sample path variance lim (l/N)Y y2(t). For then, Yt+ wt+ and so

lV 1N

l 1 2 0"2lim yt2=lim- w a.s.

the best achievable, where cr2 := E (w2).
8.2.2. One special feature of the above is that the noise is "white". Suppose now

that the system is

y( + 1) aoyt +" + anyt-, + bout +" + bput-p + Wt+l + CoWt +" + CnWt-n.

If we could use ut (- 1/bo)(aoyt +" + a,yt_,, + b ut- +" + bput_p + CoWt +" +
c,wt_,,), then this is clearly the best achievable, since then Yt+l=Wt+l and so
lim (1/N) yt

2
tr

2 a.s. However {wt} is not accessible, and so we replace it by
which is what it would be if the above control law could be implemented. This gives

-1
ut =--o [(ao + co)Yt +’’" + (a, + c,)yt_,, + but_ +’" + bput-p]

the optimal control law.
It is important to note that in order to implement this control law, one needs

knowledge only of {ai + % b} and not {a, c, hi} separately.

8.2.3. The special feature of the above model is that the delay d is exactly one
unit. Consider now the general case d _>- 1. The system is

Yt+l aoYt +" + a,,yt_, + bout-a+ +" + bpUt-d-p+l + Wt+l -- CoWt -]- + CnWt--n.

This is more conveniently represented in the "polynomial" format

A(z)yt+, zaB(z)ut+ + C(z)wt+

where A(z) := 1-aoz a,,z"+; B(z)=bo+bz+. .+bt,zP; C(z)= +CoZ+" .+
c,z"+, and z is the backward shift operator zyt := yt-. (Note that often in the literature
z-l is the backward shift operator; but we find this more convenient.) Let us divide
the polynomial C by the polynomial A, carrying out d steps of the long division
process to get

C AF+ zaG
where F(z) +fz +. +fa_za- is the "quotient" and G(z) go+ gz +. + g,z".
Now we can formally represent the system as

Yt+, z Ut+l +wt+, u,+ +wt+ + Fwt+.

Clearly Ut/-d cannot be based on the "future" (wt/, , wt/2-a). Thus one chooses
ut+ =(-G/B)wt+. This results in y,+ F(z)w,+, thus giving us the optimal control
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law

tit -Yt"

Further, the minimum output variance is lim (1/N) yt
2 (1 +f+... +f_l)O,2. For

more details, the reader is referred to Astr6m [89].

8.2.4. There is one potential "practical" flaw with this procedure. To see the nature
of this, consider the very simple example

Yt+l --Mr + tit 2tit-I + Wt+l.

Applying the procedure of 8.2.1, which is but a special case of 8.2.3, shows that
the optimal control law is

tit Yt + 2ut- 1.

Under this optimal control law, Yt+l Wt+l and so the sequence of applied controls is

ut 2ut_, + wt. This is clearly an unstable difference equation, in’view of the coefficient
2. Thus, although theoretically this is an optimal control law, from a practical point
of view this is unacceptable. One reason is that if the true system is actually Yt+l--
-yt+ut-(2+e)Ut_l+Wt+, where e is very small, then after the control law ut
2ut_, + wt is applied, the closed loop system is y+, eut_ + wt+ which with u,
2u_ +y is an unstable system. In any case, ut is an "exploding" sequence.

The source of this instability is that the polynomial B(z)= 1- 2z does not have
all its roots strictly outside the unit circle. This added requirement that the polynomial
B(z) have all its roots strictly outside the unit circle is called a minimum phase condition,
and should necessarily be imposed if the optimal control law of 8.2.3 is to be useful
practically.

$.2.5. Thus, we see that in general the true practical problem at hand is not to
minimize lim (1/N) Y1 yEt unconditionally, but to minimize it conditionally subject to
the constraint that the closed loop system is stable.

THEOREM 8.1 (Peterka). Let i) C(z) have no roots on or inside the unit circle;
ii) bpO.
Then the control law which minimizes the output variance subject to the stability

requirement above is

S(z)
u,= R(z)y,

where S(z) and R(z) are polynomials determined by the polynomial equation

B*C RA+ zBS
with deg R p + d 1. Here

B+ := factor ofB containing all roots ofB lying outside or on the unit circle normalized
so that B+(0)

B-:= factor of B containing all roots of B lying inside the unit circle and satisfying
B+B-= B;

B-:=-zB-(z-’);
B* := B+
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Proof For any polynomial P, define P+, P-, P* as above and also /5:=
(1/pk)zkp(z-), /5:= p(z-). Note that a general linear system can be represented as
y, za (b(z)/a(z))u, + (fl(z)/a(z))w, where/3 fl+, a a +. Now this can be rewritten
as aay, zdbau, + aflw,, which in turn is the same as aay, zabau + a*wt. So we shall
assume for our purposes that A aa, B ba and C a*fl where a a+,
a(0) =/3(0) a(0)= 1. Now if a control law u, =-(sir)y, is applied, then var (y,)=
cr2(1/27ri) W(z) W(z-) dz/z where W= (fl/a)ar/(ar+ zdbs). One can rewrite W as

zda-b-.( --W=

__
zda_b_a

A partial fraction expansion gives,

-b*s
a-d-rr-dbs),]"

P q
zda-b-a zab a-a

where deg p (deg b-) + d 1, p(0) 1. This gives the polynomial equation ti-b-/3
a-ap + zab-q. Now W can be rewritten as

which defines @. 0 can be rewritten as

a+qr- apb+s
a(ar+zabs)

Now we see that

var (y,) const b-/- z 27ri z 27ri z-a/-

where const := (a-b-/-b-)(a-b-/gt-b-). The point of all this algebraic manipulation
is that, for stability, the denominator of 0 must have its roots strictly outside the unit
circle, i.e., q must be holomorphic inside and on the unit circle. This makes the last
integral in the above expression zero. The first integral is unaffected by the choice of
the control polynomials r and s. Thus, to minimize var (y,) subject to the stability
constraint, the best one can do is to make q 0, which happens when s! r a/q/apb+.
This can be further simplified if one notes that by multiplying the polynomial equation
determining p and q by a+b/, we get a*b* aapb++ zdba+q. After defining v pb/,
this simplifies to a*p* aav+zdbs and r= av. Multiplying by a, and using the
original notation gives CB* Ar + zdBs, and the optimal control law is as claimed. [3

Recently, [138] has also obtained the stable control laws which minimize the
variance for general multivariable ARMAX systems.

8.3. The self-tuning regulator. We now take up for consideration the self-tuning
regulator. Given a finite sequence of data {Yo, Uo, y, u,..., yN} we shall first fit a
model of the form

Yt+l aOYt-d+l +" + alYt-l + 30/t-d+l -’" "- 3mUt-d-m+l for some d =>
N-I )2by minimizing

over (ao, , al, flo," , fl,.)W E /+m+2. Denoting the minimizer by N, we know that
it can be written in the recursive form



360 P.R. KUMAR

where RN RN-I + dsCh and bs := (-Ys, -Ys-1, -Ys-l, us,’’’, US-m) r. (The
scheme of ,str6m and Wittenmark [92] fixes 30 arbitrarily and minimizes the least-
squares criterion subject to this constraint.) Then the control input UN is chosen so that

where s=: (Co,’", ct,/o,’",/,,). Equivalently us is chosen so as to make
=0.

This is a recursive scheme which operates strictly ott incoming data, and in "real
time". From data {Yo, Uo,""", Ys} a control us is calculated. This control input us is
then applied to some system; it does not matter for the present what it is. The main
feature is that some output Ys+l is obtained from the system. This gives the enlarged
data set {Yo,""", Ys, us, Ys/} from which us+l is calculated and then applied to the
system etc.

$.3.1. The above self-tuning regulator (STR) scheme can be used to control any
system. The question is" For what classes of systems is the scheme asymptotically
optimal? Clearly, the control law we are applying is of the type ut=

E=l hu,_+i--o giYt-i and so it is clear that one must only consider systems for which
control laws of the above type (and with the given orders) are optimal. A natural
candidate class of systems is those of the type surveyed in 8.2.3 with the appropriate
orders. Thus we consider systems which are of the form

Yt+l aoYt +" + anyt-n + bottt-d+l +" + bpl’lt-d-p+l-- Wt+ -- COW 4r" -- CnWt_wherep_-<m-d+l, n<-l.

8.3.2. /str/Sm and Wittenmark [92] were, apparently, the first to attempt an analysis
of the STR scheme when it is applied to the above system.

The basic contention of [92] is that the vectors {0s} cannot converge to arbitrary
values. If {s} converges, it can only converge to values which result in a feedback
control law which is optimal for the true system.

We now show the arguments used in [92] on an example--where the arguments
used are most transparent. The general case proceeds along exactly the same lines.

Generic example 8.2 (,str6m and Wittenmark). The true system is y(t)-
aoy(t- 1) bou(t-2)+ bu(t-3)+ w(t)+ CoW(t- 1). We choose estimates (c(N),
ill(N), fiE(N)) which minimize

N

E (Y(t)-aY(t-2)-oU(t-2)-flOfllu(t-3)-ofl2u(t-4))2

t----1

over all (a,/3, 32)" Here/3o is prechosen and fixed (this makes it slightly different from
the scheme above). Then us is chosen as

u(N)
(N)

0

-y(N) ill( N)u(N 1) -/3(N)u(N 2).

Now we examine the possible limits of {(c(N),/I(N),/2(N))}. If
{((N),I(N),2(N))} does converge to (a,/31,/32) (say), then asymptotically we
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will have, approximately,

/ y floy,u,_ floYiUi-2
lim -l/,80y,ui_ , u

_
,gu u, 2

2 )’floYiUi-z flUi-lUi-2 oUi-2 / flz

yi+2ui-2

{ y,+2y,-

12)lyi+2u,-1-floUiU,
and UN=--(a/o)yu--Uu_--fl2Uu-2. Substituting in the above gives

(00) ’
Yi+2Yio

lim

Yi+2Ui-2]

From the relationship for u, we additionally obtain lim (l/N) y+u=O. Note
that, so far, we have not made use of the fact that the true system is modeled as an
ARMAX process.

Proceeding, we see that asymptotically the closed loop system is Ayt
zB(-/ )y + Cwt where A(z) aoz, B(z) bo+ blZ, C(z) + CoZ, (z) a/flo,
(z) + flz + flz. This is equivalent to (A + zB)yt Cwt. Define the process
vt:=C/(A+zEB)wt. Then yt=vt and ut=-(/)yt-v. Since

N
lim(1/N)t, uy+O for j=2, 3 and 4 it follows, through ut(-a/flo)Vt, that
lim (1/N) v+0 for j 2, 3 and 4. Now y+5 is a linear combination of (Yi+4,
Y+3, Y+2, wi+, w+4, w+3, wi+2). Hence lim (1/N) vi+0 for j 5 also, and so
for all j2. Since y=v+flv_+flv_2, it follows that lim (l/N) yy+0 for
all j2. Hence {Yi} is a pure moving average process of order 2, i.e., y=fwt+fwt_l.
Hence C/(A +zB) F where F(z) f +Az, i.e., C FA +zBF or C
FA+ zEBF/. Since C and FA are polynomials, so is zBF/ =: . Now zBF

implies that G:= (1/z2) is also a polynomial. Hence C FA+ zEG, but this
shows, see 2.3, that ut =-(G/BF)yt is an optimal control law. But G/BF
and so the limiting control law u =-(/)y is also optimal.

To the author’s knowledge, there is as yet no self-contained proof of convergence
of the above original self-tuning regulator. Much progress, though, has been made, as
we shall see in the sequel.

In 8.5.3, we give an explanation of the above result for the case d 1.

8.4. The ordina differential equation method of analysis. str6m and Wittenmark
[92] do not answer the question of when the parameter estimates will converge, but
indicate, by simulations, that in many cases they do.

Ljung [93], [94] addresses this convergence question. In [93], [94] an ordinary
differential equation (ODE) is associated with the pair of recursions

0+ o+gl(ys+ 0),

RN+I=RN+N+IT
N+l"

The justification for replacing the above stochastic difference equations by deter-
ministic ODE’s is based on the following idea. Since Rs=f, we suspect
that elements of Rs are O(N). Thus let us consider the pair, A(N) := 0(N + 0(N)
and A(R(N)/N):= R(N+ 1)/(S+ 1)- g(S)/N.
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Simple calculations show that

^TA0(N) := -/(N)-4N(Yt+l- 0u),

A(N) N+] (N+I+I (N))

where R(N):= R(N)/N and AR(N):= R(N+ 1)-R(N). Note that because of the
presence of the multiplier 1/N, (N) changes very slowly for large N. Thus changes
in the control law take place very slowly. Over long periods of time, it may be reasonable
to expect that the control law applied is approximately constant. In that case, perhaps
uYu+l and ++ can be replaced by their ergodic limits. Thus, the following
ODE’s appear to be a plausible representation of the asymptotic behaviour of the
sample paths of the above stochastic difference equations"

dO() K_l()E0,(y), dR()
d

where we have also used the time rescaling log to eliminate the factor 1/t. Here
Eo(y) is the expected value, assuming stationarity, of ,y+ and Eo() E($,),
when the fixed control law corresponding to an estimate 0 is used.

The exact technical justification for the above procedure is, at the least, very
complex, and in any case, for the paicular problem at hand, some boundedness
conditions etc., have to be either assumed or proved by other methods.

However, this should not obscure the great value of the above ODE’s. They were
initially obtained to help in the study of a problem of great complexity and have
provided the essential breakthroughs which have permitted fuher development of
the field. At the moment these ODE’s are an irreplaceable tool for problems in which
there is no theol. An analysis of the ODE’s suggests what one may expect without
the need for extensive simulations. Moreover, because of the time scaling log t,
phenomena which in simulation would be obsemed for very large values of would
occur in the ODE solutions for modest values of . Ljung [93], [94] presents many
convincing examples of the usefulness of the ODE’s.

Kushner [95] also addresses the problem of obtaining ODE’s to model the
behaviour of stochastic difference equations. This approach is based on the weak
convergence of measures; also see Kushner and Clark [96]. For a recent, very elegant
maingale approach, the reader is referred to Metivier and Priouret [139].

A more direct approach, also recent, is due to Kushner and Shwaz [149], [150].
Besides the usefulness of the invariant measure approach, a distinct advantage of 149]
is that it addresses the problem of projecting the estimates into D, see below.

We now study the behaviour of the above ODE’s for the STR.
THEOREM 8.3 (Ljung). Let

i) Ayt zBu + Cwt where A(z) := aoz- az a,z
B(z) := bo+ bz +. + b, and C(z) := + CoZ +" + c,z"+"

)T.ii) , := (y,, Y,-I, y,-,, U,-l, u,-2, u,_p

iii) u:=- 0%,;

iv) Eo(cy) is the expectation, assuming a steady state, ofbt_yt. Thus 0 is restricted
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to the subset Ds R2n+l fol" which the system is strictly stable. Similarly Eo(dch 7-) is the
expectation, in steady state, of 4,d T.

Suppose that
v) Real (1/C(ei’)-1/2)>O for all to and all roots of C(z) are strictly outside the

unit circle;
vi) B(z) is minimum phase, i.e., all roots ofB(z) are strictly outside the unit circle;
vii) (ao+Co)+(a+cl)z+" .+(a,+c,)z" and B(z) are exactly of degree n and

contain no common factors.
Suppose that the ODE’s

dO()
d

dR(r)

R(z)-l Eo,)(dy),

Eo()(6b T)_ R(z),

0(o) D.

R(O) I,

are such that O(-)6 Ds for all z>-O. Define V(O, R):=(O-Otv)7"R(O-Otv) where
OMv := ao + Co, a + c, , a, + c,, b, b2, , b,). Then

i) OMv is the unique equilibrium point of the first ODE.
ii) V(O(z), R(z))>0 whenever 0(-) Otv.
iii) (d / d’) V(0(z), R(z)) < 0 whenever 0(-) Ov.
Proof First we need to calculate Eo(dy) and Eo(ckqb r), i.e., we need to calculate

E(4,-y,) and E(b,bf) assuming (i), (ii) and (iii) are in steady state. Let 0:
(ao, a, a,, b, bp) T. Then y(t)= d T(t-- 1)00+ bu(t- 1)+ C(z)w(t) and sub-
stituting from (iii) gives y(t)=cb(t-1)(O-O)+C(z)w(t)=4(t-1)(O-Ov)+
4r(t-1)(Ov-O)+C(z)w(t). But since 4(t-1)(O-Ov)=-Y."=oqy(t-i)
(1-C(z))y(t), we get C(z)y(t)=4r(t-1)(Otv-O)+C(z)w(t) or equivalently,
y(t)=T(t--1)(OMv--O)+w(t) where (t):=C(z)-’4,(t). Hence E(cht_,y,)
(,_, ,T-,)(0, 0).
Now we want to show that E(4,,T+ ,4T) is positive definite, but this is true

since 1/C(z)is positive real, and 4,=(1/C(z))(t). Similarly E(b,,r+ ,4,r- th,4,r)
is positive definite because 1/C(z)-1/2 is positive real.

Now we see that the ODE’s can be written as

dO()
d’l"

R(z)-Eo(,)(bT)(Otv 0(’)),

Clearly 0 Ov is an equilibrium point of the first ODE and now we show that it is
unique. Suppose O* is any other equilibrium point, then Eo.(qbT)(Ov-O*)=O and
(Ov--O*)TEo.(Ck r + ckcr)(OMv 0") O. By positive realness, again, it follows that
(Ov-O*)Tbt- =0, but then both O* and On,iv are minimum variance control laws.
But by (vii), there is a unique such law, and so 0"= Ov, showing (i). (ii) is clearly
true, and by simple computation

__d V( O( ’) R(-)) --( O(’r) OMv) T[Eo(z)(fT + T T) + R( ’)]( O( z) Otv)
d’r

<0.

(Note that the above theorem is associated with the situation where the parameter bo
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in the model is exactly known, and so only the other parameters are estimated by a
least squares procedure.)

This theorem points to the central role played by the positive real condition on
the polynomial C(z) in the convergence of the STR.

To show that O(z) OMV as z- c, one could, for example, show that

and

 (ll 0 vll) v(o(), R(z)) a(l[ 0(z 0MVl[) > 0

dV
d--(0(z), R(z)) <- -6(110(z) OMvl[) < 0

where a, /3 and 6 are nondecreasing continuous functions such that a(0)=/3(0)
6(0) 0. This would (for example) prove the uniform asymptotic stability of OMV.

8.5. Martingale methods to exhibit asymptotic cost optimality. We now show
asymptotic optimality of the incurred cost in self-tuning schemes by using martingale
methods.

8.5.1. To start, we consider a slightly restricted model.

y(t+l)= aiy(t-i)+ biu(t-i)+w(t+l)+ ciw(t-i)
=0 =0 i---0

where the restriction lies in the fact that we have taken the delay to be exactly 1, in
contrast to the general case of 8.3.

For this model, we use a slight modification of the STR algorithm of 8.3.
Specifically, the recursions

5(N+ l) 5(N)+ r(
y

N)
d)(N)[y(N + 1) T N) (I) N)], (0), y > 0,

N

r(N+ 1)= + E bT(i)c/)(i)
i=0

where b(i):= (y(i), y(i- 1),..., y(i- n), u(i), u(i- 1), , u(i- n)) , are used. The
difference with the scheme of 8.3 lies in the fact that R(N) has been replaced by its
trace r(N). This recursion is called the stochastic approximation (or stochastic gradient)
algorithm; also see [71].

The controls are, as before, generated by

u(t):= -1--(oy(t)+...+"y(t- n)+/lU(t- 1)+...+,,u(t- n))o
where (t)=: ((o, (,""", c,,/o,/,""",/.)r. Or, implicitly, u(t) is defined through
the relation r(t)(k(t) =0. (It will follow, under the assumptions listed below, that
/3o 0 is a zero probability event, and so the scheme is well defined.)

THEOREM 8.4 (Goodwin, Ramadge, Caines). Suppose
i) {w(t)} satisfies E(w(t+ l)lff,)=O, E(w(t+ l)[fft)=tr and E([w(t+

1)12+1) <+ for some (5>0, for all t. Here := (r(w(0), , w(t)) is the (r-algebra
generated by the "past". The probability distribution of w(t) is mutually absolutely
continuous with respect to Lebesgue measure.

ii) The polynomials bo+bz+...+b,z and l+coz+...+c,z+ have all their
roots strictly outside the unit circle. Further, Re (1 (y/2) + Co e’ +" + c, e’+0’) > 0

for all to. i--x/--.)
Then lim (l/N)EN y(t) (r and lim sup (l/N)EN u(t) <+ a.s.
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Proof Consider the stochastic Lyapunov function, v(t)=ll(t)ll where if(t):=
(t)-O and O:=(ao+Co,...,an+c,, b0, hi," ",b,) r. A simple calculation shows
that

2y
E(V(t+ 1)lff,) V(t)+r--t) T(t)(t)E(y(t+

7
2

r 7
2

r(+;2(t t (t)b(t)(E(y(t+ 1)[&))2+ r2(t t)t(t)o"2

2y r(<-- V(t)+7qb t)(t)E(y(t+

2 2
7 7 r 2+-(E(y(t+ 1)lt))+r(t) b (t)b(t)r

2y{ r (y+e) }V(t)-- b t)(t)----E(y(t+l)[,) E(y(t+ll[,)

/2 r(ey
(E(y(t+ 1)l&))2+ r2(t) t)b(t)o"2

r(t)
where e > 0 is chosen so small that the inequality in (ii) is still true.when y is replaced
by (y / e). Then

[ C(z)- y +2 e] E(y(t +1 )1o) C(z)(y(t+l)- w(t +1))-(Y+2 e) E(y(t+I )[’)
=y(,+ 1)- w(t+ 1)+[C(z)- 1](y(,+ 1) w(t+ 1))-(y+ e)2

E(y(t+I)I’)

bT(t)0--(’y+2 e) E(y(t+ 1)l&)

=--dpT(t)(t)-(’Y+e)E(y(t+ 1)1o%)
2

The right-hand side above can thus be viewed as E(y(t + 1)lt "filtered" through the
system with transfer function [C(z)-(y+ e)/2]. Because of the property of positive
real transfer functions, it follows that

for all t, for some K, a.s. Now it follows that if M(t) := V(t) / S(t 1)r-l(t 1), then

7
2

T(E(M(t+ I)[&)-<V(t)-7(S(t)-S(t-1).)+r2(t d t)qb(t)r

ey
;iT)(E(y(t+ 1)l-t)) + S(t)

r(t)

V(t)+S(t-l____)__ y2
r(t) r2(t) b

r(t)q(t)cr2 ey )2--(E(y(t+ 1)lt)

2<_ M(t)+r2(t) cr(t)b(t)cr2 ey
-(E(y(t+l)l&))2.
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Thus, {Mr, 3;t} is "nearly a positive supermartingale" if (ckT(t)ck(t)/r2(t))<c, see
[72]. But this is true because

N dpT(t)b(t):r2(t) r(t)-r(t-1)r2(t) =<’r(t-1)
Hence, by [73], {M} converges a.s., and furthermore,

r(t)-

(E(y(t+l)l,))
< +oo a.s.

r(t)

If r(t)+o, then (1/r(N)) E(y(t+ 1)lt)2--> 0 by Kronecker’s lemma. If not, then
y2(t)0 and u2(t)0 and so C(z)w(t)O, which happens only on a null set. Due
to the minimum phase condition (that all roots of bo+ bz+...+ b,z" are strictly
outside the unit circle) it follows that for some kl, k2

N kN +k2"- u2(t)<--- y2(t+ 1) N"
Hence

r(N) k3 k4----<-- z. y2(t+ 1)+--.
N N N

Since E(y(t+ 1)lt) y(t+ 1)- w(t+ 1), and since (l/N) El w2(t+ 1) or2, it follows
that

r(N)
< k

g =’--(E(y(t+l)[;,)+k6,
N

r(N)
(E(y(t+ 1)l,t))2>- r(N)-k6N

ksr(N)

Suppose {r(N)/N} is unbounded, then along some subsequence,
/ r(Nk)) k (E (y(t + )l))2 => /2k5 > 0 which is a contradiction, and so {r(N)/N}

is bounded, which in turn shows that (l/N) ln (E(y(t+ 1)1,))- 0 a.s. Now

lY2(t+l)=-- - [E(y(t+ 1)lct)2q w2(t+ 1)+2w(t+ 1)E(y(t+ 1)lt)]

1N 1N
)2=-1 W2(t+ 1)+- E(y(t+

(--1 )1/2(--N )1/2+ 2ce(N) E(y(t+ 1)lt)z w2(t+ 1)

for some [a(N)ll by the Cauchy Schwarz inequality. Taking limits gives
(1/N)Ey2(t)2 a.s.

The above result shows that optimality is achieved for this NACP in the sense of
6.2. (Actually we have used the slightly stronger condition E[w,I+ <+ to show a

result slightly stronger and slightly more relevant than the conclusion
(l/N) E E(y2( t+ 1)[t)2 a.s. of [75].)

8.5.2. Let us call the problem of minimizing lim (l/N) yE(t), the regulation
problem. Consider now the slightly different problem of minimizing
lim (1/N) (y(t) y*(t))2 where {y*(t)} is some prespecified reference trajectory
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which we want the output of the system to follow. We shall call this the tracking
problem. Note that the regulation problem is a special case of the tracking problem
where one wishes to track the identically zero trajectory.

For the general tracking problem, a new twist arises. Algorithms for which proofs
of asymptotic optimality exist do require estimation, in one form or another, of the
coefficients {Co," "’, c,} describing the spectrum of the noise. Hence, while in 8.5.1,
the vector (t) was of dimension (2n + 2), now it is of dimension (3n + 3).

THEOREM 8.5 (Goodwin, Ramadge and Caines). Let the algorithm be as in Theorem
8.4, subject only to the following changes"

i) dp(t):=(y(t), y(t-1),’’ .,y(t-n), u(t), u(t-1),..., u(t-n),-y*(t),...,
-y*(t-n))7;

ii) (t) 3.+3.
iii) {y*(t)} is bounded

iv) u(t)=- 1-(oy(t)+’’’+.y(t-n)+u(t-1)+’’’+.u(t-n)
o

-y*(t+ 1)- oy*(t) ",,y*(t-n))

or when (t)=:(Co,’’ ", ,,, o,"" ,fl,,, "o,’", 3’,,), u(t) is implicitly specified by
b r(t)(t)= y*(t + 1).

Then

and

N

lim- (y( t) y*( t)) tr
2 a. So

N

lim sup- u2(t) <+ a.s.

Proof. Similar to Theorem 8.4, or the reader may refer to [75] for explicit details.
It should be noted that if y*(t)=0 for all t, then the last (n + 1) components of

b(.) and 0(.) make no contribution at all to the algorithm, and the vectors can
therefore be collapsed, giving the same algorithm as was used in 8.5.1 for the regulation
problem.

8.5.3. How is one to understand why the algorithm of this section or that of the
previous 8.5.1 leads to asymptotic optimality? We proceed as follows.

Define )3(t+ d) E(y(t+ d)l,) the d-step ahead prediction of y(t+ d). We first
obtain a recursive formula for .P(t) by quick formal manipulation of polynomials;
these can be done rigorously by the techniques of str6m [89]. Consider the system
of 8.2.3 with p n. Then

C
y(t+ 1)= zd-u(t-F 1) +w(t+ 1)

d B dG
=Z u(t+l)+Fw(t+l)+z w(t+l) (remembering C=AF+zdG).

Thus the d-step ahead predictor is )3(t + 1) y(t + 1) Fw(t + 1). Hence

d B dG)(t+l)=z u(t+ I)+z w(t+ l).

Since the error of prediction is y(t + 1) (t + 1) Fw(t + 1), we can substitute for
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w(t+ 1) to obtain y(t+ 1)=za(B/A)u(t+ 1)+za(G/AF)(y(t+ 1)-33(t+ 1)). Multi-
plying through by AF, and using C AF+ zaG gives

C;(t+ 1)= zaBFu(t+ 1)+ zaGy(t+ 1).

Now consider the tracking problem if the system is known. Clearly one will choose
u(s) at each instant of time so that )3(s + d) y*(s / d). Hence we will want the relation
BFu( t) / Gy( t) Cy*( + d), i.e., one should choose u(t) so that

u(t)
(bf)o

-[goy(t)+" "+ g,y(t- n)+(bf)u(t- 1)+.

+ (bf)n+a-U(t- n d + 1)- coy*(t + d 1)

e,,y*(t + d n 1) y*(t + d)]

where B(z)F(z)-: (bf)o+" "+(bf),/a-Z n. Moreover since y(t+ l)-y*(t+ l)=
Fw(t + 1), we can write

y(t+ 1)- goy(t-d + 1)+...+g,y(t-d-n+ 1)+(bf)ou(t-d + 1)+...

+(bf),+a_U(t-d-n+ 1)-coy*(t) cny*(t-n)+Fw(t+ 1).

Now consider three cases.
Case 1. Regulation, unit delay, coloured noise. Here y*(t)=0 for all t. So under

optimal control, the true system looks like

y( + 1)- go( y( t) + + gny( t- n) + bf)ou( + + bf)nu( t- n) + w( + 1),

u(t)= (bf)o[goy(t)+. .+gny(t-n)+(bf)u(t-1)+" "+(bf)nu(t-n)].

Now it is transparent that in Theorem 8.4 we are actually identifying the coefficients
of the first equation, and then adopting these estimated coefficients to calculate the
control law as in the second equation. Since the noise in the system is now white, one
can expect that this scheme does work (see 8.1.3 and 8.1.4). (Actually since d 1,
we obtain F 1, zG C-A and BF-B.)

Schemes of this type are called implicit or direct because they identify some closed
loop parameters (here go,’", g,, (bf)o,’’’, (bf)n) and not the open loop parameters
(ao," , an, bo," ’, b, Co,’", c,). For a discussion of this point, see [75] and Fuchs
[97].

Case 2. Tracking, unit delay, coloured noise. Here y*(t) is not identically zero.
Hence one cannot neglect y*(.) as we did in Case 1. So under optimal control, the
true system can be modeled as:

y( + 1)= goy(t)+’’ + gy( n) + bf)ou( t) +

+ (bf).u(t- n) coy*(t) cny*(t- n) + w(t + 1),

-’-o[goY(u(t)-- t)+...+g,y(t-n)+(bf)u(t-1)+...

+(bf)nu(t-n)-coy*(t) cny*(t-n)-y*(t+ 1)].

Again, the adaptive scheme of Theorem 8.5 assumes the system is in this form, and
estimates the coefficients of this assumed model, and chooses a control input which
is optimal for the estimated parameters. Again the noise in the system is white and
one can expect convergence at least under some conditions, which is the content of
Theorem 8.5. Again, this is an implicit or direct scheme.
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Case 3. Interlacing Consider the system only at d time unit intervals Then

n+d-1

y(t+ l)= g,y(t-d-i+ l)+ (bf),u(t-d-i+ l)
=o =o

+ (--ci)y*(t-- i) + Vt+,
i=O

n+d-I

y(t+d+l)= g,y(t-i+l)+ (bf),u(t-i+l)
=o =o

+ (-c)y*(t + d i) + V+d+,
i=O

n+d-1

y(t+2d+l)= gy(t-i+d+l)+ (bf)iu(t+d-i+l)
=o =o

+ (-c)y*(t + 2d i) + Dt+2d+l
i=0

where

vt:= fowt+fwt_ + "+fd_w(t--d + 1).

Now we see that {/)t+l, l)t+d+l, l)t+2d+l,’" "} are independent of each other. Hence one
can estimate the parameters and even hope for asymptotic consistency. Thus one
updates ff(t + 1) to 0(t + d + 1) to (t + 2d + 1) etc. This procedure is called inter-

lacin because one^ needs to store (t+ 1), (t+2),..., (t+ d)) and then update it
to (0(t + d + 1), 0(t + d + 2),. , 0(t + 2d)) etc. Goodwin, Ramadge and Caines [75]
present a scheme based on this for the case where C l, d >_-1 while Goodwin, Sin
and Saluja [98] present one for the general case. Both use a stochastic approximation
scheme to update the parameters.

8.5.4. Fuchs [97], [99], [100] has considered indirect or explicit schemes where
one first estimates the coefficients of the (open loop) model and not the coefficients
in the prediction form, as is done in [98]. In [99], [100] the case when the delay is d _->
is considered and a scheme is used which does not involve the cumbersome interlacing
procedure.

THEOREM 8.6 (Fuchs). Consider the system with the assumptions of Theorem 8.5,
the only change being that d >- 1. Let {y*(t)} be a desired bounded reference trajectory.
Consider the algorithm:

y
O(t+ 1)= O(t)+--dp(t)e(t+ 1), y>O,

e(t+ 1) := y(t+ 1) -/(t)r4)(t),
b 7"(t):= (y(t), y(t- n), u(t-d / 1), , u(t- n-d + 1), e(t), e(t- n))

and

r(t+l)=r(t)+dpr(t+l)(t+l), r(O) 1.

Let (t+ dl(t)) E(y(t+d)lt (t)) be the prediction of y(t+d) if (t) is the
true parameter, as in 8.5.3. Choose u(t) so that fi(t+ dlff(t)) y*(t+ d). Then
lim (l/N)Y (y(t+d)-y*(t+d))2=O and lim sup (l/N)Y u2(t) <+o3 a.s.
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Proofi See [100]. [q

The main difference, as explained above, is that one attempts to estimate all the
coefficients of the true system. For this purpose an identification scheme (called RML1)
has been used (or rather, a stochastic approximation variant of it). The identification
method estimates w(t) by e(t), the residuals y(t) b T ( ), see 8.1.5.

Another treatment of a stochastic approximation based adaptive control scheme
is given by Kushner and Kumar [101 ]. This is based on the use of (truncated) bounded
estimates and control inputs. Because of the latter, it is assumed that the system is
(open loop) stable, i.e., all roots of A are outside the unit circle.

8.5.5. The most serious problem with the stochastic approximation based schemes
of 8.5.2 and 8.5.4 is that their rate of convergence has been observed in practice to
be very slow compared to least squares based algorithms. (The rates of convergence
of these algorithms are, to the author’s knowledge, yet to be established rigorously.)

8.5.6. The asymptotic optimality of a strict least squares type scheme such as, say,
in 8.3 (the original self-tuning regulator) has yet to be established. However,
algorithms closely related to a least squares algorithm have been analyzed by Kumar
and Moore [102], Kumar [146] and Sin and Goodwin [103]. [102] considers an algorithm
which gives more weight to past measurements than recent measurements. We now
briefly discuss the scheme of [103]. They consider an estimation algorithm of the form

(t + 1) (t) + ’)t-1 (t)R-l( t)( t)[y(t + 1) r( t)( t)],

R(t+ 1)- ),(t+ 1)-i[R(t)+ch(t+ 1)4(t + 1) r]
where

th(t) :- (y(t),’’’, y(t- n), u(t- 1),..., u(t- n), -(t),...,-(t-n)) T,
(t):= br(t--1)(t)

and a rule for calculating 3’(t), 0 < y(t) -< 1, is. specified.
Comparing this with the least squares recursion of 8.1.2 and 8.1.3 we see the

following salient differences. First 3’(t + l) is not always 1. Second, in the vector b(t)
occur the predictions )(t)- b r(t-1)(t). The distinctive feature is that in calculating
this prediction we use 0(t) and not O(t- 1). Thus this prediction is made on the basis
of a more recent estimate, and is called an a posteriori prediction (contrast this with
the recursions in 8.5.1-8.5.3). Proofs and even convergence of identification schemes
can rest on such fine differences, see Solo [88].

The use of a posteriori predictions (as opposed to a priori predictions) does indeed
add one new wrinkle with respect to the regulation problem. Note that we choose u(t)
so that b r(t)(t) -0. However 37(t) 0 and so (y(t),. ., (t- n)) cannot be dropped
from the vector b(t)--as they could before, see Case of 8.5.3.

The computation of 3,(t) involves a cumbersome process and it would be of
interest to obtain schemes which do not involve such computations.

You-Hong [104] extends the results of [103] to the general delay case. Gawthrop
[105] contains an analysis of least squares based schemes. Kumar [106] exhibits the
consequences of assuming that a certain "regularity condition" is satisfied by the
closed loop system.

8.6. Convergence of parameter estimates and control laws. So far, we have not
justified the use of the phrase (adjective) "self-tuning" in the names of these schemes.
Specifically, we have not proved that the control law converges to the optimal control
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law. We have only shown that the cost incurred is optimal (i.e., lim (1/N) l y2(t) tr
2

a.s.).
The question has recently been addressed for the scheme of 8.5.1 in [107].
THEOREM 8.7 (Becker, Kumar and Wei). Consider the assumptions of Theorem

8.4 along with the additional assumption:

(ao+Co)+(al+cl)z+...+(an+C,,)z and bo+blz+...+bnz
have no common factors and la /c l/lb l>O. Then lim(t)=k(ao+Co, a+
c, an+ cn, bo, bl, bn) where k is a random scalar.

Proof Since u(t) is chosen to render br(t)(t)=0, it follows that b(t) and (t)
are orthogonal. However the recursion (t + 1) 0(t) + (scalar) b(t) shows that (t +
1) 0(t) is parallel to b(t). These two facts together show that the (t + 1) (t) is
orthogonal to 0(t). Thus the jumps (((t + 1) 0(t))) in the parameter estimates are
always orthogonal to their value ((t)) before the jump. Pythagoras’ theorem
now shows that  (t)ll is an increasing quantity.

By using the Schwarz inequality, the results of [75] can be refined to show that
the stochastic Lyapunov function II(t)-0ll = converges a.s. This shows, first, that
{ (t)} converges to a sphere of random radius with center at 0. Second, it also shows
that {llff(t)ll} is bounded, and therefore also converges, since its geometric p,,roperties
of the preceding paragraph have already shown that it is increasing. Thus {0(t)} also
converges to a random sphere centered at the origin.

Since two spheres in Euclidean space (here 2,+) can intersect either at a point
(when they are tangential to each other) or in a hypersphere of dimension 2n, we wish
to show that the latter cannot happen. This is done by showing that there is a
subsequence {(tk)} which converges to the line connecting the origin and 0, i.e., by

^ (tk)-O for every i= 2,’’’ 2n.showing that 0 Op (tk) Op
N 0 0 )2This latter is done by showing that lim (I/N) t= (OOp(t)-OpO(t) =0 a.s. for

i- 1,2,...,2n.
This last part of the proof is illustrated by using an example. Suppose y(t + 1)--

aoy(t)+ ay(t- 1)+ bou(t)+ blu(t- 1)+ w(t+ 1)+ CoW(t). Since the control law is

u(t)=-,,1 (o(t)y(t)+l(t)y(t-1)+(t)u(t-1))
bo(t)

(where (t)=: (8o(t), l(t), b"o(t),/(t))), the closed loop system is

y(t+l)= ao-bob,,o(t) y(t)+ a-bobo(t y(t-1)+ b-o)o(t)u(t-1)
+w(t+ 1)+CoW(t).

Since

1N 1N
limN y2(t+l)=lim- w(t+l)=o"

it can be shown that

lim - u0/o(t) y( tl(t))t)+ a-bObo(t)_ y(t-1)

+ bl-bo !(t)u(t-1) =0 a.s.
bo(t)]
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Since {/o(t)} is bounded, it follows that

N

lim - [(ao/o(t) boto(t))y(t) + (ao( t)- boa( t))y(t- 1)
1

+ (bl b"o(t) bo,( t))u(t 1)]2 O.

Since [l(.,t)ll2-=.tp=, ][(p)-(p-1)112 (by Pythagoras’ theorem), we can replace
o(t), (t), bo(t), b(t) by o(t-4), (t-4), etc., to give

N

lim - [(aobo(t-4) boo( -4))y( t) + (albo( -4) bo,( -4))y( 1)

+(b,o(t-4)-bol(t-4))u(t- 1)]2=0.

Denote the square root of the expression in the above summand by x(t). Now
denote by z(t) the expression in x(t) where we change (only) each of y(t), y(t-1),
u(t 1) to y(t- 1), y(t 2), u( t- 2) respectively. It can be shown that (1/N) Y x2(t) -->

0 implies (l/N) zZ(t)--> 0.
By using a local convergence theorem for martingales, it can be shown that

if box(t)+ b,z(t)=: a(t)y(t)+(t)y(t-1)+ y(t)y(t-Z)+q(t)u(t- 1)+t.t(t)u(t-2),
then lim (l/N)Y (a2(t)+fl2(t)+T2(t)+B2(t)+lZ(t))=O.

By using some algebra and condition (i) we get what we want.
Some points need to be made. It is not true that lim O(t)-(ao+Co,’",

bo,’", b,). In fact, in [107] it is shown that such a limiting value can have zero
probability. Thus the parameter estimates do converge, but not to their true values
(with regard to the model of Case 1, 8.5.3).

However the control law is (with (t)=: (Co(t),." ", c,(t), bo(t), n(t))T),
u(t) -(1/bo(t))[to(t)y(t)+- "+ ,,(t)y(t- n)+/l(t)u(t- 1)+. +/,(t)u(t- n)]
and it is true that

converges to

o(t) n(t) l(t) bn(t))bo( bo( bo( bo(

ao + Co an+c,,bl
bo ’bo’

Thus the parameters ofthe control law do converge to the optimal values and self-tuning
does occur. So here we finally have a demonstration of the result of Example 8.2 of
8.3.1 and a justification of the description of the adaptive regulator as self-tuning.

An important point to note is that this proof does not rely on a "persistency of
excitation" assumption. In fact, as we now demonstrate, a persistency of excitation
condition does not hold. Let {Nk} be a subsequence along which
lim (1/Nk) k (t)ch(t)r has a limit. We show that this limit is not positive definite.
To see this, let 0() be the limit of the parameter estimates. Then

O()T lim- E 4)(t)b(t)T ()

limk (00)rb(t)b(t)
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S

+N (O()-(t))7"qb(t)dpT(t)(O()-O(t))

2 (t)Td(t)dT(t)((c)_(t)]"+-
Since ()r() 0 by the specification of the control law and since () (), we
see that

()r lim (t)(t)r () 0

showing the singularity of lira (1/N) (t)(t) So we see that one should not
assume persistency of excitation conditions to hold in adaptive control.

Convergence results such as the above need to be obtained in more general
situations where least squares estimates are used, etc.

Caines and Lafoune [108] consider a stochastic approximation based scheme
where a randomized control law is used, i.e., noise is injected into the system. By
verifying that a persistency of excitation" type condition holds, an auxiliary identifica-
tion algorithm (running in parallel with the adaptive control algorithm) is shown to
provide estimates which converge to the true values (an indirect or explicit scheme is
used). Chen [109] also proves the strong consistency of a randomized control scheme
with a modified least squares type parameter estimator as in [103]. Chen and Caines
[110] reconsider the problem of [108] and show that one does not really need an
additional parameter estimator in parallel.

8.7. Other proposed schemes. We now examine briefly various extensions of the
basic self-tuning regulator (STR) which have been proposed to cope with various
practical problems.

8.7.1. If the system is nonminimum phase, i.e., bo+ bz +... + bz has roots on
or inside the unit circle, then we have seen in 8.2.4 that the standard minimum
variance regulator can have severe practical problems.

strm and Wittenmark [111] consider a self-tuning scheme based on the con-
strained minimum variance regulator of Peterka [91], see Theorem 8.1 of 8.2.5.

Clarke and Gawthrop [112] have proposed a generalization of the basic STR
which incorporates models with nonzero steady state offset value (i.e., steady state
output nonzero when input zero), tracking and an ability to cope with some non-
minimum phase systems. The hea of the approach is the choice of u(t) to minimize
the d-step finite horizon cost criterion:

py(+ i ,y*(+ i + 2 qu(- i,
=o =o

Here {p, r, q} are weighting coecients and y*(t) can be a desired reference trajectory.
By varying the coecients one can obtain control laws which are stable for some
nonminimum phase systems. It is also shown that the desired control law may be an

equilibrium point (rest point) of the scheme. Gawthrop [113] and Clarke and Gawthrop
[114] deal with generalizations of this.

Koivo [115] considers the multivariable version of this algorithm which in turn
generalizes the multivariate version of the self-tuning regulator of Borisson [116].
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Gawthrop 105] and Chen 117] analyze these schemes, the latter making some assump-
tions on the behaviour of the closed loop system. Goodwin, Ramadge and Caines [75]
also allow for multivariable systems.

Wellstead, Edmunds, Prager and Zanker IllS] propose a scheme based on the
assignment of poles/zeros rather than on a cost criterion. This scheme is also based
on practical considerations, the desired goal being the ability to deal with nonminimum
phase systems, unknown delay d etc. It is shown that these schemes also have the
property that the desired control law is an equilibrium point. Gawthrop I119] brings
attention to some similarities between one of the schemes of [118] and the self-tuning
controller 112]. Wellstead and Sanoff [120] extends 118], while Wellstead and Zanker
[121] treats the tracking problem. Allidina and Hughes [122] presents a cost criterion
approach. str6m and Wittenmark [123] contains an extensive treatment of the pole-
zero assignment problem and the tracking problem.

Another approach is to use a cost criterion of the form lim / N) y2(t) + pu2(t)
where p > 0 weights the control used. One can attempt to solve on-line, for every
current set of estimated parameters, either a Riccati equation or perform a spectral
factorization to obtain a control input which is optimal for the estimated parameters,
see str6m, Borisson, Ljung and Wittenmark [124]. Mandl [125], [126] examines this
scheme in a state space format and proves asymptotic optimality. The chief restriction
is that the state is assumed to be completely observed and only the control gain matrix
is unknown. [78] removes the latter restriction, but only allows the unknown parameter
value to lie in a finite parameter set. The approach is based on 7.3.

Grimble [127] proposes a different scheme, which is easier to implement, and
which in contrast to some other schemes possesses the property that for the limiting
values of some of the adjustable parameters (control weighting term etc.) the control
law described in 7.2.5 is obtained. See also Grimble [128].

Yet another approach is given by Kumar and Moore [129], [130], see also Clarke
and Gawthrop I147].

8.7.2. In practical applications, the self-tuning regulator is implemented not on
constant and unknown systems, but rather on time varying and unknown systems. It
is hoped, in such cases, that the rate of convergence of the parameter estimates will
be rapid in comparison with the rate of change of the system. To "keep up" with the
changing system, one can make various modifications to the recursive least squares
parameter estimation scheme. One can use a moving "window" of time, see Goodwin
and Payne [87]. Alternatively, one can geometrically (exponentially) "forget" past
observations on the system, i.e., one chooses 0(t) so that it minimizes

At-(y(tl-t(t)O)
n-----O

over all 0. The factor A, 0< A _-< 1, is called the "exponential forgetting factor". The
case A is the case that has been studied so far in this paper. Even if A < 1, one can
obtain recursive schemes for the parameter estimates. The only change from 8.1.2 is
that

/(t + 1) ( t) + R-( t)ch( t)[y( + 1) (t) T((t)]
where

Rx(t) ARx(t- 1)+ b(t)b 7"(t).

Alternatively, one can also obtain a recursive expression

-l(t)b(t+ 1)b(t + 1)TR(t)-1 RxR-(t+l)=-g (t)-- Abr(t+l)R(t)ch(t+l)
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During time intervals when the system under control is not changing, one would
like to keep A whereas if the system is changing, then one wants to keep A < 1.
Some practical long term problems (burst, blow up) can result from the choice of a
constant forgetting factor, see Fortescue, Kershenbaum and Ydstie [131] and [123],
Sanott and Wellstead [144] and Saelid and Foss [145]. [131] proposes an "adaptive"
selection of A (t) so that a measure of "information content" is kept constant. Latawiec
and Chyra [132] also discuss this problem and offer some solutions. Lozano L. [133]
obtains a bound on the asymptotic variance of the error in the parameter estimates.
Zarrop [134] investigates the rate at which the forgetting factor sequence {A (t)} should
converge to so that asymptotic consistency of estimates can still be obtained.

A different approach to the situation of time varying parameters is taken by Caines
[142] and Chen and Caines [143]. [142] analyzes the situation where the parameters
form a converging martingale, while [143] analyzes the situation where the parameters
constitute a uniformly bounded martingale difference sequence plus a constant.

Before leaving the topic of this section, we mention the work of Kalman [135],
who as early as 1957, made a very strong case for considering schemes of this sort,
and actually built a computer to implement them. Least squares estimates, forgetting
factors, deadbeat control laws, efficient recursive least squares estimates, etc. all are
ingredients of his scheme. See also the work of Peterka [136] and Peterka and
,str6m [137].

9. Conclusions. Clearly, much has been done and still much more remains to be
done. For the Bayesian problems, efficient computational methods or analytic solutions
to new problems are still needed. In the area of "dual control" of linear quadratic
(Gaussian) systems, one needs approximations for which rigorous bounds on the
quality of the approximations are available. For the adaptive control of Markov chains,
one is faced with spaces of huge cardinality when the state spaces, control spaces etc.
are large but finite. Further, efficient schemes to implement the algorithms are needed
as well as studies of rates of convergence. In the self-tuning area, we still do not have
theoretical tools to analyze all the schemes which have been proposed; in fact the
original self-tuning regulator has yet to be fully analyzed. Rates of convergence have
not been adequately established yet. The problem of robustness of the adaptive scheme
has not been rigorously examined. An analysis of the steady state of the self-tuning
regulator with a forgetting factor or periodic resetting is not available.

Clearly much more is needed in the way of theory.
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PROPERTIES OF MATRICES USED IN UNCERTAIN LINEAR CONTROL
SYSTEMS*

L. G. CHOUINARDf, J. P. DAUER AND G. LEITMANN

Abstract. In this paper a number of questions arising in the design of state feedback controls for
uncertain dynamical systems are answered. These results are algebraic in nature and include results on
positive definite solutions of Lyapunov’s equation and on the rotation of switching surfaces and attractive
surfaces for min-max controls.

Key words. Lyapunov’s equation, feedback control, uncertain linear systems, guaranteed performance

1. Introduction. A number of algebraic questions arise in the study of stabilizing
feedback controllers for uncertain dynamical systems (see e.g. [2], [3], [4]). Briefly, the
construction of proper quadratic Lyapunov functions for stability presents problems
on the positive definite properties of matrices in Lyapunov’s equation. Also the
attractivity of the switching surface of a feedback controller (i.e. solutions tend to
move to the surface) corresponds to properties of the null space of a matrix. In this
paper we approach these algebraic problems and show their relationship to the theory
of stabilizing uncertain dynamical systems.

In 2 we consider the problem; given a stable matrix A, for which positive definite
matrices, P, is the matrix

Q -(PA+ ,’P)
also positive definite. This problem arises in the contruction of a positive definite
Lyapunov function, L(x)- xrPx, which is decreasing along solutions of a feedback
system. This is a central point in Lyapunov-type stability or boundedness results. The
results of Breinl and Leitmann [3] show that for uncertain linear control systems this
problem is particularly important when P PR is the solution of a Riccati equation.
The first result of 2 gives a necessary and sufficient condition in this case. If PR does
not yield a positive definite Q, then the second result shows that appropriate linear
modifications, P PR + PN, also will not yield a positive definite Q. The last two results
in this section are necessary and sufficient conditions and techniques for constructing
matrices P for which the resulting Q is positive definite. These results can be used to
construct a matrix P which in some case retains the natural sensitivity properties of
PR. The results of 2 are applied to uncertain dynamical systems in 3.

The result in 4 is concerned with the attractivity of the switching surface of a
nonlinear feedback control for an uncertain linear control system. This result gives
necessary and sufficient conditions for the control matrix which, when applied to
min-max controllers [4], guarantees that the switching surface is attractive in the
presence of uncertainties.
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2. Properties of the solution of Lyapunov’s equation. The basic control system to
be considered is linear of the form

Ax + Bu, x(O) Xo,

with A an n m matrix, B an n m matrix, and dx/dt. The performance objective
is given by a quadratic cost functional

(2) J[x(t), u(t)]= [xT(t)QRX(t)+ur(t)Ru(t)] dt,

where QR DrD is symmetric, positive semidefinite and R is symmetric, positive
definite. We assume that (A, B) is completely controllable and (A, D) is completely
observable. The unique optimal control for system (1), (2) is given by

(3) ut R-1BrPRX,
where the symmetric, positive definite matrix Pe solves the Riccati equation

(4) ATPR + PRA PRBR-BTPR QR =0

[1]. The optimal control (3) in system (1) yields the asymptotically stable closed-loop
system

(5) (A- BR-’BTpR)x, x(0) Xo,

where the matrix

(6) ,= A- BR-’BTP
is stable; i.e., all eigenvalues of A have negative real parts. Therefore the optimal
control U of (3) stabilizes system (1) through the feedback system (5). Further, (A, B)
is completely controllable [1, p. 48].

The problem of guaranteed stability (or ultimate boundedness) of the solutions
of a control system is more complex when the parameters in system (1) are uncertain.
A typical approach is to construct a nonlinear feedback control corresponding to a
specific Lyapunov function, V(x)= xrPx. This Lyapunov function is then used to
analyze the solution behavior of the system [2]-.[4]. Of fundamental importance in this
type of analysis is Lyapunov’s equation

(7) P, + fi, TP + Q O,

where an appropriate matrix Q, or perhaps P, is usually chosen to be symmetric,
positive definite.

If we let A and Q be given matrices, with A having eigenvalues A,..., A,, then
equation (7) has a unique solution P if and only if A + A)# 0 for all 1-<_ i, j-<_ n, [5]
(see also [6], [7]). It is easy to see that if (7) has any symmetric solution P, then Q
must also be symmetric. Further, if Q is symmetric and the solution P of (7) exists
and is unique, then P must also be symmetric.

PROPOSiTiON 2.1. If A is stable and Q is positive semidefinite, then (7) has the
unique positive semidefinite solution

(8) P (exp ,rt)Q(exp fit) dt.

It is easy to see that if Q is positive definite, then P is positive definite. However,
one problem in control design that arises (for references see [3]), and will be approached
in this work, is that if A is stable and P is a given symmetric, positive definite matrix,
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it need not follow that Q is positive definite. Of particular interest in applications is
this problem for P PR, the solution of (4), or matrices P related to PR.

THEOREM 2.1. Suppose PR solves (4); then the matrix Q given by

(9) PR,+,TpR + Q O

is positive semidefinite. Q is positive definite if and only if rank QR, PRB)= n.
For any matrix H, the null space of H is denoted by N(H)- {y" Hy- 0}.
Proof. Taking P PR, equations (9), (6) and (4) yield

_Q ,Tp + p,= ATp_ PBR-BTp+ PA- PBR-BTp

--QR PBR-’BTp.

Since the matrices QR and PBR-BTp are both positive semidefinite (R is positive
definite), we have that Q is positive semidefinite. Therefore, Q is not positive definite
if and only if there is a nonzero y such that

O) 0 y TQy yTQRy + YTpBR-IBTpy.
Since QR and PBR-’BTp are both positive semidefinite and R-1 is positive definite,
equation (10) is satisfied when y N(D) and y N(BTp). Since N(D)= N(QR), we
must have QRY 0 and BTpy_ 0. Using the symmetry of QR and PR it follows that
there is a nonzero y satisfying (10) if and only if rank (Qn, PRB) < n. [-I

Remark 2.1. If QR is positive definite, then Q in (9) is positive definite (see also
[1, p. 41]). If QR is not positive definite (but only positive semidefinite), then Q in (9)
need not be positive definite even if the system Ax 4-Bu is in canonical form [8].
Examples can be easily constructed by noting that rank BTpR rank B and therefore
in order for Q to be positive definite it is necessary (but not sufficient) that

rank B 4- rank QR n.

Remark 2.2. In the ultimate boundedness results for uncertain linear systems of
Leitmann [2] a nonlinear feedback control is used. This control is of the form u, (t)
p(x(t)), where for given e > 0

BTpx
-llBrPxl"-’-p(x for IIBTpxll > e,
11

(ll) p(x)=
BPx
-p(x) for [IBPxll e,

and p(x) is a norm bound of the "lumped" uncertainty. The desired stability results
can be assured using control matrix P PR if Q in (9) is positive definite only on the
switching surface N(BTpR) i.e., xTQx > 0 for x N(BrPn), x # O. However, it follows
from (10) that Q is positive definite if and only if Q is positive definite on N(BPR).

Suppose the feedback control matrix P- PR does not produce a Q in (9) which
is positive definite. The desired robustness can still be expected [3] from a feedback
matrix PL satisfying

provided the matrix QL in

(12)

N(BTpL)= N(BTpn)

P+ rP+ Q 0

is positive definite. A standard approach to accomplish this and yet to retain the
stabilizing properties of PR is to consider a positive definite control matrix of the form
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PL PR + Pv satisfying BrPI BrPR (i.e., BrPrv =0) such that the matrix Q in (12)
is positive definite. However, the.following result shows that this is not possible.

THEOREM 2.2. The only matrix of the form P PR + PN which satisfies BrPv 0
and is such that P and Pv satisfy Lyapunov’s equation (12) for symmetric, positive
semidefinite Q is PI PR.

Proof Take PL PR + Pv, where B T"Prv 0. Then (12) becomes

Then it follows from Theorem 2.1 and (10) that (PR.+,rPR) is negative semidefinite
and, in fact, negative definite for y_ N(D)f’)N(BrPR). So we need to select PN so
that (P,+,rPN)= _Q is negative semidefinite. By Proposition 2.1 the solution of
(7) with Q GrG is the positive semidefinite matrix

Pv (exp ,t)7GVG(exp ,t) dt.

Since BrPI, O, it follows that

Therefore,

0= Br (exp ,g,t)rGrG(exp t) dt.

0= Br(exp t)rGrG(exp *t)B dt,

which implies G(exp At)B=O for t->0. Since the converse clearly follows, we have
that BrP 0 if and only if

(13) G(exp At)B=-O for t>-0.

Using that (A, B) is completely controllable and a standard controllability space
argument [8, pp. 81-82], equation (13) holds if and only if G 0. Therefore, BrpN 0
if and only if Pv 0. [3

The "failure" of the additive modification of PR in Theorem 2.2 motivates us to
consider an alternative approach to the construction of a feedback matrix P when the
conditions of Theorem 2.1 are not satisfied. Recall that A is an n x n matrix whose
eigenvalues have negative real parts and suppose that P is a specified n x n symmetric
positive definite matrix. Let Q be the n x n symmetric matrix defined by Lyapunov’s
equation (7),

p,+ .,’p Q.

Then -1/2Q is the symmetric part of the matrix P,. Therefore, Q is positive definite if
and only if P is negative definite (and usually nonsymmetric).

We now determine conditions for the construction of a positive definite P with
the property that Q is positive definite. This construction, at times, allows us to retain
some of the "natural" stabilizing properties of PR (see [3]), whereas fixing Q to be
positive definite and solving Lyapunov’s equation for P yields a matrix which is not
related to PR. Without loss of generality we will restrict ourselves to showing that PA
is negative definite since this is equivalent to

Q -(P+,rP)
being positive definite.
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Consider the system -Ax in a coordinate system where A is block upper
triangular,

(14) fi= (c, b)--C O

where I,. ., I are the real eigenvalues of A, a,. ., a are the real pas of the
complex eigenvalues of A, and bc > 0 for 1,. ., k The matrix A can always be
so transformed by UrU using an ohogonal matrix U.

The first result is a constructive procedure for P so that both P and -PA are
positive definite when A has real eigenvalues. It is inductive in nature and establishes
a necessary and sucient criterion. A similar procedure when A has at least one pair
of complex eigenvalues will follow. We assume that we have paitioned the matrices
as

P=
Mr c 0 I

where the (n- l) (n- l) matrices P1 and A have the same structure as P and A,
respectively, and P, -PA are positive definite. Clearly in order for P and -PA to
be positive definite we must construct P so that this holds.

THEOREM 2.3. Suppose P and -PA are positive definite. Then, given any M, F
and negative number A,, there exists a constant K such that both P and -PA are positive
definite if and only if c > K.

Proof. To construct K consider the quadratic function

q( v) -( vPAv + MTAv + vT"PF + vrMA + MF)
which has a positive definite Hessian and therefore has a minimum value q*. Choosing
K-max (-q*/hn, 0} makes -PA positive definite if and only if c> K. Choosing
K =max {-q*/hn,-t, 0} where t is the minimum of VrPlv+2Mv makes both P and
-PA positive definite if and only if c

Remark 2.3. Since M is unrestricted, for any such A we can construct the matrix
P as diagonal; i.e., such a matrix A is D-stable [11], [12].

When A has a pair of complex conjugate eigenvalues, partition A as

and P as

A= a b
--C

MT z

k
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where A and P are (n 2) x (n 2) and F and M are (n 2) 2. Again, PA and
P clearly must be positive definite, so we assume P has been so constructed.

THEOREM 2.4. Suppose P and -PIA are positive definite. Then, given any M, F
and real numbers t, b, c and k satisfying c < O, bc > O, there exists an unbounded region
in the zy-plane consisting of values which make P and -PA (simultaneously) positive
defiite.

Proof.

-Q= pfi, + ’p=
P1AI /AP PIF + M + A

-c

() (a -c 2za 2kc zb- yc- 2ka
M" + M’A MF+F’M +FVP + b a zb yc + 2ka 2ya + 2kb ]]

Note that the quadratic terms in det (Q) are just det (-PAl- A(P)(4zya2_ (zb- yc)2).
The determinant of the (n- 1) x (n 1) leading minor of Q is linear in z (y does not
appear) with coefficient (-2a).det(-PAi-A(P)>O of z. Likewise, det(P) has
quadratic term zy. det (Pt) and its lead (n -1) x (n -1) minor is linear in z with
coefficient det (Pl) of the z term. All four of these determinants are therefore positive
for sufficiently large z and y satisfying zb- yc 0 (which can be found since bc > 0).
The determinant test for symmetric positive definite matrices then applies.

Remark 2.4. The construction in the proof of Theorem 2.4 specifies four poly-
nomials whose values have to be positive for (z, y) in order to make P and -PA
positive definite. These polynomials can be calculated by standard techniques for
finding determinants using row and/or column operations.

3. Applications to uncertain linear systems. Consider a control system of the form
(1) where the parameters are uncertain. (See [2]-[4].) Simulation and analysis [2], [3]
have indicated that in the design of stable feedback controls of the form 11 robustness,
i.e., insensitivity of the response to parameter variation, for many uncertain systems
can be expected if the feedback control matrix is chosen with P PR, where PR is the
solution of the Riccati equation (4) and p(x) is a norm bound of the "lumped"
uncertainty. However, guaranteed asymptotic stability or ultimate boundedness of the
resulting closed-loop system requires that the positive definite Lyapunov function

V(x)=x’Px
be decreasing along trajectories of the system. This can be assured if the resulting Q
in Lyapunov’s equation (7) is positive definite for P- PR.

Example 3.1. Bryson and Ho [15, pp. 168-170] present the example of a roll
attitude regulator for a missile. A feedback controller, as in (3), is designed for a
missile using hydraulic-powered ailerons that will keep the roll attitude b close to
zero, while staying within the physical limits of aileron deflection 8 and aileron
deflection rate . This third order linear system is described by

A= a z -1/r 0 B= 0

0 0 0

Q 0 0 0 R u--oo o
Here z is the roll-time constant, a the aileron effectiveness, 8o and o are the maximum
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available values of 6 and b, respectively, and Uo is the maximum available value
of the command signal to aileron actuators. For a missile system which includes uncer-
tainties, such as noise, the control (3) is modified by the nonlinear feedback
control (11) as in [2], [3]. Since

o’luo )r(- l/o)/2a
/ Uoo

the matrix (QR, PRB) has rank 3. Theorem 2.1 implies that Q in (9) is positive definite.
The results of Breinl and Leitmann [3, 5] show that by choosing P-- PR in (1 l) we
obtain a feedback control which guarantees practical stability for uncertainties and
which considerably reduces the sensitivity of the system.

Example 3.2. The regulator problem for single-input-single-output systems (see
[9, 9-8] has

0 0 0

Q= i
0 o

0 0

For n _-> 3 we have rank (QR, PB)_<-2 for any matrix P. Theorem 2.1 shows that P PR
will not produce a positive definite Q in (9) and therefore cannot be used in (1 l) to
guarantee stability when uncertainties are present in the system. On the other hand,
the results of Theorems 2.3 and 2.4 can be used to exert preferences in the design of
the control matrix P. Since the system is single-input, the feedback control (11) becomes

i=1 i=1

i=lp(x)

where (P,, P.2,
arbitrarily.

P..) is the nth row of P and Pnl, Pn2,’’’, Pn.n-I can be chosen

4. Insensitivity via switching surface. The nonlinear portions of min-max
controllers [4],

p(x)--- IInPxll (x)

{u E" Ilull }

for IIB rPx 0,

for BrPx 0,

are designed to "return" the trajectories of uncertain linear systems to the switching
surface

N(BrP) {x: BrPx 0}.

The stability properties of A then guarantee the necessary asymptotic stability of the
basic (nominal) linear control system on N(BP). Recent results by Gutman and
Palmor [4] for rain-max controllers show that states in the subset
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where A is an appropriate constant, possess natural asymptotic attractivity properties
to the surface N(BTp).

Since P and . are nonsingular, the subspaces N(BTp) and

Fo N(BTp,).

have the same dimension but are, in general, rotations of each other. To achieve
maximum effectiveness of the attractivity of Fa, we need P to be selected so that
Fo N(BTP) (in addition to the properties examined in 2). We now address this
problem.

We begin with a result on positive definite matrices. For any subspace V of E ",
Euclidean n-space, we let the orthogonal complement of V be denoted by

V {x: vrx 0 for all v V}.

LEMMA 4.1. Let V and W be supaces of E .of the same dimension. There exists
a positive efinite matrix such that P maps V onto W if and only if W f) V" {0}. In
this case P can be selected to be symmetric.

Proof. Suppose/3 maps V onto W and is,, positive definite. Let x W f’) V+/-. Then
x W and so there exists v V such that x Pv. But Pv x V- gives v r/3v vx 0,
and/3 positive definite implies v 0. Then x =/3v =/30= 0 and W f-) V+/-= {0}.

Conversely, suppose Wfq W-= {0}. Denote the orthogonal projection map onto
the subspace V by Pv. Note that for any subspace V, Pv is symmetric positive
semidefinite. Let P Pw+ Pv. Clearly P is (symmetric) positivesemidefinite and if
v V, then/3v Pwv W, so/3V W, and it suffices to prove that Px 0 implies x 0.
Let x w + w+/-, where w W and w W+/-. Then fix Pww + Pv(W + w-). Now since
E"= W@ V+/-, Pww=O and Pv;(W+ w+/-)=0. But Pww= w so w=0, and Pvw-=O.
Thus w+/-(V-)-= V and since wX W;, w+/- Vf-) W+/-=(V@ W)x=(E")x=0. So
x w + w= 0+0 0, and/3 is positive definite.

THEOREM 4.1. There exists a positive definite P such that

(15) N(BTp) N(BTp,)

if and only if there is a subspace W of dimension (n-rank B), which is invariant under A
and satisfies
(16) R(B) f3 W= {0},

where R(B)= N(B7-) is the range of B, i.e., the column space of B.
Proof. Since A is nonsingular, (15) is satisfied if and only if

(17) ,[N(BTP)]= N(BP).
Since N(BTp)-- P-[N(BT)], (17) holds if and only if

,P-’[N(B)]= P-I[N(BT)].

So, equation (15) holds if and only if the space P-[N(BT)] is invariant under ,. Let
c n-rank B. Then the dimension of N(BT) is a. Let W be a subspace of dimension
ce which is invariant under . By Lemma 4.1 there exists a positive definite matrix P-
which maps N(BT) onto W if and only if Wf’) N(BT)+/- {0}. p-1 positive definite is
equivalent to P being positive definite, lq

Example 4.1. Suppose the rank of B is (e.g., if system (1) has a scalar control),
and suppose that each eigenvalue of A has a nonzero complex part. (All trajectories
of the stable system Ax oscillate.) Then n is even and every (real) A-invariant
subspace has even dimension. Since the dimension of N(BrP) is n-1 for any
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nonsingular P, it cannot be invariant under A. Hence there exists no positive definite
P satisfying equation (15).

Example 4.2. Suppose the matrix A has eigenvectors vl," , v, corresponding to
distinct eigenvalues. For such a matrix the set of all A-invariant subspaces can be
enumerated using subsets of these eigenvectors as bases. Let B have rank k. Equation
(16) shows that a given positive definite P satisfies (15) if and only if N(BrP) is
-invariant; i.e., if and only if B rPvi =0 for n- k eigenvectors vi of A. This is a
criterion which can be used with the matrices of 2. Note that this result is sufficient
for P to satisfy (15) even if A does not have distinct eigenvalues.

Suppose the rank of B is k 1, so the dimension of N(BrP) must be n-1. If
Bu vi has a solution for some eigenvector vi of A, then the positive definite matrix
P satisfying (15) is defined as above for the subspace W generated by the eigenvectors
{ vj" =<j -<_ n, j i}. In general, if we select x R(B), then

for a unique set of scalars a,. ., a,. Select v such that a 0 and define

W= (v.i" <=j <= n,j # i),

the linear subspace spanned by { v/1 _-<j _<- n, j i}. Then W is an A invariant subspace
of dimension n- which satisfies (16). The corresponding sum of projections defined
above satisfies (15). There is a generalization of this result when < k < n.
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STOCHASTIC CONTROL OF ONE-DIMENSIONAL DIFFUSIONS
WHOSE GENERATORS HAVE DISCONTINUOUS COEFFICIENTS*

HIDEO NAGAI

Abstract. Stochastic control of one-dimensional singular diffusion processes on an open interval (a,/3)
is studied. Coefficients mi(x), si(x) of those generators (1/mi(x))(d/dx)(1/si(x))(d/dx) are so singular
that controlled processes cannot be defined by solutions of stochastic differential equations. We take up
Markovian switching controlled processes and characterize the pay-off function, which is defined by additive
functionals of the diffusion processes corresponding to given measures/i, by the unique solution of

g’i(u,v-u)>=(tzi, v-u) fv, i=1,2,3,’’’,

Here

du dv
’i(u, v) dx,

dx dx s(x)

b={vsH(a,/3) "(u, 4,)_-< ( ’, 4,)V$->_0, H(a,/3)}.

Key words, stochastic control, singular diffusions, system of quasi-variational inequalities, pay-off
functions, switching controlled processes

Introduction. The problem of Bellman-Dirichlet

sup { iu _fi} 0 a.s. in D,
(0.1)

u=0 onOD

has been studied by L. C. Evans and A. Friedman [2] and P. L. Lions [6], where
i= 1,2,3,..., are uniformly elliptic operators with regular coefficients, fi, i=
1, 2, 3, , are given functions with some regularities and D is an open subset of R N.
On the other hand P. L. Lions and J. L. Menaldi [7] considered the "weak solution"
u* of the equation (0.1) to characterize the pay-off function in stochastic control of
stochastic integrals, where diffusion and drift coefficients are merely Lipschitz con-
tinuous. "Weak solution" u* of (0.1) means that u* is the maximum element of

(0.2) ={v H(D); ’v<=f in ’ for all i}.

Now we consider in this article stochastic control of one-dimensional diffusions
whose generators have discontinuous coefficients as a generalization of the work of
P. L. Lions and J. L. Menaldi. More precisely we treat with the case that D (a,/3),
-o < a,/3 < o, f, 1, 2, 3,. , are bounded signed measures and generators of
diffusions are the following:

(1(0.3) ,_1 d

xxmi(x) dx s,(x)

where mi(x), si(x), 1, 2, 3, , are uniformly positive bounded measurable func-
tions and s(x), 1, 2, 3,. , are of bounded variation.

Our first problem is to prove the existence of the maximum element u* of 6e (cf.
Theorem 1.1). Next we prove in Theorem 3.1 that the pay-off function of stochastic

* Received by the editors September 2, 1983, and in revised form January 1, 1984.

" Department of Mathematics, Fakulty’of Science, Tokyo Metropolitan University, Fukasawa, Setagaya-
ku, Tokyo, Japan.
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control ,of absorbing diffusion processes with generators @i of the, formula (0.3) equals
to u*.

We note in this case controlled processes cannot be defined as solutions of S.D.E.
because the diffusion and drift coefficients are very singular. Instead we take up
Markovian switching controlled processes which are used by J. Zabczyk [11] and
M. Nisio 10].

1. An analytical result. Let I (a,/3) be a finite interval. We consider for each
c >= the class Gc of second order differential operators each of which has the following
form

(1.1)

_
d ( d)m(x- dx s(x) x

where re(x) is a measurable function on I satisfying 1/c<-_ re(x)<= c and s(x) is a
function on I of bounded variation which also satisfies 1/c <- s(x)<= c. We put

(1.2) G= LI Go.
c=>l

Let us assume that a countable subset

{’}’=
m,(x) dx (x) d-x

of G and a sequence {/x}= of finite Borel measures which satisfy the following
conditions are given:

(1.3) There exists Co=> such that each Go.

(1.4) There exists a finite Borel measure/x on I such that I/xl-<_/x for each i, where
]/x[ indicates the total variation measure of/x i.

For each we consider the Dirichlet space (H(a, ), ) on L(m(x) dx) defined by

ff[ dx, u, v H(a, fl).
du dv

(1.5) ’(u, v)=
s,(x) dx dx

Here H(a,/3)= {v H(a,/3); v(a)= v(/3) 0}, HI(a,/3)= {v L2(a,/3); v is
absolutely continuous on I and dv/dx L2(a,/3)}. Let us put

(1.6) 5t’={vH(a,B); g’(v,b)<=(tz’,ck),Vck>=O, Ho(a,g)foreachi}.

We at first consider the existence of the maximum element of 5e. For we will formulate
in 3 stochastic control of diffusions with generators { cg}, where the pay-off function
is defined by additive functionals corresponding to given measures {/x}, and then
characterize it by the maximum element of the class 5’.

DEFINITION 1. 1 ( (42 for cgl, cg2 13 means that ds/s(x <-_ ds2/SE(X ), where
ds means a Borel measure on (a,/3) defined by a function si(x) of bounded variation.

THEOREM 1. If there exist

_
and c belonging to G such that

_
< cgi< Cg for all i,

then 5f has a maximum element.

2. Proof of Theorem 1. Let Gi(x, y) be a Green function of (H(a,/3), ’) for
each defined by the equality ’(G( ., y), v)= v(y), vH and G be the Green
operator defined by the following:

Gv(x) j G’(x, y)m,(y)v(dy)

where v is any Borel measure of bounded variation.



392 HIDEO NAGAI

LEMMA 2.1. Let q3, (2E G, then 1< c2 if and only if sl/s2 is nonincreasing.
LEMMA 2.2. Under the assumptions of Theorem there exist nonpositive functions

wl and w2 belonging to H(a, fl) such that w(t) 0, w2(fl) 0 and "gi(Gitzi-wj, v)>-O
Vv >_- 0, H for all and j l, 2.

PROPOSITION 2.1. Under the assumptions of Theorem the following system of
quasi-variational inequalities has a maximum solution for each n and e:

(SQV.1)

n(un, v--un)>=(la, )-un) Vv<uq-e, un<u-k-e.

Proof of Proposition 2.1. Put u Gtz; then the following variational inequality
has the unique solution

(2.1) n u ’, V U ’ >= tx n, ) U’ ) < u + e, U’ <= U+ e.

Therefore we can take inductively the solutions u of the variational inequalities"

(2.2) i1+1 i+1g(u,v-u)>-(tx,v-u) Vv<=u +e, u=u +e,
i+1i= 1, 2,..., n-1. Then, replacing u or Ul+ by u or Uk+l respectively in (2.1) or

(2.2), we can take the solutions U+l, uk+, i= 1,2,..., n-1, k= 1,2,..., of vari-
ational inequalities (2.1) or (2.2). For each and k solutions uk have the following
properties:

(2.3) /’/k+l Uk,

(2.4) --Uk, V)>----O Vv>=O, H(a,),
i>wj, j=12,(2.5) uk

where wl and w2 are the functions appearing in Lemma 2.1. (2.4) is easily seen, for
U k satisfies that

(2.6) g’(G’/z’ ,+l

H wehence if we put in (2.6) 3 Uk--V, V >= 0, have (2.4). In order to see (2.3) we
at first remark that Uo- u[ G u >= 0 because ul satisfies (2.4) (el. [3]). By standard
argument it follows that u =< u’ from u + e ->_ u+ e (el. 1], [8]). Therefore by induction

< < "from _i+1 :. i+1it follows thatUk+l=Uk, i=l,’’’,n--lOrUk+=Uk Uk/l=Uk ,i=l,’’’,n-1
or u,/ =< u, respectively in the same way as above for each k. (2.5) is due to Lemma
2.3 below. The conclusion of the present proposition will follow from (2.3), (2.4) and
(2.5) as follows.

From (2.3) and (2.4) it follows that

(2.7) g’(G’/x’ ’/’ ’/x’ ’/’-u,,G -u,)<g(G G -uUk+l, k+l

for each and k. Let us put w wl v w2; then we have w Ho and w <= u k. Therefore
it follows from (2.4) that

(2.8) g’(G’/,t’- uk, uk w)->_ 0

for all and k. (2.8) means that

Gi i[d, ifll,-u, G -u)<-_ (G -u, G -w).
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After applying the Schwarz inequality we have

i(2.9) ’(G’lx’- Uk, G’Iz u) <= G’lx w, Gilx w).

It follows from (2.4), (2.7) and (2.9) that

g’i(uk-u, uk-u)->O as k,j-->oo

for each i. H is complete with respect to i-norm, so there exists u H such that

i)g’(uk u, uk-u -->0 as k-oo

for each i. It can be seen in a similar way to [8] that u , 1, 2, , n is the maximum
solution of (SQV. 1).

i>w,i=l n,k=l 2,... j=l 2.LEMMA 2.3. We have II k

Proof of Lemma 2.3. It is known that a Markov process X=(fl, 3, Px, Xt)
corresponds to the Dirichlet space (H, i) on L2(m(x) dx) and continuous additive
functional A of bounded variation of X to given measure/x for each (cf. [3], [5])
such that limto 1/t (v(x)-E[v(X,)])v(x)m,(x) dx= ’(v, v), v H, and E[ait]
E[GiIx(X,)]-GIx(x), t>0. Let us consider the following optimal stopping
problems:

ti ,(x) inf Ex[A", + u_,(X) + el,

i ,(x) inf E ix[A+uk’ ’+(X) + e]

i= 1,’’’, n, k= 1,2,.... Then we know that ti(x)=uk(x) for each and k (cf.
[8], [2]) because there exists no exceptional set in the present case. Moreover we know
that an optimal stopping time ’k exists for each and k. We now prove that u’(x)>-
w(x), j 1, 2. We at first note that it follows that G(x) w(x), j 1, 2, x I from
the maximum principle because it follows that G(a) w(a) O, G() w()
0,j= 1,2 from w(a)O, w() 0,j 1, 2 and G(a) G() 0 and w satisfies
(G l w, v) 0, v 0, H, j 1, 2. Therefore we have

(x) E[A?+ u(X7)+ e]

E[A7+ wj(X7)]

E[G""(x)- w(x)-{G""(X)- w(X)}+ w(x)]

w2(x)
> for all i, k and j by induction.for j 1, 2. It can be seen that u w2

ProofofLemma 2.1. Let , 2 G and s and s2 correspond to them respectively,
then we have

s(y)s2(x)- $1(x)s2(y)s (y)_s (x)
s2 s s(y)s2(x)

__SI(X) {SI(y)--SI(X) s2(y)--S2(X)}s2(y-’--- SI(X S2(X
y > x,

from which Lemma 2.1 follows.
Proof of Lemma 2.2. We at first assume that q3, eG for some ->_ 1. Put

B(x)=tx((a,x]), B(x)=eco(B(x)-B(-)) and Bz(x)=ccoB(x). Let us define Wl
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and W2 by the following"

w(x) l(X)(x)dx,

w2(x)= B2(x)g(x)dx- BE(X)g(x)dx

respectively. Then we have

d
si(x) dx

Gi/z w) d/z + d
s,(x) dxW

d/z’ + d(Bl(x)-s(x))s,(x)

(,) _s(x+)d/,.du,’ + ,(x-)d + S,( +)
As _s/s is nonincreasing and B(x-)<-_O, we obtain B(x-)d(_s/s)>-O. On the other
hand we have

s(x+)
dlz’l-<- dBt <- dB.

CCo s,(x+)

Hence -d((1/s(x))(d/dx)(Gi/z-w)) is a positive measure for each i. As for
d /s(x))(d/ dx) G/Z w2)) we also have the same conclusion by a similar argument

making use of the fact that B2(x >= O, dl’l <-- (e(x 4- )/s,(x 4-)) dB2 and g/si is nonde-
creasing.

Now we give the proof of Theorem 1.1 which follows from Proposition 2.1.
Proof of Theorem 1.1. Owing to Proposition 2.1 there exists a maximum solution

(u , u2, u") of (SQV. 1) for each n and e. We can see in the same way as the
proof of Proposition 2.1 that all u have the same limit u, in Ho as e tends to 0 because
it holds that

(G- u, Gz- u) _-< (G)z- w, Gt- w)

and u+ as e0. Moreover this u, is the maximum element of 5e, defined by

5fn={v6H; ’(v,b)-<_(/z b),Vb>0,H,i=l 2,...n}

It can be seen in the same way as above that {u,} is a Cauchy sequence in Ho. The
fact that the limit u of u, in Ho is the maximum element of 5 also follows.

The proof of Theorem 1.1 implies that u has another expression as the solution
of infinite variational inequalities as follows.

Remark,. The above u is the unique solution of the following:

"(u,v-u)>-_</zi,v-u) VveSf, ueSf, i=1,2,’’’.

3. Stochastic control. Let X (gli, , Px, X) be a diffusion process on I LJ { 6}
associated with the generator cg given in for each i, where 6 is the terminal point

m_ (x dx s_(x) -x or uj_ r(x- dx g(x) x

where _s or g corresponds to or (g by
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added to an open interval L We define a class V,, for each rn 1, 2, 3,..., by

(3 V,, { v { V,,,k (X)} k_-o; V,,,k (X) is a integer-valued Borel
function on ItA {6} for each k}.

We call each v V,, a control. For each v a Markovian switching controlled process
i andXo (, , P, Yt) can be defined as follows. Let ==,==l

A /2. We define a stochastic kernel , (w., by

(w,A)=p(x(.))
Then we can see that by viue of a theorem of Ionescu-Tulcea there exists a unique
system {P, x e I U {8}} or probability measures on (, ) such that

P: Bj P:,(X)(dwl) l(W,, dw2) 2(2, do3) ,(w,, dW,+l),
B B2 B3 Bn

Be, i=1, 2,’’’ n+l

in the same way as the construction of the branching process (cf. [4]). Let us set

(w)=X,-a(Wk+l), kAt<(k+l)A, k=0,1,2,...,

w =(w, :,.. ") .
Then (P, ) is the controlled process by a control v which we are going to consider.
Now we noted in 2 that for each to a given measure g there corresponds a con-
tinuous additive functional A of bounded variation of X. Connecting these additive
functionals Ait, i= l, 2,3,... we define A() by

A,oCro)(w), O tA,

AX+ ,,Y)(2) 0 < t<2a,
(3.) A()

Aa+a.<’)(+), k< t<(k+ 1)a,

for (Wl, WE,’" ") fl. Then the pay-off function is defined by

(3.3) fi(x) inf E:[A],
Vm, mN

where N is the set of all integers. Our purpose is to prove Theorem 3.1.
THEOREM 3.1. Under the assumptions ofeorem 1.1 we have u(x)= fi(x) where

u is the maximum element of whose existence is insured by eorem 1.1.

4. Proof of Theorem 3.1. Let u be the maximum element of . Since G- u is
excessive with respect to (H, , LE(mi(x) dx)) there exists positive Radon measure
v such that G u Gv Let us denote by t the continuous additive functional
of bounded variation of X corresponding to v for each and by the additive
functional of controlled process X defined by the formula (3.2) from {}. Now the
following lemma is useful.

LEMMA 4.1. We have for all and v V
(4,) u(x) +[] e[A+ u(Y)],

(4.2) u(x)+ Ex[A] ExEA],

(4.3) u(x) <- inf E,[A’ + u( Yt)].
Vm, maN



396 HIDEO NAGAI

Proof of Lemma 4.1. We will write for brevity E.m’k or Gm’kld, m’k( or A.’k in
place of EY,k(’) or G’,,,,’,(’)lz’,,,,’,’) or AYe,t’ respectively. Let e[kA, (k+ 1)A) and
v Vm, then

Ex[E’G>[G’,"t,","(Xo)_ O,%,(x,_)]
k m,k

,xt,-, u, r,,,,)-u(r,,,,)-{o"’"u,"’"(r,)-u(r,)+u(r,,,,)-u(r,)]
o[,,(r) ,,(r,) + u(r) u r,)]

-mkdA,:(o/,) + u( r)- u( r,)].

Similarly we have for j 0, l, 2, , k- l,

Am,j m,j

Then we have

I m,j m,kE[A]= E Aa (%+)+At-ka(tOk+l)
Lj=0

E,[A’ u(Y) + u( Yo)].

(4.1) has been proved.
(4.3) is a direct consequence of (4.1) because At is a nonnegative additive func-

tional.
For the proof of (4.2) we at first remark that there exists positive constant A such

that P[sr <]= Pl(x)-<_ e-at for all t, x and i, where P is a transition semi-group
of the process Xi. For the principal eigenvalue of the generator in the sense of L- of
diffusion process X is uniformly (with respect to i) and strictly positive because of
the condition that 1<- s(x), m(x)<-_ Co, which implies the existence of the above A.
LetA’ be the continuous additive functional ofbounded variation ofX corresponding
to and A’ be the additive functional of X defined by (3.2) from {A’i}, then it
follows that total variation of A’ is dominated by A’ from [i -</z for all i. On the
other hand we have

vl-Av, V.,v .( YaEx,,o)]= Y EI.,aA (%+,)]
j=O

EVx[Gm"Jld,( YjA)- Gm’JlLll,( Y(j+I)A)]
j=0

_--< M Y’. e-x;a
j=0

=M
-e-ha

where M is a positive number. Because G(x, y) is bounded uniformly with respect
to x, y and and/z((a,/3)) < oo. Hence (4.2) follows from (4.1) by virtue of dominated
convergence theorem and monotone convergence theorem.

Now let us put

(4.4) u(x, t) inf E[A’ + u( Yt)].
Vm, mN

Then we have the following Lemma 4.2.
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LEMMA 4.2. We have for all s, t, x and

(4.5) u(x, t) <-_ Ex[Ais + u(Xs, t)].

Proof of Lemma 4.2. Let us put

V,,t={v V,,; v,,k(X){1,2,’’ .,l} for all x and k};

then we have for all x and

(4.6) inf E[A’[ + u( Yt)] lim inf Ex[A/ u( Yt)].
Vm 1 Vm,

Let us assume that [kA, (k + 1)A). We prove (4.6) by induction with respect to k.
At first for k 0, we have

E[A+ u( Yt)] >- inf E[A+ u( Yt)]
Vm,!

if v,,o(X) { l, 2,. , l). Therefore wc obtain

E[A+ u( Y,)]=> lim inf E[A+ u( Yt)]
Vm,

for all v V, and x. Hence we have

inf E[A+ u(Y,)]>= lim inf E[A+ u(Y,)].
Vm 1->oo Vm,!

The converse inequality is obvious. In order to prove (4.6) for general k we remark
the following" Owing to the measurable selection theorem there exists v* Vm.l such that

E*[A’*+ u( Y,)] inf E[A’[ + u( Yt)]
Vm,

(cf.[10]). Let us assume that (4.6) holds for k-1. We put ={v,j+}jo V for
v={vj}j=o V; then wc have

iEx[At + U( Yt)] E[Aa+ Ey[At-a + U( Yt-A)]Iy= Ya]

>- E[Aa+ inf EEAt_a+ u( Y-a)]ly= Y]
V,

E[Aa+ lim inf E[A_a+ u(Yt_a)]ly: Y]
l--, Vm,

I)* D*lim Ex[Azx+ Er [At-a + u( Y,-a)]ly= g].

We furthermore assume that v,,,o(X) { 1, 2, , l} and
{v,,o(X), v*,o(X), v,,(x),..., v(x),...}; then we have

E[A+E ,_a + u( )]ly= y] E[A + u( Y,)]

inf E[A+ u(Y,)].
Vm,

Therefore we obtain for v V,,

put _v=

E[A’[ + u( Yt)] >- lim inf E[A’[ + u( Yt)].
Vm,
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Hence we have

inf EVx[A’ + u( Yt)] >- lim inf E[A’[ + u( Yt)].
Vm loo Vm,!

Since the converse inequality is obvious we arrive at (4.6) for general k. By virtue of
(4.6) we have our present lemma as follows. Since infv vm Exs[A’; + u( Yt)] is monotone
nonincreasing with respect to rn and dominated by an integrable function of w, we have

(Xs, t)]E)c[As + u Ex[As + lira inf Ex[A, + u( Yt)]]
"V

lim
o.,

Ex[As+lim Exs[At +u(Y,)]],
l--

lim lim E E x*f[A*’x[A + + u(Yt)]]

where v*1 is a control which minimizes E[A+u(Yt)] in V.l. In the same way as
construction of controlled process in
for v {V.o(X), v.o(X), v.(x),...,v(x),...}, where V.o(x)=i for all x.
behaves under the law P from time 0 to time s. After time s moves under the law
P) for t[s+kA, s+(k+l)A), k=0, 1,2,..., successively. 6 can be defined
in the same way as (3.2) for given measures {J}j. Then we have

*l *l

x[+Ex [, +u(Y,)]]=[,++u(y,+s)].

On the other hand it can be seen that [++u(+)] is monotone nondecreasing
in s because (4.1) holds also in this situation. Therefore we obtain

E x[Ao+[A+ u(X,, t)] u(Xo, t)] u(x, t).

LEMMA 4.3. We have u,(x)= u(x) for all and x.
ProofofLemma 4.3. Let us put u, u,(. u(., t); then we have u, u by Lemma

4.1 and u,-Gi Pi(u,-Gi i) for all and s. Therefore we obtain

S

=l (ut- Gitx’- P(ut- Gitx’), u, u)-l (u G’lx’- Pi(u Gitxi), u,- u)
S S

<-- Gilx i- u pi( Gila, U), U,- U)
S

G v pi Givi u, u)
S

(v’, Pi.(u,- u))dr,
$

where (.,.) is a L2(mi(dx))-inner product. Since the last member converges to (v i, u,-
u) as s --> 0 we have ,i(u, u, u, u) < which means that u, H. Therefore because
of Lemma 4.2 we obtain

for all i. Hence we conclude that u, u for all t.
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LEMMA 4.4. We have infov,,,N E[A]= 0.
Proof of Lemma 4.4. By virtue of Lemma 4.1 and Lemma 4.3 we have

inf,v,,,,mNEx[At]=O. For all t. Let kA and define V,,,t {v V,,;vmj, j >- k, are
constant functions}, then the following equality holds"

Therefore we have

inf E[fi.] -< inf E[-Gm’kI.’’k( Yt)] <- M e-at.
Vm,,meN Vm,,,meN

Hence we obtain that info v,.,meNEVx[] <= limt_. M e-At 0.
Proof of Theorem 3.1. This is immediate from Lemma 4.1 and Lemma 4.4.

5. Examples.
Example 5.1. Let I (- l, 1),

s,(x) exp a,(Yj dy

m,(x) ( fo bi(y) )a,(x)
exp dea(y)

where ai(x) and bi(x) are bounded measurable functions such that 0 </21 a(x) <= c2 <
eo and Ib,(x)l-<-M < oo for all i. Then it is obvious that s and m satisfy conditions in
Theorem 1.1. _

d
-xmi(x) dx si(x)

can be written as

i= a,(x) + b,(x) -d-x
Example 5.2. Let I (- 1, 1),

s,(x)
)exp k,(y)(1 -y)-’+dy

(Io )exp /(y)(1 +y)-+Ody

O<x<l,

-l<x__<O

and mi(x) {s(x)}- where k and li are measurable functions such that 0 < ki, l < M <
oo for all i. It is easy to see that the above s and mi satisfy conditions in Theorem 1.1.
If we rewrite as d=(d/dx)2+b(x) d/dx,

-ki(x)(1 x)-l+a 0 < x < 1,
b(x)

l(x)(1 + x)-1+/3, < x _-< O,

then b(x) has singularities at -1 and 1.
The following example does not satisfy the condition that there exists

_
and cg G

such that << .
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Example 5.3. Let I- (-1, 1),

f exp (1-- k(1-- x)k-l), 1-- k-k <-- x < l,

;i(x)=iexp(1-k(l+k)k-), -l<x<--l+k-k,
[ l, otherwise,

and mi(x)= {si(x)}-1. i can be written as follows"

C= + b(x)--
dx’

_(l_x)
-+-’ l_k-<x<l

b,(x) (1 + x)-l+k-’, < x <_- + k-k,
O, otherwise.

We note that it is not necessary that s are continuous.
Example 5.4. Let I (- l, 1),

2--7, -1 <x<--
s(x)

2 + l’

-<x<l2
i+1’ 2 i+1--

and mi(x)= 1. Then these s and m satisfy the conditions of Theorem 1.1.
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CONVERGENCE RATES OF QUASI-NEWTON ALGORITHMS FOR SOME
NONSMOOTH OPTIMIZATION PROBLEMS*

EKKEHARD SACHSf

Abstract. In this paper we consider a class of nonsmooth optimization problems and investigate an
algorithm which makes use of approximations of the derivative. We study a growth condition on the objective
and various conditions on the step-sizes and the quasi-Newton operators to obtain linear, superlinear and
quadratic rates of convergence. These results are applied to a class of Broyden updates and two inexact
step-size rules.

Key words, nonsmooth optimization, quasi-Newton methods, superlinear convergence rate.

1. Introduction. In this paper we investigate the local convergence properties of
methods for the numerical solution of the following problems.

Throughout the paper, let X, Y be normed linear spaces, W a nonempty bounded
and convex subset of X and mappings

G: X --> Y, G nonlinear,

tb: Y --> R, b convex,

be given. Find W such that for all w W

(1.1) dp(G) <= qb( Gw).

We distinguish between b and G instead of using f= b G, because we do not
impose any differentiability requirements on b, but assume that G satisfies certain
smoothness conditions.

There are various examples of classes of problems which are of the type of
minimization problem (1.1):

Nonlinear approximation problems: G represents a nonlinear parametrization of
the approximating family of functions and b is a nondifferentiable norm, such as the
L1- or L-norm.

Nonlinear control problems" G is the operator which maps the input (control)
into the output (state). This can be described by a nonlinear ordinary differential
equation, partial differential equation or integral equation. 4’ itself represents the
cost-functional which is not required to be differentiable.

For a more detailed presentation of applications see Bertsekas [2] and Sachs [22].
In order to solve these problems we linearize the cost-functional as far as possible,

which means we replace b(G(. )) at a point wi W by 4’(Gwi + Gw,( Wi) ). However,
this requires the computation of G’w, which could become costly as in the control
problem example. Thus we use an approximation Bi of the derivative G’w, and we
obtain a quasi-Newton-type method.

Let L(X, Y) denote the space of all linear and continuous operators from X
into Y.

ALGORITHM
Step 0: Select Woe W, an update procedure for B L(X, Y) and a step size

procedure for

* Received by the editors August 28, 1981, and in revised form January 25, 1984.

" Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205.
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Step 1: Compute vi W such that for all v W

ch Gw, + B, v, w, <- Gw, + Bi v wi ).

Step 2" Determine the step-size A, [0, 1].
Step 3: Set w+=wi+A(v-w) and determine B+L(X, Y) by the update

formula.
Step 4: Set i=i+l and go to Step 1.

For the purpose of abbreviation we introduce a set valued mapping LB which
maps W into subsets of W.

DEFINITION. For each w W, B L(X, Y) define

(1.2) LB(w)={v W: (Gw+B(v-w))<-_qb(Gw+B(u-w))forall u W}.

Ln can be single-valued or even Ln(w)= can occur. The latter case is a question of
existence of solution of optimization problems which need to be solved in Step and
is discussed in [22]. In the case that w Ln(w) holds, we arrived at a stationary point
and the algorithm should be stopped, see [22].

As it is evident from Step 1, the function b of the objective and the convex set
W have to be structured in such a way that the minimization in Step can be performed.
For example, linear Chebyshev approximation problems with linear constraints can
be solved by various powerful routines.

The step-size determination in Step 2 has been incorporated because it is essential
for global convergence results, see Sachs [22]. We consider two versions which resemble
the ones given for smooth optimization problems by Armijo [1] and Goldstein [9].

Problems of the type (1.1) have been investigated numerically by Bertsekas [2]
and Poljak [21]. Both authors rewrite it as a constrained problem

minb(y), y=Gw, wW,

and use the augmented Lagrangian method for its solution.
For the given algorithm a global convergence analysis has been presented in Sachs

[22]. Local convergence rate results for methods ofthis type without step-size determina-
tion are proven in Gruver and Sachs 11 ]. In a recent publication, Mine and Fukushima
[19] consider a sequence of convex subproblems for minimizing a sum of a smooth
and a nonsmooth function.

Since b G is a nonconvex and nondiiterentiable, but locally Lipschitz-continuous
function, certain subgradient techniques are also applicable, see e.g. Goldstein [10]
and Mifflin 18].

Probably the most extensive literature can be found for nonlinear minimax prob-
lems or nonlinear Chebyshev approximation. Algorithms for these problems have been
proposed since 1959 by Ishizaki and Watanabe [16], Zuhovickii, Poljak, and Primak
[23], and Osborne and Watson [20] until very recent papers, e.g. by Han [14] or Hald
and Madsen 12]. If we confine ourselves to methods which use quasi-Newton-updates,
we find a quasi-Newton-type method for discrete Chebyshev approximation in Madsen
[17], Hald and Schjaer-Jacobsen [13], and Hald and Madsen [12]. Other applications
of quasi-Newton methods by Hornung [15] and Han [14] use different algorithmic
schemes.

Section 2 is devoted to convergence rates. Linear convergence is obtained, if the
step-sizes stay away from 0 and if the approximations Bi are close enough to G.
Superlinear convergence holds, if the step-sizes converge to and if the operators Bi
approach G on a sequence of one-dimensional subspaces. This condition is a well-
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known characterization of superlinear convergence for quasi-Newton methods in the
smooth case, see Dennis and Mor6 [5]. Under more stringent conditions we prove
sharper convergence rate estimates such as quadratic convergence.

In the third section of this paper we consider a growth condition of the nonlinear
objective b G as we move away from the minimum. This condition is essential for
the convergence rate proven later in the context, see Example 2.7. It is known in
Chebyshev approximation under the name of "strong uniqueness" which is closely
related to Haar’s systems of functions, see Cheney [3]. In the convergence rate analysis
for conditional gradient methods and related Newton-type methods, similar growth
conditions have been used by Dunn [7], [8]. We give two characterizations of the
growth condition using the derivative of G and prove a continuous dependence for
the solution of the linearized problem at the point of linearization.

Proof for the results on the convergence rates and the properties implied by the
growth condition are the contents of 4 and 5.

Broyden updates are shown to satisfy the linear convergence requirements and
also those for superlinear convergence, provided the range space of Bi and G is
finite-dimensional. These theorems are the subject of 6.

In the last section we give modified versions of Goldstein’s and Armijo’s step-size
rules which have been used in Sachs [22] to prove global convergence results. Here
we show that ifwe are close enough to the optimum, then the step-sizes are automatically
set equal to 1. This implies that the condition for a superlinear convergence rate is
always satisfied.

The theory has been provided for infinite-dimensional spaces in order to be able
to use it for control problems and to provide a basis for a convergence analysis of
adaptive methods, where the discretization error of the solution of the differential
equation is subsequently reduced. However, also from a finite-dimensional viewpoint
we give some more insight into the convergence behavior for these quasi-Newton-type
methods.

2. Theorem on rates of convergence. In the derivation of convergence rates for
optimization algorithms, various conditions such as regularity of the gradient at the
optimal point or positive definiteness of the second derivative play an important role.
In many cases they imply a certain growth for the objective as one moves away from
the minimal point. The condition which we will use can be interpreted as a certain
uniqueness property or as a growth condition.

DEFINITION 2.1 (growth condition). The function tk G satisfies the growth condi-
tion at , if there exist numbers a,/3 > 0 such that for all w W with w- -< a we
have

(2.1) ck( Gw) 4’(0) >= w 11.
This inequality does not only imply that is a strict minimal point but gives an

estimate on the growth of 4 G when moving away from .
Conditions of type (2.1) have been used in various contexts. In Chebyshev

approximation it is called a local strong uniqueness condition and has been used for
proofs of convergence rates by Cromme [4]. In a similar form it also occurs in the
convergence rate analysis of algorithms with smooth objectives. We refer to the papers
by Dunn [7] and [8].

Characterizations and implications of the growth condition are presented in 3.
An example also shows the necessity of these conditions in order to obtain the
convergence rates.
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According to different assumptions on the approximate behavior of Bi with respect
to G and the step lengths Ai we achieve different estimates on the rate of convergence.
The weakest result is a linear convergence rate.

THEOREM 2.2 (linear convergence). Let dp be convex and continuous on Y and
Lipschitz-continuous on bounded sets, G Frdchet differentiable at v W, and let dp G
satisfy the growth condition at . Suppose {Ai}c [0, 1] satisfies
(2.2) Ai:>A*>0 foralli.
For each K (1 -A*, l) there is an e >0, such that if wl Wand {B}c L(X, Y) satisfy

(2.3) IIw,-ll_-<
and

(2.4) liB,- 11--< for all

then for each sequence {w} W defined recursively by

(2.5) wi+=w,+Ai(v,-wi), viLB,(w,)\{w,}
we obtain

(2.6) w,+,- 11-<- w,- 11
for 6[.

Theorem 2.2 shows that linear convergence is achieved, if the operators B stay
in a neighborhood of G and the step lengths Ai are bounded away from zero. The
following corollary gives an application of this theorem.

COROLLARY 2.3. Let the assumptions of Theorem 2.2 be satisfied and select
(0, 1]. Let G.) be continuous at v and let

Wi+l"-Wi’Jf’1(Vi--Wi), vi LB,(wi).
For each rate factor (1 A, there exists e > 0 such that

and

(2.7) B, G’w, --< for
imply the linear convergence rate (2.6).

If G is given by a nonlinear differential equation as e.g. in control problems, then
G’w, is defined through a system of linear differential equations. Usually, this is solved
by a discretization scheme. Corollary 2.3 tells us that the local convergence rate is
linear if the discretization error is small enough during the whole iteration process,
but does not need to tend to zero as the minimal point is approached.

For superlinear convergence we have the following conditions.
THEOREM 2.4 (superlinear convergence). Let cb be convex and continuous on Y

and Lipschitz-continuous on bounded sets, G Fr.chet differentiable at W, and let
dp G satisfy the growth condition at . There exists e > 0 such that if {B}c L(X, Y),
v, Ln,(w,), and {A,}c [0, 1]fulfill

(2.8) ]Ai- 1[-<_ e, lim Ai

and

(2.9) w,- -< , B,- G [1-<_ e for all
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and

(2.10) lim
II(n,- G:)(v,- w,)ll-0,

then we obtain for the sequence {wi}c W, defined by

(2.11 wi+l w, + A(v- wi),

(2.12) lim
w+,- ll 0., Ilwi-ll

Observe that in order to obtain a superlinear rate of convergence, the step-sizes
have to converge to zero and the B have to approximate G in the direction v-w
with increasing accuracy. However, it is not required that B has to converge to G
in the operator-norm; it only has to stay in a small neighborhood of G.

A refinement of Theorem 2.4 is the following.
TnozM 2.5. Let be convex and continuous on Y and Lipschitz-continuous on

bounded sets, let G satisfy the growth condition at W and let G be Fr6chet
differentiable at W such that for some e*, p > 0, u (0, 1] the following inequality
holds for all w W with w- e*

(2.13) IlGw-G-G(w-)l[p[[w-[[ ’+.
ere exists e (0, e*] such that if { Bi} L(X, Y), vi L, (w), and {Ai} = (0, satisfy
for fixed 6 > 0 and all

(2.14) A 6[Iv- wl[ ,

then we obtain for the sequence {wi}= W defined by

(2.17)

that for some 6o > 0

Wi+l Wi + ii( 1)i- Wi)

for large enough.
Remark 2.6. The inequality (2.13) is satisfied for v if G is Fr6chet differentiable

on W and G.) is Lipschitz-continuous on W. If we choose

(2.19) Bi=G’w, andA,--min{1/2,1-6llv,-w, lJ},
then under the assumptions of Theorem 2.5 we obtain a quadratic convergence rate.

In order to see that the growth condition (2.1) is essential for local convergence
rates, let us discuss an example where (2.1) is not satisfied.

Example 2.7. Let X =[, Y=C[-1, 1], W=[-w, to]. We want to approximate
uniformly the function x2 by the nonlinear family of functions w2- 2wx- wl l+,
0< v< 1, on the interval [-1, 1]. Hence define G: Wo Y by

(w)(x) (x w)= + Iwl ’+,
b(y)= .max ly(x)l, y C[-1, 1].

(2.18)
iiw,_ ll,+
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Since for each w W

+lwlt+>-(Gw)(x)>= 1-(1 +lwl)+lwl’+e-l-lwl ’+,
we have

dp(Gw) + Iwl ’/,
0 is the solution and

4(aw) (a0) Iwl+, w e

The growth condition (2.1) is not satisfied whenever v > 0. For the linearized problems
we obtain for v e [-1, 1]

(G’wr)(x)= r(2(x-w)+(1 + v)lwl" sgn w),

and for sufficiently small to and v

w+ a’(v w)ll
max [l+w
<_x.<:_

l+v -(x- w)2+ 2(v- w)(x- w)+(1 + v)w"(v- w)l

max II+lwl++(v-w)=-(x-v)2+(l+v)lw[’sgnw(v-w)[
-lxl

=11 +[wl+"+(v-w)2+(1 + v)lwl(sgn w)(v-w)

l+v )2 (1 + v)2---II/lwll+/ -w/---Iwl sgn w ---q--Iwl=

The minimum is obtained for

l+v.
v w---z--lwl"’ sgn w,

which results with step-size into the iteration rule

l+v
w,+ w,--

2
w’[ sgn w,.

This is the type of iteration with Ai 1, Bi G’w, which should give a good local
convergence rate. However, we show

l+v
(2.20) ]w,I -"<- Iw,+,l > Iwil.4

For w > 0 we have (w < 0 is treated analogously)

l+v l+vv. WiWi+l Wi- Wi --Wi ,Or) 2Wi <
2

l+v
:> Wi

4

Equation (2.20) tells that there is no convergence at all, no matter how close to the
minimal point we select our starting point.

3. Discussion of growth condition. The growth condition (2.1) is of local nature
and can be shown to be equivalent to a global condition for the linearized problem.
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Since b is convex and continuous, its directional derivative defined by

(3.1) b’(w, h)= li+-,o -(h(G(w+Xh))-ch(Gw)), w,hX,

exists.
LEMMA 3.1. Let h be convex and continuous, and G be Frdchet differentiable at
W. Then all the following conditions are equivalent:
a) There exist

(2.1) b(w)-

b) There exists a y > 0 such that for all w W

(3.2) 6(G+G(w-))-6(G) >- llw-[I.
c) There exists a 6 > 0 such that for all w W

(3.3) 6’(Gk,

The next lemma states a local Lipschitz continuity of the operator Ln(. near
Furthermore we obtain an estimate of the Lipschitz constant which tends to zero under
certain conditions.

LEMMA 3.2. Let qb be convex and continuous on Y and Lipschitz continuous on
bounded sets and G Frchet differentiable at v W. Suppose b G satisfies the growth
condition at W.

(i) For all K > 0 there exists e > 0 such that for every B L(X, Y) and w W with

(3.4) liB-
we obtain

(3.5)

for all v L(w)\{ w}.
(ii) In particular there are Co>0, too>0, and ,1"- with rl(r)O for rO such

that if (3.4) holds with e Co, then

(3.6)
IIv-wll

for all v Ln(w)\{w}.
The growth condition also implies a growth estimate in the neighborhood of
LEMMA 3.3. Let cb be convex and continuous on Y and Lipschitz-continuous on

bounded sets and let G be Frchet differentiable at W. Suppose qb G satisfies the
growth condition at . Then there exist Yo, e >0 with the property" If we W and
B L(X, Y) are such that

then

(3.7)

holds for all v Ln(w).

w- 11 < and B- GII--< e,

olIo- wll (Gw)- (Gw+ B(o-

Remark 3.4. In both preceding lemmas, the assumptions can be relaxed if Y is
a finite-dimensional space. This follows from the fact that b is locally Lipschitz
continuous as a convex continuous function. Without the Lipschitz continuity of b on
bounded sets the statements (3.5)-(3.7) still hold for v in suitable neighborhoods of .



408 EKKEHARD SACHS

(4.1)

where

(4.2)

4. Proofs of 3.
Proof of Lemma 3.1. The Fr6chet differentiability of G yields

b(Gw) b(G+ G’(w- ,)+ dw)

Ildwll (llw- 11)11 w- 11, lim (r)--0.
rO

Since b is convex and continuous, it is locally Lipschitz-continuous at G. Hence, we
infer from (4.1) and (4.2) that there exist e, p > 0 such that for all w e X with w [I =< e

(4.3)

Assume (a) holds. Because of (4.2), there is an el > 0 such that for r with 0 < r <
we have rl(r)<-/2p. Together with (4.1)-(4.3) we conclude from (2.1) for all we W
with w k <= e min (e, el, a)

h(Gv + G(w )) c(Gk)

(4.4) 6(Gw) 6(Gk) + 6(Gw) 6(G+ G,(w ))

>-(t -n(ll w- 11))II w- 11--> llw- 11,

This inequality however, is only the local version of (3.2). Let v be an arbitrary element
of W with v k. Define

v +x(v-) W.

Then

and (4.4) and the convexity of b imply

tllv_l t-llv-l[
<= 4,(G,+ AG(v ))

<= A(6(G + G(v- ))-ck(Gk)).

Division by A yields (3.2) for each v e W with y =/3/2.
Assume (b) holds. Then, for we W define wx k+A(w-ff)e W, A el0, 1]. (3.2)

implies

ck(G+hG’(w- ,))-ck(G,)= 4(G,+ G(w ,))-

--> llw- 11 Allw- 11.
Division by A and taking the limit for A 0 yields (3.3) with 6 y.

Assume (c) is true. (4.2) implies that there is e > 0 such that r/(r)-<_ 6/4p for all
0<r<-e3 Set a=min(e, e3) and take any we W with Ilw-[I-<_. (3.3)yields that
for A small enough and positive

6

llw- 11 _-< -(,#(a /,a(w- ,))-
(4.5)

<= 6(G’+ G(w ))
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Equations (4.3) and (4.5) imply

Gw) 4’( Gk) 4’(G: G(w )) ch( G,) + dp( Gw) 4’(G G’(w ))

->- (-o(llw- ll)) ,lw- l,

6

4

Hence (2.1) holds with/3 ,3/4 and the proof is completed.
Proof ofLemma 3.2. (ii) By Lemma 3.1 the growth condition for b G at k e W

implies that (3.2) holds. This estimate and the definition of LB with u in (1.2) yield

yll v- ll <= dp(G+ G’(v- ))-dp(Gw+ B(v- w))
(4.6)

+ dp(Gw+ B(- w))- dp(Gk)

for all ve LB(w) with we W and Be L(X, Y). If we pick some e*>0 and restrict w
and B to (3.4) with e e*, then all arguments of b in (4.6) lie in a bounded set. Hence
for some constant K1 > 0 the following estimate follows from (4.6)

,11 v 11 --< ,(11Gw G+ B G’)( v w) G(w

(4.7) + Gw G+ B(k w)[I)
--< ,(11 (n- O)(v- w)ll / I1(- n)(w- )11 / 2,(11 w- II)II w-

with

(4.8)
lim r/l(r) 0.

0

With (4.7) we estimate further

3’llv- ll t,(2]1 (B- G)(v- w)ll + liB- GII IIv-

(4.9)
IIv-wll

for all we W, B e L(X, Y), v e Ln(w)\{w} with (3.4). Define

(4.10) eo min {e* -} 41 41
o- (’)=

Then for all we W, B e L(X, Y), v e Ln(w)\{w} which satisfy

(4.11) IIw-llo*, IIn-G[lo*
we deduce with (4.9)-(4.11) that the following inequalities hold"

2
-(3’ 3111 n GII) v 11

< 4__A(II(B- O)(v- w)ll
IIv-wll

II(B-G)(v-w)ll
IIv-wll

+ (llw- 11))IIw- 11.
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This completes the proof of (ii). In order to show (i), choose for given K > 0 a number
e e (0, Co) with

(4.12) Koe + /(e)--<_ K.

Thus for all Be L(X, Y), we W, veLn(w)\{w} with (3.4) we obtain from (3.6)

IIv- 11 <- (oll B GII / n())ll w- 11 llw- ll-
Proof of Lemma 3.3. The growth condition of 4 G at implies by Lemma 3.1

the existence of y>0 such that (3.2) holds for all we W. If we add b(Gw)-
4(Gw+ B(v-w)) on both sides of (3.2), we obtain

ck(Gw)-dp(Gw+ B(v-w)) >-

(4.13) dp( Gw + B( v w))

+ ,/,(Gw)-(G+ G(w- ))

for all we W, Be L(X, Y), ve La(w). Choose some e*>O and restrict Be L(X, Y) to

(4.14) [IB-GII<-e*.

Then all the arguments of b in (4.13) lie in a bounded set and a Lipschitz constant

K > 0 exists such that (4.13) can be estimated by

,/,( Gw) 4,( Gw + (v w))

-> w ’,, G Gw (,: w)II , Gw G G’ w

Hence

(4.15)
(Gw)- (Gw+ n(v- w))> llw- 11- 2tc,r/(ll w- ll)][ w- 11

, II(G- B)(v- w)ll- ,11 G(o- )11,

where 7" (0, c)-R satisfies by the Fr6chet differentiability of G at

and

Choose el > 0 such that

Gw G G’(w )11 n (ll w II)11 w

lim r/(r) 0.
r--O

(4.16) In(r)l-< y for all re(0, e]
12r

and define

(4.17)

By Lemma 3.2 there exists e: > 0 such that for B e L(X, Y), w e W with

(4.18) liB- GII
we obtain for all v e Ls(w)\{w}

(4.19) IIv- 11 -< llw- 11
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and hence

(4.20)

Define

(4.21)

Hence,

If w W and B L(X, Y) are such that

(4.22) w w <-- and n G -< ,
then we deduce from (4.15) with (4.16)-(4.22) that

ok(Gw) b(Gw + B(v w))

--> rllw-ll-2, "/ IIw-ll-(+Z)llw-ll-llGllllw-ll
12t

_>_llw_ll>
2 2( -) v w roll w

which completes the proof.

5. Proofs of 2.
Proof of Theorem 2.2. For given A* (0, 1) and r (1 A*, 1) define

1--
(5.1) ff 1-

A*
(0, 1).

By Lemma 3.2 there exists e > 0 such that (3.4) implies

(5.2) I1- 11 -< llw- 11
for all v LB(w) and w and B with (3.4). Therefore, (2.5) implies

IIw=- 11--<(- x,)ll w,- 11 / A, v,- 11
_--< (1 A,(1 ))II w,- 11

llw,-ll.
Since in particular IIw=- 11 < IIw,- 11--< , an induction argument along the same lines
then shows the linear convergence rate.

Proof of Theorem 2.4. Conditions (2.8) and (2.9) imply from Theorem 2.2 the
linear convergence of {w} to . Using the estimate (3.6) in Lemma 3.2(ii) we obtain

lim
v, , __

,% lim
I1( B, G)( v, w, )11

/ ,,o lim ’O (11 w, II) o.

lim w,/,. lim h,) + lim A, 0., w, 11 ,oo , IIw,- 11
Proof of Theorem 2.5. (2.13) implies for the function r/in Lemma 3.2(ii) that for

some fixed pl > 0

r(5.3) r/(r) < p,

e =min e*, el, ez,
6tel(to + 1) ’=2(t + 1)"
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for all re [0, e*]. (3.6) in connection with (2.15) yields

(5.4) v, 11--<-(0 ,- w, II" + , w,- 11")11 w,- 11.
Choose e in (2.16) so small that Lemma 3.2(i) yields

(5.5)

for all
Then (5.4) can be estimated with (5.5) by

(5.6)

The construction of the next iterate yields with (5.5), (5.6) and (2.14)

which had to be shown.
ProofofRemark 2.6. The estimate (2.14) clearly follows from (2.19) and similarly

implies (2.19) with the Lipschitz-continuity of G.) for some constant > 0

(5.7)

Equation (3.5) in Lemma 3.2 yields for some (0, 1)

i.e,

w,- i w, v, II.

Substitute this inequality into (5.7) to obtain (2.15) with v 1.

6. Update formulas. In order to approximate G’w, by Bi there are in general two
classes of formulas. If G’w, is given by a linear ditterential or integral equation, Bi
could be a discretization scheme. A check of the local and global convergence require-
ment should be performed for each update formula individually. In this section we
investigate the so-called Broyden-class of operators Bi. In order to prove (2.10) we
shall make use of an inner product defined in the space X. For this section we suppose
the following

Assumption 6.1. Let X be equipped with an inner product (., and with the norm

II. =4<.,.>.
For example, if we are dealing with control problems and select X L[0, T],

then, in order to satisfy Assumption 6.1, we equip L[0, T] with the L2-norm and the
usual inner product

{a, b} a( t)b( ) dr, a, b e L[O, T],

and obtain a pre-Hilbert space.
As pointed out in [11, p. O0tt], rank-one updates with useful estimates reduce to

]BiPi, Pi[ + o’i(6. l) Bi+l Pi B, cri
(PiPi) (Pi,
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where Yi Gwi+ Gwi, pi w+ w, p, o- ff, and operators ]y, x[ L(X, Y) defined
by

]y, x[(r) (x, r)y for all r X.

The factors p and r are scaling factors.
THEOREM 6.2. Let cb be convex and continuous on Y and Lipschitz continuous on

bounded sets, G continuously Frdchet differentiable with a locally Lipschitz continuous
derivative on a ball of radius e* around and let cb G satisfy the growth condition at. Suppose {Ai} c [0, satisfies

(6.2) h>=h*>O forallit.

For each (1 -h*, 1) there is e > O, such that if w W and B L(X, Y) satisfy

(6.3) IIw,-ll<-_,
(6.4) liB,- GII -< ,
then we obtain a linear convergence rate for the iterates

(6.5) wi+=wi+Xi(vi-wi), vi6Ln,(wi),

provided the {Bi}c L(X, Y) are updated by (6.1) with

(6.6) 0=< r,-<2

and

(6.7) [1 -p,I -< llw,- ll
for some fixed 6 > O.

Proof Select K e (1 h*, 1) and define a number ff e (0, 1) by

1--K
ff=l

A*

By Lemma 3.2 there exists e > 0 such that for e2 min (e*, e)

(6.8) liB- GII =< ez and IIw- 11--< 2
imply

(6.9) [[v-ll_-<llw-ll forall veL(w), vw.
By induction we prove that (6.8) holds for all N. (6.8) is true for i= by choosing
e <= e. Suppose (6.8) is satisfied for Bi, w, 1, 2, , r- 1, r- N fixed. (6.1) implies

(6.10) [IB,+l-a[l<=llpB-G’w]] I-r,(p,,p,)ll+(p,,p)ll]y,-Gp,,p,[[I.

The inner product on X yields with (6.6)

(6.11) I r (Pi, p)ll

From (6.9) we conclude as in the proof of Theorem 2.2 that

w,/,- 11 Ilw, / ;,(v,- w,)- ll <-- [Iw,- ll, i= 1, , r- 1.
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This inequality and the local Lipschitz continuity of G.) yield for i= 1,..., r-1

[I]y,- Gp,, P,[ii <= Ilp, Ily- G’a,p,

-<- I1( a’w,
(6.12)

<= (,ll Wi+l- lll +(1 ’,)II W,- ll)llp, -
<--

The existence of r e [0, 1] is a consequence of the continuity of G.) and the mean
value theorem, e.g. Dieudonn6 [6, Thm. 8.6.2], and y > 0 denotes the Lipschitz constant.

Choose

(6.13) e e2(1 K)(1 + 27+ 6(e=+ G:II))-’.
The linear convergence rate estimate implies for i= 1,. , r-

(6.14)

Equation (6.10) can be further estimated using (6.11), (6.13), (6.6) and (6.7)

n,+l- GII--< liB,- GII / l1 o,I n, / ,rll w,- 11
<- B, / ( B, / 2r)ll w, W II,

where i= 1,...,r-1. We use this inequality and (6.14) consecutively for i=
1,. , r- to obtain with (6.14) and 0< K <

r--I

i=1

r--I

i=1

Equation (6.14) already implies for i= r-1

Hence we can apply Theorem 2.2 which proves the linear rate of convergence.
In order to prove the superlinear convergence rate we need a stronger convergence

requirement for the sequence of {Bi} converging to G. We show its validity for
Broyden updates in a weak sense.

THEOREM 6.3. Let G be continuously Frchet differentiable with a Lipschitz con-
tinuous Fr.chet derivative on a ball of radius e* around , and let {w}c Wa sequence
of iterates which converge linearly to w e W, i.e.

for some K e (0, 1) and all eN. Suppose the associated sequence of operators {Bi}
defined in (6.1) with

(6.15) pi 1, tr <- tri <- 2- tr

for all and some fixed tr > 0 satisfies for some e > 0
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Then

l((B,- G’)(p,))
lim 0 for each Y*.

Proof From (6.1) we deduce for each l Y* and x s X

cr
(p’’ x)

l( Bp, y,)/((B,+,- G)(x)) I((B,- G))(x))- ,(p,,
(6.17)

(B,- G) x- ,.,. ,P,/ + tr, l(y,- Gp,).
,Pi, Pi) / (Pi,

If (., .) denotes the inner product in X and (Bi-G’)*" Y*-X* the formal
adjoint operator, then with

(6.18) b,=(B,-G)*l,

(6.19) sup b,, x-tr,(p’ (b,, b,)-cr,(2-cr,)
1/2

Ilxll-<-t (P,, p,)P’ (p,, P,) ]

and as in (6.12) with y (2-tr)y > 0 for sufficiently large

(6.20)
(pi, x)

sup tr, IlY,- Gp, < 11
Itx I1-<-, (.pi, pi>

y’ w

We take the supremum over all x in the unit ball in (6.17) and use (6.18)-(6.20) tG
obtain for => io

(6.21)
+ II/11 w, 11

tri (p, hi)2<--II b, ll- (2- r,)- (p,, p,>ll b,
+ Illlllllw,- 11.

Since for all IN

IIb, 11111
holds by assumption, we obtain through a summation in (6.21)

(6.22) 0 --2ell/ll ,=,o

(Pi, hi)2

(p,, p,) <---IIbll / )’llllll E IIw,- Wll.
i= io

The linear convergence rate implies that

2 w,- <
i=1

and using (6.15) in (6.22) we deduce that

Y, (P’ hi)2
is finite,

i=1 (Pi,

and therefore

lim
/((B,- G)(p,))
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Condition (2.10) for superlinear convergence is satisfied, if for instance the range
spaces of Bi and G can be embedded in a finite-dimensional space, in particular if
a finite-dimensional problem is being solved.

7. Step-size rules. In order to obtain global convergence results for this method,
an implementation of step-size rules is necessary. An analysis of global convergence
properties for three different step-size rules is carried out by the author in [22]. We
will pursue this investigation with respect to local convergence in this paper for the
two more practical, inexact step-size rules. This is their definition:

Modified Goldstein rule. Select 6 (0, 1/2) for the algorithm, and let Bi L(X, Y),
W W, v LB, Wi) with

(7.1) ch Gwi + B, v, w, < dp (Gw,).

If

(7.2) 4,( Gv,) 6( Gw,) <- ( 4,( 6w, + B,(v,- w,))- 6(

then set hi 1, otherwise select hi [0, 1] such that

(7.3)

(- )x,(6(aw, + n,(v,- w,))-6(Gw,))

<-- 6(G(w, + x,(v,- w,))) 6(

<-- 6 Gw, + , v, w 6 (Gw,)).

Modified Armijo rule. Select 6 (0, 1), /3 (0, 1) for the algorithm, and let Bi
L(X, Y), wi W, vi LB,(wi) with (7.2). If (7.2) holds, set hi 1. Otherwise select the
smallest integer k which satisfies

(7.4) dp(G(wi+flk(vi-wi)))-dp(Gwi)<=6flk(qb(Gwi+Bi(vi-w,))-dp(Gwi))

and set Ai fig.
For a discussion of certain properties of these step-size rules we refer to [22].
In the case of a superlinear rate of convergence it was required that the sequence

of step sizes converges to 1. We show in the following theorem that this is the case
for the two inexact step-size rules mentioned above.

THEOREM 7.1. Let b be convex and continuous on Y and Lipschitz-continuous on

bounded sets, G continuously Frdchet differentiable on a ball of radius e* around W
and let th G satisfy the growth condition at . There exists e > 0 such that if {Bi}t
L(X, Y), 1.)i ZBi(Wi) fulfill (7.1),

wi <- e, Bi G <= e for all [(7.5)

and

(7.6) lim
II(n,- )(v,- w,)ll

=0,
’ IIv,-w,

then we obtain for the sequence {wi}c W, {i} defined by

w+ w + ;t(v- w)

and either the Amijo or Goldstein step-size rule

lim
w,+

0.
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Proof. We show that hi is set equal to for sufficiently large. By Lemma 3.3
there exist 3,0>0 and Co>0 such that (7.5) with e= eo implies for all i

(7.7)

Since b is Lipschitz continuous on bounded sets we also deduce from (7.5) with e eo
that for some > 0

(7.8)

for all . If 0< e min (Co, e*), then the differentiability assumptions on G imply
for (7.8)

6 (Gv,) 6 Gw, + n, v, w,))
(7.9)

K (ll( Bi G)( vi wi )11 + G;, G v, w, II)
with [6, Thm. 8.6.2] and

Gw,+(o,-w, GII.(7.10) IIGz, ll =otmax
ere exists io such that (7.6) implies

(7.11)
II(B,-G)(v,- w,)ll_< r( _).

Fuhermore, there exists e2> 0 such that (7.5) yields with Lemma 3.2 and e e2

The continuity of G.) implies the existence of e > 0 such that

To(7.13) Ilu- 11 11;-1( ).

If e =min (e*, Co, el, e, e3) then (7.13) holds for u z because of (7.12) and fuher-
more we have the following estimates using (7.7), (7.9), (7.11) and (7.13) and for i io

(Gw,+ B,(v,- w,))-6(Gw,)

6(Gv,)-6(Gw,+ B,(v,- w,))
6 6w, + ,(v, w,)) 6 (Gw,)

I1( B, )( v, w, )11 + ;, vi wi1-
ro v,- w,

=l--- (1- =.

Hence (7.2) is satisfied and we set I for i io.
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DETERMINISTIC IMPULSE CONTROL PROBLEMS*

G. BARLESf

Abstract. We prove that the optimal cost function of a deterministic impulse control problem is the
unique viscosity solution of a first-order Hamilton-Jacobi quasi-variational inequality in

Key words, deterministic impulse control, dynamic programming principle, viscosity solution, first-order
Hamilton-Jacobi equations, quasi-variational inequality

Introduction. Impulse control problems lead, via the dynamic programming prin-
ciple, to the study of various kinds of quasi-variational inequalities (see for more
details and for many examples A. Bensoussan and J. L. Lions [3]).

In this work, we are interested in deterministic impulse control in RN. More
precisely, our main result states that the optimal cost function of a deterministic impulse
control problem is the unique viscosity solution of a first-order Hamilton-Jacobi
quasi-variational inequality in N of a particular form:

max(H(x,u, Du),u-Mu)=O in,(P)

where

H(x, t, p)= sup (b(x, v). p+ht-f(x, v)),

Mq(x)= inf (q(x+)+c(:));

V is a separable metric space, b and f are functions from V into , c is a
continuous positive function, A > 0 (precise assumptions are detailed in 2). Let us
just mention that the state of the controlled system is given by the solution Yx(t) of
the following problem"

dyx(t)+b(yx( t),v( t)) O, ]0,, O,+l[,
dt

yx(O)=x,

y( 0 -l-O) Yc( O, -0) + ,,
where 0 (0i)i is a nondecreasing sequence of positive reals which satisfies:
when n--> +o and (:i)u is a sequence of elements of (+).

Finally, v(t) is any measurable function which states its values in a compact subset
of V. Finally, K (0, sc, v(. )) is the control The optimal cost function u is given by"

u(x)=inf f(y(t), v(t)) e-’ dr+ c(i)c-",

We first recall below the definition and main properties of the notion of viscosity
solutions for problems like (P). These results are easy extensions of those obtained
by M. G. Crandall and P. L. Lions [6], M. G. Crandall, L. C. Evans and P. L. Lions
[5] and P. L. Lions [10] for first-order Hamilton-Jacobi equations. Let us just mention

* Received by the editors December 1, 1983, and in revised form May 25, 1984.

" ENS St. Cloud et Ceremade, Impasse du Docteur Roux, 83150 Bandol, France.
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that the form of M creates some difficulties for stability results (see for more details
G. Barles ]).

In 2, we introduce the deterministic impulse control problem and we prove
various results concerning the optimal cost function u which are similar to those
obtained in the classical deterministic case (see P. L. Lions [10]). An essential tool is
the dynamic programming principle (we give two forms of this result). We indicate
some properties of u (its regularity, its behavior at infinity, the fact that u is the
maximal subsolution of the Q..I. in the distribution sense). Finally, we show that u
is a viscosity solution of (P).

In the last section, we prove that problem (P) has a unique viscosity solution. In
this context, the particular form of H and the well-known results of optimal stopping
time problems enable us to adapt a proof due to B. Hanouzet and J. L. Joly [9] for
the elliptic Q.V.I.

The methods we use combine elements from the deterministic control (see P. L.
Lions [10]), from the first-order Hamilton-Jacobi equations (especially the methods
due to the notion of viscosity solutions--see M. G. Crandall, L. C. Evans and P. L.
Lions [5], M. G. Crandall and P. L. Lions [6] or P. L. Lions [10]) and from the theory
of elliptic Q.V.I. (see A. Bensoussan and J. L. Lions [3]).

1. Viscosity solutions for first-order Hamilton-Jacobi quasi-variational
inequalities. We just want to recall the main equivalent definitions and to mention the
most important properties of the viscosity solutions of first-order Hamilton-Jacobi
quasi-variational inequalities, without proofs. More details and complete proofs can
be found in G. Barles 1]. The notion of viscosity solutions of first-order Hamilton-
Jacobi equations was introduced by M. (3. Crandall and P. L. Lions 6] and all the
results mentioned below are straightforward extensions of those obtained by M. (3.

Crandall and P. L. Lions [6], M. (3. Crandall, L. C. Evans and P. L. Lions [5] of
P. L. Lions [10].

1.1. Main definitions. We denote by BUC (RN), the space of bounded and uni-
formly continuous functions on RN.

We recall the following notions of sub- and superdifferential of continuous func-
tions considered in [5] and [6]. Let p C(N).

DEFINITION 1.1. (i) The superditterential of p at Xo, denoted by D+p(Xo),
is the set (possibly empty) defined by

(1) D+o(Xo) {p N, lim sup
(x) (X) (PlX X) <-- O}.[X-Xol

(ii) The subditterential of o at XoeN N, denoted by D-o(Xo), is the set given by
D-o(Xo) =-D/(-)(Xo), i.e.,

(2) D-q(Xo) {p RN, lim,_,,oinf
, (Xo)- (t, lx Xo)

>_ o],.

Remark 1.1. For x N, D+o(x) (resp. D-p(x)) is a closed convex set in N.
Remark 1.2. The notion of subdifferential considered in [6] has been introduced

independently for different purposes, by E. de Giorgi, A. Marino and M. Tosques [7]
and A. Marino and M. Tosques [12].

DEFINITION 1.2. U BUC (N) said to be a viscosity solution of the problem (P)
if we have:

(3) VyeN, VpD+u(y), max(H(y, u(y),p), u-Mu)<=O,
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(4) Vy N, Vp D-u(y), max (H(y, u(y), p), u Mu) >- O.

Let us give another equivalent definition which is more practical in particular to
show uniqueness results.

PROPOSrrION 1.1. U BUC (N) is a viscosity solution of the problem (P) if and
only if the two following properties hold:

Vth CI(N), at each local maximum point Xo of u-49, we have
(5)

max (H(xo, U(Xo), Drb(Xo)), U(Xo)- Mu(xo)) <=0;

(6)
Vb C(IIv), at each local minimum point Xo of u 49, we have

max (H(xo, U(Xo), D4)(Xo)), U(Xo)- Mu(xo))>-O.

Remark 1.3. The proof is exactly the same as for first-order Hamilton-Jacobi
equations; we just have to consider the Hamiltonian:

H(x, t,p) max (H(x, t,p), t-Mu(x)).

The two definitions mean that u is a viscosity solution of the obstacle problem,
with the implicit obstacle Mu. The following proposition shows how we can use the
particular form of M.

PROPOSITION 1.2. u BUC ([s) is a viscosity solution of the problem (P) if and
only if the two following properties hold" for all q clb(N)"

(7)
at each global maximum point Xo of u- q, we have

max (H(xo, U(Xo), Dq(Xo)), q(Xo)-Mq(Xo))-< 0;

(8)
at each global minimum point Xo of u- , we have

max (H(xo, U(Xo), Dq(Xo)), q(Xo)-Mq(Xo))>=0.

Remark 1.4. This proposition can be extended to more general operators M. It
suffices that M is nondecreasing and that M satisfies

Vb BUC (u), Vc , M(4)+c)=M(rk)+c.

1.2. Main properties of viscosity solutions of problem (P). Most of the properties
of the viscosity solutions of first-order Hamilton-Jacobi equations are still valid for
the viscosity solutions of the problem (P). It is an easy consequence of Remark 1.3.
Only the stability results need to be considered because of the nonlocal form of M.
So, we give a stability result.

PROPOSITION 1.3. Assume that ue is a viscosity solution of
max (He(x,ue,Due),ue-Mue)=O inN

and that He converges to H uniformly on compact subsets of N X X N and u converges
to u BUC (NN) uniformly on compact subsets of when e goes to zero, with the
following condition"

(9)

Then u is a viscosity solution of the problem (P).
Remark 1.5. With the same assumptions, the result is also valid for the vanishing

viscosity method.
Remark 1.6. The condition (9) is quite optimal. One can find in G. Barles [1] a

count,,rexample of the statement in Proposition 1.3 in the case when (9) is not satisfied.
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More details and complete proofs can be found in G. Barles [1]; the proof of this
result being essentially routine adaptations of M. G. Crandall and P. L. Lions [6].

2. The determiaistic imlulse caatrol lrolflem. Our purpose is to show that the
optimal cost function of a deterministic impulse control problem is always a viscosity
solution of a problem (P).

We also give regularity results and results concerning the behavior at infinity for
this optimal cost function. All these results are analogous to those obtained in the
classical deterministic control problem (see P. L. Lions [10]). These are obtained
essentially by using the dynamic programming principle.

2.1. Settiag af the lrolflem. Through all this section, 0 =(0i)i will be a non-
decreasing sequence of positive reals satisfying:

(10) 0n +oo when n

and se= (:i)i will be a sequence of elements of (R+).
Letting V be a separable metric space, we consider the functions bi(1 <-i<= N)

and f satisfying:

e c(xV),
(11)

Vv e v (., v) e w,(’) and sup

where (0 b, _-< _-< N), f.
Finally, v(.) will be measurable function which takes its value in a compact

subset of V. Then the collection K (0, sc, v(. )) will be called the control
Next, we consider a system whose state is given by the solution y,(t) of the

following problem:
dyx(t)+b(yx(t), v(t)) 0 for ]0,, 0,+[ for all N,

dt

(12) yx(O)=x,

yx( O, +O) yx( O,-O) + ,.
The assumptions (11) imply the existence and the uniqueness of a solution yx(t) of (12).

Then we define the cost function (or pay-off function) for each control K:

(13) J(x, K)= f(yx(t), v(t)) e-x’ dr+ Y c() e-,,
where h > 0 and c is a continuous function from (R+)r into R which satisfies

c=k+co wherek>0,

(14) Co(:l + se2) <-- Co(sol)+ Co(se2) for all :1:2 e (+)
Co(0)=0, c(s)_-<c(:2) if(2-,)e(+).

The problem to solve is to minimize the cost function over all controls K, that is
to find for all x e:
(15) u(x) inrf (J(x, K)).

2.2. Dynamic lrogramming lrineilfle. The dynamic programming principle is the
essential tool to obtain the solution of our problem. We shall give two forms of this
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result; the first shows that u is the solution of an optimal stopping time problem, the
second being more classical.

Remark 2.1. In the introduction of this part, we took 0o _-< 01""-<-0,-<-" in
fact the assumption (14) implies that we may assume without loss of generality:
0o<0’’’<0,,<’’’in(15).

THEOREM 2.1. Under assumptions (11), (14), we have

(16) u(x) inf
(v(-),Oo)

v(t)) e-t dt+ Mu(y,(Oo-O)) e-).
Remark 2.2. The formula (16) means that u is the solution of an optimal stopping

time problem as should be expected (for optimal stopping time problems, see for
instance A. Bensoussan and J. L. Lions [3]). Remark also that if we take 0o 0, we
have: u(x) <- Mu(x).

THEOREM 2.2. Under assumptions (11), (14) we have

(I T )(17) u(x)=inrf f(yx(t), v(t)) e-x’dt+ E c(i) e-X’+e-XrU(yx(T-O))
0 O<T

Remark 2.3. These two results are easy adaptations of classical results and we
just recall briefly the ideas of their proofs (cf. also [10]).

Proof of Theorem 2.1. We call t(x) the right-hand side of (16).
Step 1. u(x) <- a(x).

u(x) <-- f(yx(t), v(t)) e-x’ at+ E c(:,) e-x,.

Then

u(x)= Iogf(yx(t), v(t)) e-x’ dt

+e f(y(t+Oo),v(t+Oo))e-"’dt+ c(i)e-"(,-o+c(o)

Taking the infimum in the bracket, we obtain easily

v(t)) dt+e-o[u(y(Oo 0)+sro)+C(sro)].u(x)<= e-’

As the left-hand side does not depend on K, we conclude easily by taking the infimum
in the right-hand side.

Step 2. (x) <- u(x). Let e > 0; we choose K such that u(x) + e >-_ J(x, K), where
K (0, st, v). The same computation yields

v(t)) dt+e-Xo[u(y(Oo O)+:o)+C(:o)].u(x)+e>= e-h’

Then

u(x)+e>-_a(x).

Since e is arbitrary,, we conclude easily.
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Proof of Theorem 2.2. The proof is essentially the same as the proof of Theorem
2.1. We just take T instead of 0o. In fact, we obtain

u(x) inf f(yx(t), v(t)) e-xt dt + 2 c(i) e-a’
Oi<T

+ e-xT min (U(yx(T-O)), Mu(yx( T- 0)))).
The result is then given by the inequality u(x) Mu(x) in .

2.3. Properties of u. First, we give a result concerning the regularity of u" let

o=sup(_(x-x"b(x,v)-b(x’,v)))x, Ix-x’l
vV

PoeosIIO 2.1. Under assumptions (11), (14), we have" u BUC (N). More
precisely, we have"

if0<h<Ao, uC’(s) with=A/Ao;
ifA=Ao, uC,(S)forall[O,l[;
if x > ;, w,(a).

Proof of Proposition 2.1. The proof is exactly the same as in the standard
deterministic case (see P. L. Lions [10]).

We use (17) to obtain

u(x)-u(x’)sup If((), v( )) -f(,( ), v(t))l e-’ d+2 e-rlull(
K

(Recall that
For a given control K, we have (see [10])"

lye(t) y,(t)l e’lx x’l.
So we use (11) to obtain

u(x)-u(x’)<_ Ceao-*)’lx-x’ dt+2llullLoo<N) e-
4-where C SUpvv IIf(’, v)ll,,. If A > Ao, we let T--> oo.

In the other case, we may assume Ix-x’l < and we choose T such that e-xoT=
Ix-x’[. Then one concludes easily.

Now, we can show the relation between the deterministic impulsive control and
the first-order Hamilton-Jacobi quasi-variational inequalities.

THEOREM 2.3. Under assumptions (11), (14) and if u is differentiable at x, we have

(18) max (sup (b(x, v). Du(x)+ Au-f(x, v)), u(x)- Mu(x)
\ vV /

Remark 2.4. We shall use the notation

(19) H(x, t, p) sup (b(x, v)p+ At-f(x, v)).
V

By the well-known Rademacher theorem, we have the following corollary"
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/ then u WI’(N)COROLLARY 2.1. Under assumptions (11), (14) and ifA> Ao,
and satisfies

(20) max(sup(b(x,v)Du+Au-f(x,v)),u-Mu)=O,,v a’e’inIRN"

ProofofTheorem 2.3. It is again a more or less standard proof (see P. L. Lions 10]).
Step 1. max (H(x, u(x), Du(x)), u(x)-Mu(x))<=0. We take the particular con-

trol v(t) v V and 0o +c. For all T, we have by the dynamic programming principle

u(x) <= f(y),( t), v( t)) e-xt dt + e-XTu(y,( T)).

Dividing by T and letting T 0, we obtain the result as in [10]:

H(x, u(x), Du(x)) <=0.

As we know that u(x)<= Mu(x), the proof of the first step is complete.
Step 2. max (H(x, u(x),Du(x)), u(x)-Mu(x))>=O. If u(x)= Mu(x), we have

nothing to show.
If u(x) < Mu(x), we must prove that H(x, u(x), Du(x)) >= O. We need the following

lemma:
LEMMA 2.1. Let x N such that u(x) < Mu(x). Then there exists e > 0 such that

u(x) in/of f(Yx(t), v(t)) e -xt dt + ., c(i) e-x’

0o

Proof of Lemma 2.1. Let K" (0", sc", v ") a sequence such that

J(x, l")-, u(x).

We denote by x(n) J(x, K")- u(x),

u(x)+x(n)= f(y,(t), v"(t)) e-at dt+ Z c(7) e-a7.

By the same computation as in the proof of Theorem 2.1, we obtain

o,f(y (t) v"u(x)+x(n)>= 7, (t)) e-’dt+e-gMu(yT(-O)).
o

Since ly,(o,-O)-xl<= Ilbll(vO,, if there exists a subsequence 0’ which
converges to 0, we deduce easily that

u(x)Mu(x).

(Recall that Mu BUC () because u BUC (), so Mu is continuous at x.) So
we obtain a contradiction which proves the lemma.

Using Lemma 2.1 and (17) with T< e, we obtain:

vr<e u(x)=inf f(y(t) v(t))e-’dt+e-"rU(yx(T))
v(.)

y is defined by (12) with 0o e.
We conclude as in the standard case of continuous control only (see [10]).
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THEOREM 2.4. Under assumptions (11), (14) and h>0, uC’(RN)f’lL(Rv)
for some a ]0, 1] and satisfies:

u(x)<-_Mu(x),
(21)

Ylv V b(x, v)Du+Au-f(x, v)<-O inD’().
In addition, if w BUC (N) and satisfies:

w <-_ Mw,
(22)

YIv V b(x, v)Dw+Aw-f(x, v)<-O in D’(u),
then w <- u.

Remark 2.5. The last property means that u is the maximum subsolution of (P)
in D’(rv) (for related results see P. L. Lions [10], R. Gonzalez and E. Rofman [8] or
P. L. Lions and J. L. Menaldi [11]).

ProofofTheorem 2.4. We choose the particular control 0o +m, v(t) -= v V. Then

lt>-O l(u(x)-u(yx(t)) e-at)<-- 7, f(yx(t) v) e-’ dt.

We conclude in the same way as in P. L. Lions [10].
Remark 2.6. For the second part, in order to be clear we use the following remark.

We can consider in the definition of u only the case of a finite number of impulses
(i.e. a finite number of 0 or 0.+, +00).

Then

(ioinf f(y,,(t) v(t)) e-"t dt+ , c(i) eu(x)=o..o.. ,=,

LEMMA 2.2. Under the assumptions of Theorem 2.4, if w eL(Rv)O cm(Rtv)
satisfies

w(x)<=Mw(x),
(23)

Vv V, b(x, v)Dw(x)+Aw(x)<-f(x, v)+ ina

for >-0, then w<-_u+6/A.
Proof of Lemma 2.2. Let 0=(0,..., 0,),:=(:t,...,:), v(t) a control. We

assume that 0o> 0 Then, since we C():
Yli W(yx(O,+O)) e-X’-w(y,,(O,+t-O)) e

f ’+I
{Ow(yx(s))b(yx(s), v(s))+Aw(yx(s))} e"as as,

I0w(x)- w(yx(Oo-O)) e-a= {Dw(yx(s))b(yx(S), o(s))+ AW(yx(S))} e-as as.

Since Dw b + Aw <=f+ 6, we obtain

w(x)-w(y,,( T)) e-"r<= f(yx(s), v(s)) e-"Sds

+ e-"’(w(yx(O,-O))-w(yx(O,+O)))+ 6e-Xds.
i=t

But yx(O,+O)=y,,(O,-O)+ and from (23)

w(yx O, o) w(yx O, +0)) _<- c(,).
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Therefore, we finally obtain

w(x) w(yx( T)) e-at< f(yx(s), v(s)) e +o

Letting T c, we have the result (because w is bounded).
In order to prove the theorem, it is enough to build we C(RN) L(), which

converges uniformly to w in s and such that:

Vv V b(x, v)Dw(x)+Aw(x)f(x, v)+(e),
(4)

w(x)Mw,(x)

where (e)0, as e0+.
Let p D+(), supp p Bl, ja p(x) dx and let p defined by:

It is well known that w=w.p=I,w(y)p(x-y)dyC(N)GL(N), con-
verges uniformly to w (actually IIw-
Moreover w satisfies the first inequality in (24) (s P. L. Lions [10]).

To conclude, we just have to prove wMw. Since w(x)k+co()+w(x+{)
and p 0:

(x)

Then, w Mw and the proof is complete.
Let us finally give a result concerning the behavior of u at infinity.
PROPOSITION 2.2. Under assumptions (11 ), (14) and if we assume

(25)

and

(26)

then

(27)

f(x, v) - if Ix]- +o uniformly with respect to v,

u(x)- 1/ if lxl- +.
Remark 2.7. The boundedness of u implies that in the definition of u we can

impose the following additional condition on the control:

VT>0 E c(sC,) -<ce+xr.
0i<_ T

But from assumption (14), we have

C( i) c(i) C e+xT
Oi T 0 T

Then, from (25), we obtain

(28) ., <=C(T).
0<= T

ProofofProposition 2.2. Let e > 0. We want to show that for Ix[ large enough, we
have:
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Since f is bounded, we can choose T independent of x and of all controls (0, , v)
such that

(29) f(yx(s)" v(s)) e-s ds <-_-
r 4

Now we fix T with the property (29) and such that

(30) l" e-’s ds <--
r 4

We use the following inequalities:

) (Ioinf f(yx(t), v(t)) e-’ dt <= u(x) <= inf f(y,,(t), v(t)) e-’ dt
KI K2

where K {K (v, 0, sc) such that satisfies (28)} and K2 {K (v, 0, sc)/0o +}.
Then, from (29) and (30),

--+ inf [f(y (t), v(t)) l] e-’ dt
2

(31)

_-<u(x)-_-<-+inf [/(y(t), v( t)) l] e-" dt
K

Considering Remark 2.7, we have for all K e K and for all x e N:
O<-t<= r, [y(t)-xl<-IlbllooT+C(T),

and then

lYx(t)l -> Ix[- [[b I[T- C(T).

So, for Ixl large enough, we have If(y,(t), v(t))-ll<=eA/2 for t[0, T]. Finally:

Io(32) If(yx(t), v(t))-ll e-’ dt<-- for all K e K, and g e K;

(31) and (32) give the result.
Remark 2.8. The result of Proposition 2.2 is false without (25). Take in R: b--0,

0 < A < 1, c k < f if Ixl ->- 2, 0 if Ixl <- and 0 <=f-<_ if Ixl [, 2]. Then u k if
X-->

2.4. The viscosity formulation of the dynamic programming principle.
THEOREM 2.5. Let u be the optimal costfunction defined by (15). Under assumptions

(11), (14), then u BUC (RN) is a viscosity solution of
(33) max (H(x, u, Du), u- Mu) =0 in .

Proof of Theorem 2.5. The proof is inspired from the corresponding one in P. L.
Lions 10].

Let b CI(IN) and Xo a local maximum point of u- b. We fix a control K such
that v(t) v V and 0o +. Then for all T > 0 we have

U(Xo) <- f(y( t), v) e -at dt + u(yo( T)) e-hr.

If T is small enough we have u(yo(T))<=4(yo(T))+(U(Xo)-Cb(Xo) because



DETERMINISTIC IMPULSE CONTROL PROBLEMS 429

lYo(t)-Xol <- Ct. So we obtain easily

U(Xo)
e-aT)

--< f(Yo( t), v) e -at dt + e-at
[b(Y"(T)) @ (Xo)]

T T T

Letting T 0, we obtain

Vv V b(xo, v)D@(xo)+AU(Xo)-f(xo, v)O,

which ends the first pa of the proof.
Let C() and Xo a local minimum of u-; then two cases are possible.
Case 1. U(Xo)= Mu(xo) and there is nothing to prove.
Case 2. U(Xo) < Mu(xo). We use Lemma 2.1 to claim, for 0 < T < e,

u(xo) inf f(Yx(t), v(t)) e- dt + u(y(r)) e-r
v(.)
Oo T

By assumption for T small enough u(y,,o(T)) >= 49(Y,,o(T))+(U(Xo) 4(Xo)). So we have

>- inf f(Y,,o( t), v( t)) e-x’ dt + e-aT
[(Yo(T)) (Xo)]

T .) T

But

and

]f(Yo( t), to(t)) f(xo, v( t)) <-_ Clyo( t) Xol t

49(y,,o( T))- (Xo) b(yo(S) v(s))Dd(y,c(s)) as,

Ib(y,(s), v(s))D4)(y,,(s))-b(xo, v(s))D(xo)]--C(s),

where C(s) 0 if s 0/, using the fact that b is Lipschitz and D4 continuous at Xo.
We deduce easily:

_>- inf (f(xo, v(t)) b(xo, v( t))Dqb(Xo)) dt e(T)
T .

where e (T) - 0 when T- O.
Now we remark that:

(f(xo, v(t))-b(xo, v(t))D4)(Xo)) dt>--vinf (f(xo, v)-b(xo, v)D(xo)).

Letting To 0, we obtain the result

sup (b(xo, v)D4)(Xo)+AU(Xo)-f(xo, v))>-O.

Remark 2.9. We have shown that u is a viscosity solution of the problem (P). In
fact, this result will be completely satisfactory if we prove a uniqueness result for
viscosity solutions of (33). This is the goal of the third part.

3. A uniqueness result for viscosity solutions of quasi-variational inequality (33).
THEOREM 3.1. Under assumptions 11 ), (14) and A > O, there exists a unique viscosity

solution of the problem (33) in BUC (v).
Remark 3.1. The idea of the proof consists in adapting the method due to B.

Hanouzet and J. L. Joly [9] for elliptic Q.V.I. (see also A. Bensoussan [2] or A.
Bensoussan and J. L. Lions [4]).
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Remark 3.2. The proofuses in an essential way results concerning optimal stopping
time problems (in the deterministic case) that we give briefly in the following proposi-
tion. For more details and complete proof of this result, see P. L. Lions [10], A.
Bensoussan and J. L. Lions [3] or the part II which gives all the ideas necessary to
the proof.

Let us define the optimal stopping time problem

dYx(t)+b(yx(t) v(t))=0 forall t->0,
dr"

(34)
yx(O)=x,

(35) J(x, v, O)= f(yx( t), v( t)) e-x’ at + O(yx(O)) e-x,

(36) u(x) inf J(x, v, 0).
(v,o)

Now we have the following result:
POPOSTIO 3.1. Under assumptions (11) and A > O, and if g/ BUC (), then

u given by (36) is the unique viscosity solution in BUC (v) of
(37) max (H(x, u, Du), u- ) =0.

In addition, if q W’() and A > A+ then u W’(v)O

Proofof Theorem 3.1. Without loss of generality, we can assume that f->_ 0 (if this
is not the case, we add constants to u and f).

We define the operator T, for w BUC (v), by:

(38) Tw(x) inf f(y(t) v(t)) e-’ dt + M(y(O)) e-"
(v,O)

where Yx is defined by (34).
We need the two following lemmas:
LEMMA 3.1. Tmaps BUC (v) into BUC (v), is increasing and concave. Further-

more, Tw is the unique viscosity solution in BUC (v) of
(39) max(H(x,z, Dz),z-Mw)=O in

LEMA 3.2. Let Uo defined by

uo(x) inf f(Yx( t), v( t)) e-’ dt
v(.)

with Yx defined by (34).
Let tz > 0 be such that u011 < k and ix < 1. Let z and two positivefunctions

of BUC () satisfying

(40) z <= yz for one 3’ [0, ].

Then

(41) Tz T. <= ),(1-tx)Tz.

Remark 3.3. The formulation of Lemma 3.2 is very much akin to the lemma due
to B. Hanouzet and J. L. Joly [9] used in elliptic Q.V.I.

Remark 3.4. Let us just recall that Uo defined in Lemma 3.2 is the unique viscosity
solution in BUC (rv) of: H(x, u, Du)=0 in Rv (cf. P. L. Lions [10]).
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Moreover, by uniqueness result in N (see M. G. Crandall and P. L. Lions [6] or
P. L. Lions [10]) or directly, we have Tw <-Uo for all w e BUC (N). (This inequality
can be obtained by (38).)

We first show the theorem using the two lemmas.
If we consider two viscosity solutions u and v of (33), we can assume that they

are positive: it suffices to add max (llulloo, [[v[[oo) to u and v and so f is changed in

f+ a max
Besides, by Lemma 3.1, u and v are fixed points of T. (It is a consequence of the

uniqueness for the obstacle problem in BUC (R) for Mu and My).
To conclude, we just have to use the Lemma 3.2" since v_>-0, u-v <_-u, then:

Tu Tv <- (1-1 )u,

but u Tu and v Tv; we obtain by induction

Vn e U V -<- (1-- tz u.

Since u is bounded, letting n - o, we have u <_- v. Changing u and v, we have the result.
Next, we prove the two lemmas.
Proof of Lemma 3.1. T maps BUC () in BUC () is an easy consequence of

the Proposition 3.1 because M maps BUC () in BUC (n). The fact that T is
increasing is obvious. Let us prove the concavity.

Let w and w2 BUC () and/ [0, 1].

inf f(Yx( t), v( t)) e-at atT(txwt +(1-tz)w2)(x)=(o(.),o)
+ e-aM(lzw + (1 -/x) w2)(yx(0))).

But M is concave:

Then

T(txw + (1 -/x)w2)(x) >_- inf f(Yx(t) v(t)) e-At dt
(v(.),o)

+ e-aM(txMWl(yx(0)) + tx)Mw2)(yx(0))).
We conclude easily using that:

v(t)) e-a’ dt+e-a(MWl(yx(O))+(1-1x)Mw2(Yx(O)))

tz f(yx( t), v(t)) e-at dt + e-aMWl(Yx( O))

+(1-/x) f(y,,(t), v(t)) e-h’ dt+ Mw2(Yx(O))

T(tzw+(1-tz)w2)>=lxTw+(1-tx)Tw, T is conca,,e.

Finally, we prove that Tw is the unique viscosity solution of (39) in BUC (N). In
fact, it is an easy consequence of uniqueness results for first-order Hamilton-Jacobi
equations in . It suffices to consider the Hamiltonian

H(x, t, p) max (H(x, t, p), t- Mw(x))

(see M. G. Crandall and P. L. Lions [6] or P. L. Lions [10]). This ends the proof of
Lemma 3.1].



432 G. BaRLES

Proof of Lemma 3.2. According to the monotonicity of T, (38) implies that

T3>-_ T((1- ),)z).

Using the concavity gives T3->_ 3/) Tz + 3,T(O).
We first prove that/xu0<= T(0):

(I0T(0)(x)= inf f(y(t), v(t)) e-dt+ke-(v(.),o)

Now we use that k>-iXuo(y,,(O)) and that txf<-f (f->0):

T(O)(x) >-_ inf If(y( t), v( t)) e- dt + iuo(y( O)) e-(v(.),o)

But, for all 0 > 0, using the dynamic programming principle for standard deter-
ministic control problems, we have

f(y(t, v( e-"’+Uo(yx(o e- >-,Uo(X.

This last inequality gives the result we need.
Now using Remark 3.4 gives uo_-> Tz. Then

ri>- ,) r+,r,
and we easily deduce the result:

rz r- ,( rz.
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CONNECTIONS BETWEEN OPTIMAL STOPPING AND SINGULAR
STOCHASTIC CONTROL II. REFLECTED FOLLOWER PROBLEMS*

IOANNIS KARATZASf AND STEVEN E. SHREVEt

Abstract. The stochastic control problem of following a Brownian path by a process of bounded
variation, and subject to a reflecting barrier at the origin (reflected follower), is reduced to a question of
optimal stopping with absorption. Direct probabilistic arguments are used to establish the equivalence of
the two problems under suitable conditions on the cost functions.

Key words. Brownian motion, optimal stopping, stochastic control, reflection of discontinuous trajec-
tories

1. Introduction. This paper is a sequel to 14] and is concerned with the equivalence
between a problem of stochastic control and a related question of optimal stopping
for Brownian motion. The control problem has the state process

(1.1) Xt=x+ Wt+t+Kt, O<-_t<=%

where x is a nonnegative number, W= {W;t >-0} is a Brownian motion and :=
{:t; t-> O} is a left-continuous process of bounded variation with :o O, expressible as
the difference of two nondecreasing processes =(: :+-:-, t->O) and with total
variation :+ + sr-, -> O. Given W and :, the nondecreasing, left-continuous process
K {Kt’, >--0} with Ko=O is constructed in such a way as to keep the state X
nonnegative, i.e.,

(1.2) X,->0 /0_-<t=<-.
The "control process" : is then to be chosen as to minimize the expected cost

E h(t, Xt) at + f(t) d, + g(X,
0,-)

where h(t,.), g(.) are even, convex functions. We call this problem the Reflected
Follower Stochastic Control Problem and denote its value function by V(-, x). The term
"bounded variation follower" is reserved for a situation where the constraint (1.2) is
absent (or, equivalently, there is no reflecting process K in the state equation (1.1));
the Monotone Follower Problem of [14] is obtained from the Bounded Variation
Follower Problem by setting :+--0.

Special cases of these problems were studied in [2], [3], [5], [9], [10], [12], [13],
[16]. In these works the optimal control process :* turns out to be singular (as a
function of time, with respect to Lebesgue measure), and can be characterized in terms
of two regions in (t, x)-space: an open domain (? of inaction and its complement
the domain of action. If the time-state pair (t, X,) is in (c, :* causes the state to jump
immediately to the nearest point on the boundary 0t9 demarcating the two regions; it
acts thereafter only when the pair (t, Xt) is on 06, and pushes only as much as necessary
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to prevent a crossing of 0t9 into the interior of c. The optimal process * can thus be
identified as the local time of the optimal state process X* on 0tg.

Using the cost functions of the control problem, we now formulate a question of
Optimal Stopping with Absorption (at the origin) for the Brownian motion W. For any
x >-0, we consider the first passage time

S= S(x)=inf{t>-O; x+ W =0}.

The question is then to choose a stopping time cr-< " in such a way as to minimize the
risk

E hx(t,x+ Wt) dt+f(tr)l<s^,l+g’(x+ W,)l,=,<st

Let us denote by u(z, x) the optimal risk for this problem. The reader is referred to
the works [1], [5], [7], [8], 15], [17] for treatments of the question of optimal stopping
for continuous-time processes.

Bather and Chernott [2] were the first to notice the connection between the
problems of Bounded Variation Follower Control and Optimal Stopping with Absorp-
tion. These authors posed a specific control problem as above, with h(t, x)= 0, f(t)=
1/(z- t), g(x) 1/2x2, and argued on heuristic grounds that for x > 0the gradient Ux(’, x)
of its value function should satisfy the free-boundary problem which characterizes the
optimal risk u(r, x) for the associated optimal stopping problem with absorption. Their
approach was made completely rigorous in [13] by one of the present authors, who
studied the problem with h(t, x)= h(x) even and convex, f(t)= and g(x)= O, as well
as the discounted and long-run-average-cost-per-unit-time variants of it. The Reflected
and Bounded Variation Follower Problems were shown to have the same value functions
on +, and were related to the appropriate stopping problems; again, though, the
treatment was mostly analytical, relying heavily on the properites of solutions to
variational inequalities and free boundary problems.

In this article we show by direct probabilistic arguments that, under proper
conditions on the cost functions f, g and h, the Reflected Follower Control Problem
and the Optimal Stopping Problem with Absorption are equivalent in the sense that
Vx(z, x)= u(z, x), and that the region of inaction in the control problem is the optimal
continuation region for the stopping problem. For a discussion of the merits and
benefits of this equivalence the reader is referred to the introduction of article [14].

The full equivalence between the two problems is obtained here under the assump-
tion that the control problem admits an optimal solution. Unlike our previous work
[14] on the Monotone Follower Problem, we do not establish here the existence of an
optimal process for the Reflected Follower Problem under additional conditions similar
to those employed in [14]. For technical and expository reasons, we restrict attention
to control processes : whose jumps on [0, r) are exhausted by an increasing sequence
of stopping times.

2. Summary. The Reflected Follower Problem and the Optimal Stopping Problem
with Absorption are formulated in 4. The relationship that they bear to one another
is much more delicate than in the case of the Monotone Follower Problem (cf. [14,

3]). We proceed by first discerning a class of processes which is complete for the
control problem (Proposition 4.1). Working with processes in this class we prove that
the upper-right and upper-left derivatives of V(-, x), the value function for the control
problem, are dominated by u(r, x), the optimal risk for the stopping problem (Proposi-
tions 4.3 and 4.8). In order to obtain inequalities in the opposite direction, we have
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tO assume that the control problem admits an optimal process :*; it is then possible
to establish u(z, x) as a lower bound on the lower-left derivative of V(r, x) (Proposition
4.7). With the help of convexity, one then shows that the gradient of V(r, x) exists
and is equal to u(z, x). In addition, a stopping time tr* is defined in terms of :* as
the first time the latter process becomes positive; tr* can be shown to be optimal for
the stopping problem with absorption (Theorem 4.9).

Instrumental in establishing our "comparison" results (Propositions 4.3, 4.7 and
4.8) is the principle of following, at some distance, an optimal or nearly optimal path
up to a certain stopping time, and then jumping on it.

Section 3 contains a summary of results by Chaleyat-Maurel, E1 Karoui and
Marchal [4] concerning the reflection of discontinuous trajectories, which are used
repeatedly in the sequel.

This article can be read independently of its precursor [14].

3. Reflecting a discontinuous process. Let us suppose that Y(t):+--> is a con-
tinuous function, with Y(0)_-> 0. The Reflection Problem associated with this function
is to find a pair (X, A) of continuous functions, such that:

(i) X(t) Y(t) + A(t) for all >_- 0;
(ii) X(t)>-O for all t->0; and
(iii) A is a nondecreasing function, such that A(0)= 0 and

o’
X(s) dA(s) O.

In other words, A creates a nonnegative function by "pushing" Y to the right, but
the pushing occurs only at the origin. The unique solution to the above problem is
provided by

(3.1) A(t) =max [0, max {-Y(s)}]
O<=s<=t

and X(t) Y(t) + A(t), >_- 0; see Ikeda and Watanabe I1 l, p. 120].
The analogous problem with a discontinuous function Y was studied by Chaleyat-

Maurel, E1 Karoui and Marchal in [4]. We review here their basic results which are
of particular importance in the present paper. For more information the reader is
referred to [4].

We denote by the class of left-continuous functions Y(t):+-> which admit
right-hand limits and satisfy Y(0)-> 0. For such functions, we define

AY(t) Y(t+)- Y(t),

A nondecreasing function K in can be written as

K(t)- K(t)+ E AK(s),
O<=s<t

with K continuous and nondecreasing. We can now pose the Discontinuous Reflection
Problem (DRP (Y)) associated with a given function Y : to find a pair of functions
(X, K) in so that

(i) X(t)- Y(t)+K(t) for all t_>0;
(ii) X(t)>-_O for all t>_-0;
(iii) K is nondecreasing, with K(0)=0 and

X(t) dKc(t)-0, AK(t) 2X(t+) t S.
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Example. Consider the function

Y(t)=alto,rl(t)-lr,)(t), t>=O,

with a,/3, T> 0. The only "natural" candidate for the reflected process is

X(t)=alto,r(t)+lr,o)(t), t>=O.

Here we have

K(t)=2l(r,oo)(t)=2A(t), t>-O,

where A is given by (3.1). Clearly, Kc=0 and AK(T)=2X(T+).
TqEOREM 3.1 (Chaleyat-Maurel et al. [4]). For any Y there exists a unique

solution (X, K) to the DRP (Y). The following are satisfied, with A as in (3.1)"

(3.2) A(t) -< K(t) =< A(t) + E AA(s), -> 0;
O<=s<t

(3.3) x(t+)--lx(t)+zY(t)l-lY(t+)+ K(t)l, t_>0;

(3.4) SK { >- 0; x(t) + A Y(t) < 0};

(3.5) K is continuous if and only if K A.

COROLLArY 3.2. Suppose that X(t) + A y(t) >= 0 holds for all >= O. Then K is

continuous, and equal to A, i.e.,

K(t)=A(t)a--max[O, sup (-Y(s))].
O<=s<_t

Remark. Speaking intuitively, K is the function that "pushes at the origin" to
keep X nonnegative. This push is continuous, and is given by the expression for A in
(3.1) as long as the jumps of Y do not cause any crossings of the origin (i.e., as long
as X(t)+ A y(t)>-0). The determination of K when there are jumps across the origin
can be quite complex. However, if there is a sequence of points 0 To <- T =<. such
that Y is continuous on each interval (T, T+I), then X and K can be defined
inductively by

(3.6) AK(T)=2max[O,-X(T)-AY(T)],

(3.7) K(t)-K(T+)=max[O, sup {-Y(s)-K(T+)}], T<t<-_T+.
T<s<=t

4. The Reflected Follower Problem. We consider a probability space (, o, P)
endowed with an increasing family of r-fields {,;t->0} which satisfy the "usual
conditions" of right-continuity and completeness with respect to P. A Brownian motion
W { W;t => 0} on this space is assumed. Let r > 0 be a fixed time-horizon and let
M(r) be the class of all {t}-adapted processes {:t; >_-0} which are a.s. nondecreas-
ing, left-continuous, null at the origin and constant on It, ). Let M(r) be the subset
of processes : in (r) for which there exists an increasing sequence {T,}=1 of
{o,}-stopping times which exhaust the jumps of the process :, P-almost surely. In the
notation of the previous section,

S:,,)___ (.J (T,,(o)}
n=l

for P-almost every o f/. We denote by (r) the class of processes : (of bounded
variation) which admit a minimal decomposition of the form , ,+ :-, => 0 as the
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difference of two processes : in (r). We shall use the symbol, t+ + :-, => 0
for the total variation of the process : (’) on the interval [0, t]. (r) will assume
the role of the class of admissible processes in the Reflected Follower Problem.

For each x->0, (r), we can construct in a pathwise fashion the pair of
processes (X, K) which solves uniquely the Discontinuous Reflection Problem
DRP (Y), associated with the random function Y(t) __a x + W / :t, => 0. The basic facts
about this construction are outlined in the preceding section; the process K is non-
decreasing, left-continuous and null at the origin, while the process X given by

Xt x + Wt + t + Kt, >- O

is nonnegative. It will be the state process in the Reflected Follower Problem. It is
convenient to have this process defined for all >-0, even though the problem is posed
only on the interval [0, r], and : is taken to be constant on [% c). The cost functions
for this problem are the following:

(4.1i) a nonnegative, continuous function f(t) on [0, z], representing a running cost

of controlling action per unit time;

(4.1ii) a real-valued, continuous and continuously differentiable function g(x) on R+,
such that g’(x) is nondecreasing and g’(0)=0, representing a terminal cost on
the state; and

(4.1iii) a real-valued, continuous function h(t, x) on [0, r]xR+, with continuous
gradient hx(t, x) which is nondecreasing in the space variable x and satisfies
hx( t, 0)>_-0, representing a running cost per unit time on the state.

The functions hx(t, x) and g’(x) will be assumed to satisfy a polynomial growth
condition in the space variable"

(4.1iv) O<-hx(t,x)+g’(x)<-_C(l+xm), on [0, z] xR+

for some m >_- 1, C > 0. Conditions (4.1) will be assumed to hold throughout this paper.
To each process : (r), we associate the expected total cost

(4.2) J(; r,x)= E h(t, Xt) dt+ f(t) dt+g(X,)
O,r)

The Reflected Follower Problem is to choose the process : (’) so as to minimize
the expected total cost in (4.2), i.e., to achieve the infimum

V(r, x)= inf J(:; , x).
()

Associated with this control problem is an Optimal Stopping Problem with Absorp-
tion (at the Origin) for the Brownian motion process W. With x-> 0, we consider the
first hitting time S S(x) of the origin

S=S(x)=inf{t>=O; x+ Wt 0},
I.+c, if{t->0;x+Wt=0}=.

Corresponding to each {}-stopping time cr such that P(0=< or_< r)= 1, we associate
the risk

(4.3) R(o’; r,x)=E hx(t,x+ W)dt+f(o’)l<s^,+g’(x+ W)l=<s
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In an obvious interpretation, hx is a cost of continuation, f is a fee for premature
termination (i.e. stopping before hitting the origin or running out of time), and g’
represents a terminal cost. The problem is to select the stopping time cr so as to
minimize the risk in (4.3), or equivalently to achieve the infimum

(4.4) u(% x)= inf R(cr; r, x).

Remarks. (i) Although the infimum in (4.4) is over all stopping times cr such that
P(0<= r <_-z)= 1, for x > 0 we need only consider such times which also satisfy

P(cr S) 0.

To see this, consider a stopping time cr such that 0-< cr =< r, a.s. P, and define the new
random variable

fr on{o’S},
z on {r S}.

Clearly, {_-< z} is an event of probability one, and with 0 <- < z"

{<- t}= {o’<- t, tr S}.

According to standard theory (e.g. Dellacherie [6, p. 53]) both {S<_-tr} and {S < tr}
belong to the r-field , and therefore {S tr} and {S tr} are also in ff. By definition
of the latter, we conclude that {-< t} fit; for all >= 0, so t is an {fft}-stopping time.
On the other hand: {t S}

_
{S }, a P-negligible event, so P( S)= 0, and fur-

thermore

R(’;r,x)=R(o’;r,x),

as one can easily verify. This validates our claim.
(ii) It is quite obvious from the above that u(z, 0) 0. Besides, since the functions

hx, f and g’ are nonnegative, h,(t,. and g’(. are nondecreasing, and S(x2)>_-S(Xl);
P-almost surely for x_>=x>=O, it is not hard to see that the function u(%x) is
nondecreasing on /.

We introduce now a particular subclass of M(z) which will be very useful in our
study of the Reflected Follower Problem. For any given x-> 0, we say that a process
:- M(z) is in class (, x) if for the solution (X, K) of the Discontinuous Reflection
Problem DRP (Y) corresponding to

we have

Y(t)=x+ Wt--, t>----O,

Xt x + Wt - + K,, 0 <- A- <= X,, >- O.

According to the results in 3 (Corollary 3.2), the increasing process K is then
continuous and is given by

K,=max[O, sup {]--(x+ W)}], t>-O.
O<=s<=t

Clearly, for any :- in @(r, x) the process :=-:- is admissible for the Reflected
Follower Problem, with associated expected cost

J(-s-; % x) E h( t, Xt) dt + f( t) d- + g(X)
0,-)
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Remark. The class (r, x) is nonempty; indeed, with b >0 a given number and
x->0, one can construct a unique pair (s-, K) of processes in (z) such that

max [0, sup {x + W +K b}], -> O,

max [0, sup {:- (x + W)}], -> O.
O<=s<--t

Apart from a possible leftward jump of size (x-b)+, the resulting state process:
Xt- x + Wt- -( + Kt, >-0 is, for 0-< _-< r, a Brownian motion reflected at the origin
and at the point b, and for > r it is a Brownian motion reflected at the origin only.
For the construction of the process on [0, r] see [13, 8]. For 0<_- t_-< z, the processes
Kt and s7 are constant multiples of the local time spent during [0, t] by the state
process X at x- 0 and x b, respectively. Other examples can also be concocted.

PROPOSITION 4.1. For any given r > 0 and x >-_ O, we have

V(r, x)= inf J(-:-; r, x).
e(r,x)

Moreover, if the Reflected Follower Problem started at x >-0 has an optimal process in
3(r), then there exists a process in (, x) such that V(z, x) J(-:; r, x).

Proof. It suffices to show that, given any process r/e (), one can construct a
process :-e 9(r, x) with the property

(4.5) J(--; r, x) <= J( Tq r, x).

Let { T,}__ be an increasing sequence of stopping times which exhausts the jumps of
r/on [0, r) and such that 0-< T, =< r; /n => 1, lim,_. T, z and To =0 hold a.s.P. Let
also (X, K) be the solution to the DRP (Y), as in 3, with Y(t)=x+ W,+rl(t), t>=O.
We shall construct a process- M(r) such that, if (Z, L) is the solution to the DRP (Q)
with Q(t) x + W :-(t), => 0, we have

O<--_A-(t)<=Z(t), t>--O,

i.e. :- (, x), and (4.5) holds.
The construction proceeds by induction. As the induction hypothesis, we assume

:-, Z and L have been constructed on 0, T,] with (cf. (3.6), (3.7))

Z(t)=x+ W--(t)+L(t), O<=t<- T.,

(4.6) AL(Tk)=2max{O,-Z(Tk)+A-(Tk)}, k=O,...,n-l,

such that

L(t) L(T+) max [0, sup {-x W, + :-(s) L( T + )}],
Tk<s-<-t

Tk < t<= Tk+l, k=0,...,n-1,

(4.7) Z(t)<-X(t), 0 <- t<= T,,

(4.8) A:-(t) =< Ar/-(t), 0 -< < T,,

(4.9) :7(t) r/7(t), 0_-< t<_- T,,

where the subscript c denotes the continuous parts of the processes. When n 1, this
hypothesis is trivially valid. We now extend :- to [0, T,/] in such a way that (4.7)-(4.9)



440 IOANNIS KARATZAS AND STEVEN E. SHREVE

are preserved. To do this, we define

(4.10)
A:-(T,) min (Z(T,), A,/-( T,)},.

-(t) -(Tn+) r/-(t) r/-(Tn+), T, < t<= T,+I.

It is clear that with sc- thus extended, A:-(t) <_-- Ar/-(t), 0<_ < Tn+l, and -(t)
r/S(t), 0 -< =< T,+I. Furthermore, A:-(T,) -< Z(T,), so AL(T,) 0. According to (4.10),
we have either A:-(T,)=Ar/-(T,) or else Z(T,+)=0. It follows from (4.7) that
Z T,+) -<_ X T,+), or equivalently,

(T,+) + K(T,,+)>=--(T,,+)+ L(T,,+).

To extend this inequality for t(T., T.+], we use (3.7) and (4.9) to write, for
T,,<t<=T,,+,

/(t)+ K(t)= q( t) + max [K T,,+), sup {-x- W-/(s)}]
T.<st

max [(r/(t) r/(T,+)) + (r/(T,+) + K( T,+)),

sup {-x- Ws+(rl+(t)-rl+(s))-(rl-(t)-rl-(s))}]
T,,<s<--_t

>- max [(r/+(t) r/+(T,+)) (r/-(t) ,/-(T,+)) :-(T,+) + L(T,+),

sup {-x- Ws-(-(t)--(s))}]
T.<s<=t

>-max[--(t)+L(T,+), sup {-x-W-U(t)+U(s)}]
T.<s<--t

=--(t)+L(t).

It follows that

Z(t)=x+ Wt--(t)+L(t)<=x+ Wt+rl(t)+K(t)=X(t), O<=t<= T,+.

We thus obtain :- on [0, ’), and since so-(t)-< r/-(t)<= rt-(’) < c for 0<_-t< r, we can
define:

:-(r)=l :-(t) and :-(t)=:-(-), t-> ’.

Then- (-, x), and (4.7)-(4.9) as well as the properties off, g and h imply (4.5).
We shall need the following result later in this section:
LEMMA 4.2. With O<-x <x2, we have (z, x)_ (’, x2).
Proof Let us suppose that - (r, x), i.e., that the solution (X, K) to the

DRP (Y), with Y(t) x + W, , 0 satisfies

X,(t)=Xl+ W,-7+K(t), 0a7 X(t), t0.

Therefore, by Corollary 3.2:

K(t)=max[0, sup {-(x,+ W)}], t0.
Ost

Similarly, with xz> x, we consider the solution (X, K) to the DRP (Y), with
Y(t) xz+ Wt-, tO. From Theorem 3.1 (relation (3.2)) we have

K(t) A(t) max [0, sup { (x + W)}].
Ost
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It can then be checked that X2 - K2(t) -> X "- Kl(t), >- 0, so

X2( t) x2 + Wt -+ KE( t) >= Xl( t), >- O

and afortiori, 0 -<_ A:- _< X2(t), _-> 0.
Therefore, :- is in class (z, x2) for all initial positions x2> Xl.
In the light of Proposition 4.1, let us consider for the purposes of the ensuing

discussion a point x> 0 and control processes :-e (’, x), such that the solution
(X, K) to the DRP (Q) with Q(t)=x+ Wt--, t>-O satisfies

(4.11) X=x+ W--+K, 0 <= A:--<_ Xt, t->_0.

Under these circumstances, K is continuous and is given by

(4.11)’ Kt=max[0, sup {:]-(x+ Ws)}] fort>_-0.

We consider 6>0, and the solution (X(6), K(6)) to the DRP (Q(6)), with
x+6+ V- -, t_-->0

(4.12) Xt(6) x+6+ W,--+K,(6), t>-O.

As was shown in Lemma 4.2, - is in class 9(r, x + 6),

o<- x,<- x,(), >-o
and K() is continuous:

(4.12)’ K,(6)=max[0, sup {--(x+6+ Ws)}], t>=0.
Os<=t

We shall be interested in the stopping times

T=inf(t->0; --(x+ Wt)>-O}=inf{t>=O; xt 0},
(4.13)

T inf { _-> 0; X >= Xt (6)}.

First, let us note that for >= 0,

X,()- X, + ,()-/,

=max[6, sup {:;-(x+ W)}]-max[0, sup {sc]--(x+ W)}]
O<=s<=t

is a continuous function. It follows that

T =inf{t>_-0; :-- (x+ Wt) >_- 6} > T.

Let us also observe that, for >- T, Kt(6) / 6- Kt, so

Xt Xt(6), >- T.
If we take st-- 0 in the above, we obtain the reflected Brownian motion starting

at x (respectively, x + 6)"

Zt=x+ Wt+ L,,
(4.14)

z,() x++ w, + L(),

Lt max [0, sup {-(x + W)}],
O<=st

Lt(6)=max[O, sup {-(x+6+ W)}],
O--s<__t

and by analogy with the stopping times T, T we define

(4.15)
S=ainf{t->_O; Zt =O}=inf{t->O; x+ W =0},

Sa--inf{t>__O;Z,=Z,(6)}=inf{t>_O;x+ W,__< -6}.
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We note the relations 0 <_- X, <= Z,, 0 -< X,(6) _<- Z, (6), V >= 0 and T <- S, T =< S, which
are valid P-almost surely. Since S, S are a.s. finite, so are T, T. Besides, S$S as
650, a.s.P.

As in [14], we use the notation

A+/-V(z,x) a__ V(%x+6)-V(z,x)
A+V(z,x) a- lim

V(r,x+6)-V(r,x)

for the four derivatives of the function V(r,. at x.
PROPOSITION 4.3. For all x >- 0, we have

A+V(,x)<=u(%x).

Proofi It is sufficient to show that

(4.16) li--- V(r,x+6)- V(r,x) -< R(tr; z,x)
,o 6

holds for any stopping time tr satisfying: 0 <= cr _-< r and tr # S, a.s.P. We choose such
a r, as well as a process e- which is in class 9(z, x)mand a fortiori in class (, x + 6)
for any fixed 6 > 0, by Lemma 4.2.

This gives a reflected state trajectory X as in (4.11). We create a slightly perturbed
trajectory emanating from x + 6, which agrees with that of X(6) as in (4.12) up to time
r, then jumps on X and agrees with it thereafter:

x,(), o<- t<-cr,
Y’(6)

I.X,, tr < t.

It is not hard to see that, with

(

(4.17) r/-(6) :-’ 0----< t----<cr’
:- + (X,(6) X,), tr<t

and

/,(6)=max[O, sup {’q-(6)-(x+6+ W)}], t-->_0
O<=s<=t

the pair (Y(6),K(6)) is the unique solution to the DRP(Q), with Q(t)=
x+6+ W,--[(6), t>=O,

Y,(6)=x+6+ W,-rl-/(6)+K,(6), 0=< Ar/-(6) <- Y,(6), t>=O,

i.e., r/-(6) is in class (r, x + 6). The performance ofthis process is certainly suboptimal
for the Reflected Follower Problem starting at x + 6, so

I/(r,x+)<-E h(t, Y,()) dt+ f(t) dr-()+g(Y,())
O,’r

’*^
X,(6)) dt+ h(t, X,) dt<=E h(t,

T

f f(t) d?+f()(X()-X)lt<.^r,+
0,)

+ g(X.) <+g(X,) t=._>_,+g(X(
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Subtracting the performance J(-:-; "r, x) of the process -c (z, x) from both mem-
bers of the above inequality, we obtain

v(, x + a)- J(-C; r, x)

(4.18) <_- E {h(t, Xt())- h(t, Xt)} dt

+f(tr)(X(3) X) {,<r }+ (g(X(8)) g(X)} =<r].
Let us recall the relations

and their corollary

Xt(3)=3+Xt, O<=t<= T,

Xt<=Xt(3)<-3+Xt, T<t<- T8,
Xt(3) Xt,

3 on {0--<_ r_-< T},
O<-X,(3)-X, 3 on {T< r<- rS},

0 on{T8<_-r-<_r}.

Using these in conjunction with the properties of the functions f and g, we deduce
that the following inequalities hold, a.s. P"

r
{h(t,X,(3))-h(t,X,)} dr<=3

s
hx(t,Z,+3) dt,

f(o’)(X,(3) X)1 {<T^} <_- 3f(o’)lt<s^b
(g(X(3)) g(X.))1 {=< ar* <_- 3g’(Z + 3) {,=<s*.

We substitute into (4.18) to obtain a right-hand side which is independent of -; thus,
if we take the supremum of the left-hand side with respect to -c fi(r, x), we get

v(-,x+)- V(-,x)
_E

s^

h(t,Z,+) dt

+f(l<s.^.+ g’(Z. +
Now, since P(ONN r, S)= 1, we have that, as 0,

{r < S ^ z}${r < S ^ r}

and consequently
s^

h(t,Z+3) dt

mod P, {o’= z< SS}${tr r< S} modP,

850
hx(t, Zt) dt= hx(t,x+ Wt) dt,

f(tr) <<s^} f(tr) l{<s

g’(Z,+3)l{=,<s} g’(Z,)l{=,<s}=g’(x+ W)l{=,<s}.

The result (4.16) follows by the Dominated and Bounded Convergence Theorems. E!
By way of preparing the ground for the proof of the opposite inequality, let us

consider a control process :-c (z, x) for given x > 0, along with the corresponding
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state process X as in (4.11) and T as in (4.13). We also introduce the stopping time

(4.19) ]" inf {0-< t<=z;
z, if {0 =< _-< r sc->0}=.

We shall need the processes Z and Z(-6) for 0<6<x, which are Brownian
motions starting at x and x- 6, respectively, and are reflected at the origin. Let Z and
S be given by (4.14), (4.15), and define

and

Z,(-)=x-+W,+L,(-), L,(-6) max [0, sup {-(x- 6)- Ws}]
O_s<_t

S(-8) &inf{t_-> O; x-8+ Wt O} =inf{t =>0; Zt(-8) 0}.

We also define the stopping times

inf {0-< t-< z; Xt-<- Zt(-6)},(4.20) I
tz, if{O<-t<=z;X,<=Z,(-8)}=

and

S* inf {t >= O; Z, Z,(-6)}.

Let us observe that S* S and cr ^ T-< r _<- T ^ r hold P-almost surely, and

Xt Zt on{0<=t=<r}, Z Zt(-8) on{t>:S}.

We shall also need a number of lemmata which are either evident or easily provable.
LEMMA 4.4. { o" < S} { cr < T}, mod P.
LEMMA 4.5. On {tr >= T}, we have S T. Therefore, cr ^ T o" ^ S, a.s. P.
LEMMA 4.6. r$o ^ T o" ^ S as 850, a.s. P.
For the last result, and for establishing relation (4.22) below, it is instructive to

consider separately the three events

f, {o" < T, :+ > 0}, f2 {o- < T, sc+ 0}, ’-3 {O" T}.

On 1 and with O<8<8(w) a--+(w)^x, we have

(,o):(,o), ,)=0, x,,(,o)(,o)-z(o)(-,o):.
For f2, we introduce the first jump time

finf{0_-< t<= T; A:- > 0},
c=(T, if{0-<_t-<_T;Asc->0}=

of the :- process before time T. Because of our assumption that the jumps of sc- are
well-ordered (see definition of (r) at the beginning of this section), we have c?(w) >
r(w) and

a(o,) [z)(o)-x)(o)] A x > 0.

For 0< 8 < 82(w), one has cr(w)$r(w), as 850. Besides, we obtain

scS,()(w) 6 and X(o,)(w)-Z(o)(-8, w)=0.

Finally, on fl3 we have for 0< 8 < 83(w)-3- x: o’S(w) S*(w) S(w) r(w) ^T(oo) or(w) ^ S(w) and thus :7,(,)(to) =0, Xo,)(w)-Z,,,)(-8, w) =0.
The reader might find drawing a picture for each separate case helpful. We shall

denote by g the positive random variable
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PROPOSITION 4.7. Let us suppose that, for a given x > 0, there exists an optimal
process * 3(z) for the Reflected Follower Control Problem. Then

a_v(,x)>-u(,x).

Proof. By virtue of Proposition 4.1 we may assume, without loss of generality,
that sc* -sc-, for some sc- @(z, x). If X is the corresponding reflected state process
as in (4.11), we have

(4.21) V(r,x)= E h(t, Xt) dt+ f(t) d-+g(X,)
0,)

For any fixed in (0, x) we consider the stopping times g and g, defined by
(4.19) and (4.20), respectively, and we construct the new process

E(_) /,(-, 0t

X, < t,

which stas at x-, follows the reflected Brownian path up to time , and then
jumps on the X path. It can be verified that the solution to the DRP(Q), with
(lx-+ w,- n;(-),

0, 0N tN,, (-)=.; -j(), < ,
andj() ;++X+-Z(-), is precisely (Y(-), K(-)). The reflection process

K,(-)=max[0, sup {;(-)-(x-)-W}], 0
0sN

is continuous, Y(-) =(x-)+ W-(-)+K(-), tO, and

0(- (-,

In other words, -(-) is in (r, x-). Besides, we observe that

(4.) j()=;+x-z(-) o, ().
The first equality is a consequence of the definition of j() and of the fact that the
process X + x + W + K,, 0 is continuous. The second equality for 0< < ()
can be verified easily by considering the events , and 3 separately; see the
discussion following Lemma 4.6. The inequality for () follows from the definition
of and the left-continuity of the processes involved.

It is evident now that

(4.23) V(r,x-)N h(t, Y,(-)) dr+ f(t) d;(-)+g(Y,(-))
O,r)

which yields, in conjunction with (4.21), the inequality

v(,,x-V(,x-

{h(t,X,)-h(t,Z,(-))} dr+ f(t)d;-f();l<,
r,)

+j()f() <,+ {g(X,)- g(Z,(- ))}1=,.
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Furthermore, by taking into account the properties (4.1) of the cost functions h,
f and g, we obtain the lower bound

(4.24)

V(r,x)-V(z’x-)>E[Io’= hx(t, Zt(-8))
x,-z,(-)

dt

+J($)
(a< (.,))f(cra) (,<)

+g’(Z.(-)) X-Z(-)8 , ]
+E { min f(t)-f(tr*).--2-1,*<,.

T t--o"
For the first term on the right-hand side of (4.24) we recall that hx(t,. is increasing
and nonnegative on R/ (condition (4.1iii)). Along with cr -> S ^ tr, this gives the lower
bound

Io Io^^(-) z, z,(-
hx(t, Zt(-t))

X’-z’(-t)
dt >- hx(t, Z,(-6)) dt

S(-)^cr

h(t, x-t+ W) dt,
dO

P-almost surely. We obtain from (4.24) in this way:

(4.25)
V(r, X) V(r, 37-- 4

=> R(cr; r, x)- E /(),
j=l

where the stopping time tr is given by (4.19) and

(4.2) I (B) g E {f(o") r,min, f()} ,<.t

(4.27) h()gE hx(t,x+ W) dr- hx(t,x-+ W) dt

(4.28) /3() g E f(o’)ll<.^sl-J()f(o’)ll,<,lcl<g(,,l
(4.29) 14() __a E g’(x + W)lt=<s-g’(Z(-t))

x-z(-)

By the Bounded Convergence Theorem, as well as the facts: 0 < :S <- and o’$o ^ T
as 0, P-almost surely, the term Ii() is seen to converge to zero as 850. The term
I2() in (4.27) also converges to zero as 80, because of the polynomial growth of
hx(t," ), of the relation

s(-a) s,

and of the Dominated Convergence Theorem. On the other hand, the relation
lim,o I3() 0 is a consequence of (4.22), of Lemma 4.6 and of the Bounded Conver-
gence Theorem.
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To prove lim,oL()=O, we note that since P{S=r}=O, we have
{r r < S} mod P, and

Therefore,

(=} (=<s} (=,^s<.}, a.s.P.

E g’(Z(-))
x-z(-)

{,--4- g’(x + W.) {=<s

(4.30) _<- E g’(Z(-t))
x-z(-)

g’(Z(-t))
x-z(-)

-g’(x+W.,.)

On the set {tr= z), we have

so the first term on the right-hand side of (4.30) is bounded above by

EIg’(Z(-))l{=,^s<}l.

Because of the polynomial growth condition (4.1iv) on g’ and Lemma 4.6, this
approaches zero as 0. For fixed to (or r < S}, we have x + W(w)> 0, and so for
sufficiently small 3, Z(-, to) =x-+ W(w) and X(w)-Z(-, to)-& Therefore,

x-z(-)g’(Z(-t)) g’(x + W),
o

P-a.s. on {tr= z< S},

and the Dominated Convergence Theorem implies that the second term on the right-
hand side of (4.30) converges to zero as does; here we employ the fact that, on
{= <s}: x-z(-) z-z(-) [0, ].

We can now pass to the limit as 60 in (4.25) to obtain

(4.31) A_V(%x)>=R(tr; z,x)>=u(z,x).

Remark. Based on the polynomial growth of h,(t, ), g’(. and on the boundedness
off(t), one can show that the quantities in (4.26)-(4.29) admit, for any M > 0, a bound
of the form

4

sup E /() <= q(r, M)
O<<x j=
O<x<=M

depending on r, M, the bound on f and the constants C, m in (4.1iv). We thus deduce
from (4.25) the useful lower bound

(4.32) V(r,x)- V(r,x-8)>--8. q(r,M), O<8<=x<-M,

provided that an optimal process for the Reflected Follower Problem exists for every
x (0, M].

PROPOSITION 4.8. For all x > 0, we have

(4.33) A- V(r, x) <= u(r, x).
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Proof. Let us fix 6 c (0, x]. For any process - c @(r, x 6) we create the solution
(X(-), K(-8)) to the DRP (Q(-)) with Q,(-)=x-6+ Wt- -, t>=0:

Xt(- t x t$ -F Wt - -F Kt t$ ),

K,(-)=max[0, sup {:--(x-+ W)}], t=>0.
O<=s<_t

Because :- is also in (r, x) (Lemma 4.2), the solution (X, K) to the DRP (0) with

Ot x + Wt :-, => 0 is given by (4.11), (4.11)’. Defining the stopping times

F(-8)--a inf{t >-0; (-(x-6+ Wt)=O}=inf{t>-O; Xt(-8) 0},

F a-inf{t>-0; Xt(-8)>-Xt},

and recalling the stopping time T from (4.13), it is not hard to see that F-- T and

Xt(-8)=Xt, t>-T

hold P-almost surely.
Imitating the proof of Proposition,4.3, we choose an {t}-stopping time tr with

P(0<= tr <- r)= and create a trajectory Y which emanates from x:

rt a__ { Xt, O <= <-- tr,

Xt(-8), > tr,

or Y, x + Wt qt + At, >= O, so that Y, A) is the unique solution to the DRP (Q)
with O, x + Wt t, ->_ O, and

,={;’7+(x- x(-)),
It can be checked here again that

A,=max[0, sup (-(x+ W)}], OAt<= Yt, t>=O,

in other words that c 9(’, x). Consequently, we have

V(’r, x) <-_ E h( t, Yt) at+ f( t) d.t + g( .)
O,r)

and, repeating the argument in the proof of Proposition 4.3 with the obvious changes,
we obtain

v(, x)-(--; , x-)

h(t,Z,) dt+f()ll<r.i+g’(Z.)l=.<rt
dO

NE h(t,x+ Wt)+f()l<s,l+g’(x+

because F T < S, a.s.P. By taking the supremum of the left-hand side with respect
to - (r, x-6), and then the infimum of the right-hand side with respect to the
arbitrary stopping time , we obtain

(4.34) V(r,x)- V(r,x-6)6. u(r,x), 0<x.

The result (4.33) follows, l-]
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We are now in a position to establish the main result of this paper.
THEOREM 4.9. Let us fix a point x > 0 and suppose that an optimal process -(z, x) exists for the Reflected Follower Problem at (z, x). Then the left gradient

v(,x)-V(,x-)
V;(z, x) = lim

o 8

exists and is equal to the optimal risk u(z, x) for the Stopping Problem with Absorption.
Besides, the stopping time

or* inf {0 -<_ <- ’; (t) > 0},(4.19)’
a-, if {O<-t<=’; (t)>O}=,

is optimal for the latter problem, i.e.,

(4.35) V-(r, x)= u(r, x)= R(tr* z, x).

Suppose now that the Reflected Follower Problem admits an optimal process at every
point x >= O. Then the gradient Vx z, x) exists at every point x > O, and Vx z, x) u r, x).
Besides,

+ v(, )- v(, O)_oV,(r, 0) lim
o 6

Proof The first assertion is an immediate consequence of Propositions 4.7 and
4.8, in particular of relations (4.31) and (4.33):

A_V(’r,x)>--_R(cr*; r,x)>=u(r,x)>=A-V(r,x)>=A_V(r,x).

For the second assertion, let us consider an arbitrary positive number M, and
observe that

(4.36) IV(r, x) V(z, x )[-<_ 6. max [u(r, M), q(r, M)], 0 < 6 <= x -<_ M

follows from (4.32) and (4.34). Now (4.36) implies that the function V(r, is absolutely
continuous on [0, M], and in particular that the gradient

v(, x)= Vx(’, x)

exists for almost all (with respect to Lebesgue measure )t) points x in [0, M]. The
function V(r,. can thus be written as the integral of its derivative

V(z,x)= V(r, O)+ v(z, ) dsc, O<=x<- M.

However, under our assumptions and by virtue of the first assertion of this theorem,
the left derivative V](z, x) exists everywhere in (0, M] and is equal to u(; x). Therefore,
v(z, x) u(-, x) for h-a.e, x e [0, M], and so

(4.37) V(r, x)= V(z, 0)+ u(z, ) d, O-x<-_ M.

Because M > 0 is arbitrary, (4.37) actually holds on the whole of [0, oe). Let us recall
that the integrand u(z,. is nondecreasing and verify, in a completely straightforward
manner, that for any 0 _-< y < z, 0 _-< 0 _-< and with x 0y + (1 0) z, we have

(4.38) V(% x)<- OV(’, y)+(1- 0) V(z, z),

i.e., V(z,.) is convex on +.
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Now we fix a point x > 0 and choose two numbers 0< 6 <= x, 62> 0; with y x- l,
z=x+62 and 0=62/(+62) in (4.38), we have

v(, x)- v(, x- ,)
<
v(, x + )- v(r, x)

and upon letting , i2 converge to zero, we obtain

(4.39) a-v(z,x)<-a+v(r,x).

Propositions 4.3 and 4.7 yield the string of inequalities

+ v(, x) _-< A+ V(r, x) --_< u(, x) --<_ A_ V(, x) <_-- - V(, x),

which establish, in conjunction with (4.39), the existence ofthe gradient and the identity

v,(-,x)=u(-,x)

at the arbitrarily chosen point x > 0. At the origin x 0 we have from Proposition 4.3

A+V(r,O)<=O,

and from the fact that the function V(r,.) is nondecreasing (a consequence of the
integral representation (4.37), since u-> 0)"

A+ V(, 0) _--> 0.

It follows that the right derivative V+(-, 0) exists and is equal to zero.

5. Discussion of the Bounded Variation Follower Problem. Let us suppose that the
functions h(t,.), g(.) have been extended evenly on the whole of [, and formulate
the "unfolded" (Bounded Variation Follower) control problem: to find a process
: (r) which minimizes the expected cost J(:; r, x) as in (4.2), where now the state
process X is given by

X,=x+ W,+:,, O<-t<=r, x.
We call U(’r, x) the value function of this problem.

It is rather obvious that U(z,. is an even, convex function on ; it inherits these
properties from the cost functions h(t,.), g(. ). You can also easily believe (but less
easily prove) that the value functions of the two control problems agree on [0,

(5.) u(z, x)= v(r, x), x_>-0.

Indeed, (5.1) can be verified by means of the change-of-variable formula for semimar-
tingales, once V(, x) is known to satisfy the relevant variational inequality or free
boundary problem on / x[0, oo). This (mostly analytical) approach was taken up in
[13]; however, it requires greater smoothness on the data f, g and h than has been
assumed here. The authors have attempted to establish (5.1) by direct, purely probabilis-
tic arguments and encountered some unexpectedly thorny issues. They suggest such a
derivation as an interesting open problem.
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GLOBAL CONTROLLABILITY FOR SMOOTH NONLINEAR SYSTEMS:
A GEOMETRIC APPROACH*

DIRK AEYELS

Abstract. The paper consists of two parts. In Part a global controllability theory is constructed. Local
controllability criteria are "integrated" by means of the qualitative behavior of the dynamics involved--
leading to a global result. The relation with global observability is discussed. Part II is concerned with
controllability by means of two vectorfields. It is well known that each connected paracompact manifold of
class C k, 2 <= k <= oo, or k to, carries a globally controllable set of two Ck--vectorfields. As an application
of Part we construct control systems of the form Yc X + u Y, defined on a compact manifold, with the
property that for X a Morse-Smale vectorfield with no periodic orbits, there exists a large class of vectorfields
Y such that the system is globally controllable by means of a bang-bang (two-valued) control. It is stressed
that the techniques applied imply the existence of a multitude of basically different globally controllable
systems with two-valued controls on each smooth connected compact manifold. In particular, it is shown
that Y can be taken to be Morse-Smale. The results are extended to noncompact manifolds.

Key words, nonlinear systems, global controllability, bang-bang controllability, Morse-Smale systems

Part I. Global controllability: a geometric approach.

1. Introduction. This article is concerned with the study of global controllability
properties of nonlinear control systems defined on smooth manifolds. An extensive
literature on the subject of controllability of systems on manifolds is available. It
includes the work of Hermann [4J--who apparently initiated the field--followed by
contributions of Lobry, Sussmann and Jurdjevic, Sussmann, Brockett, and Krener,
among others (for a reference list, see [5]). Most of this work is preoccupied with local
controllability properties. The question of global controllability--when can any two
distinct points on the manifold be connected following the trajectories of the control
system?--has received much less attention. For smooth systems in their general form
=f(x, u) the problem is clearly too hard. Hence, the problem statement is narrowed

down to finding "reasonable" classes of control systems for which "tractable"
global controllability conditions can be derived. Of course, the meaning of the words
"reasonable" and "tractable" is to be filled in, and can in fact only be appreci-
ated after a class of systems has been picked and its global controllability theory
developed.

In this paper we present a class of control systems and an associated control
theory which satisfy the subjective requirements mentioned above. A formal description
will be given in the next section. As for now, it suffices to say that they constitute a
restricted form of Morse-Smale systems [10]. The motivation for a study of this class
is linked to Aeyels [1]. In that paper a global observability condition has been
established, based on information on the topology of the dynamics of the control
system. This paper again tries to utilize qualitative properties of the control system
and to translate them into a global controllability condition. The similarities and points
of difference between [1] and this paper, with regard to the results obtained, will be
discussed in 5.

The organization of part I is as follows: in 2 we define the class of systems we
are concerned with; in addition we introduce notations and basic concepts. Section 3

* Received by the editors March 24, 1983, and in revised form April 20, 1984. This research was
supported in part by the National Fund for Scientific Research (FKFO grant).

t Department of Systems Dynamics, State University of Gent, Gent, Belgium.
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is devoted to establishing controllability results which will be needed later. In 4 we
prove our main result on global controllability. Section 5 contains a discussion of
various aspects of the theory.

2. Definitions. Notation. A class of nonlinear control systems. We will study control
systems of the form X(x)+ uY(x), u R, with X and Y C-vectorfields defined
on a smooth compact manifold. The compactness condition will be discussed in the
final section. The controls u(t) are piecewise constant and are allowed to assume
arbitrary large, but finite values. Let x(t, Xo) with x(0, Xo) Xo and y( t, Xo) with y(0, Xo)
Yo, as functions of t, denote the integral curves of X and Y starting at Xo and Yo
respectively; x(., is unique and is called the flow induced by X. A vectorfield X is
complete if x(.,.) is defined on R M. If M is compact, its smooth vectorfields are
complete. An orbit of the vectorfield X is the image of an integral curve. A point p
of M is called equilibrium point or critical point if x(R, p) p. An equilibrium point p
of X is hyperbolic, if (in local coordinates) the derivative of X, evaluated at p, has no
eigenvalues with zero real part. If all eigenvalues have a negative real part, then p is
a sink or an attractor; if all eigenvalues have positive real part, then p is a source or
a repellor; if eigenvalues are present with both positive and negative real part, then p
is a saddlepoint or saddle. A point p M is a nonwandering point for the flow of X if,
for all neighborhoods U of p and all T> 0, there is a > T such that U f’l x(t, U) is
nonempty. Equilibrium points are nonwandering. To describe asymptotic behavior,
we define the to-limit set (a-limit set) of pc M as: {m M for which there exists a
sequence {t: t,, -} ({t,: t, -}) such that x(p, t,)- m}. They are denoted by to(p)
and a(p) respectively. Define the stable manifold of a critical point p by WS(p)=
{m M: to(m)=p}; for the unstable manifold WU(p), to is replaced by a. WS(p) and
WU(p), for hyperbolic p, are immersed submanifolds.

For the control systems to be studied in the following sections, we assume that
both X and Y have a finite number of hyperbolic equilibrium points and that their
nonwandering sets equal the union of their equilibrium points. Furthermore, assume
for both X and Y, that if p and q are equilibrium points of a vectorfield (say X), then
W(p) and WU(q) (with respect to X) are transversal [10]. A control system with these
properties will be denoted by X(x)+ uX.(x), indices indicating the restrictions
imposed. It can be shown that, generically, gradient systems on compact manifolds
satisfy the above properties [16]. The vectorfields X1 and X2 are called Morse-Smale
(with no periodic orbits).

It is possible to introduce a partial order among the equilibrium points of the
vectorfield XI as follows: p->_ q (p and q are equilibrium points of X) in case WU(p)
meets W(q). It is important to realize that as a consequence of the transversality
assumption on stable and unstable manifolds, dim W"(q) < dim W"(p); thus a source
is a maximal element of the partial order, and a sink is a minimal element. It is
convenient to picture this qualitative information on X as a diagram with vertices
representing the equilibrium points and "arrowed" segments (arrows in the sense from
p to q, if p> q) connecting vertices related by the partial order. Moreover, the
equilibrium points are grouped in subsets, each set containing the equilibrium points
having unstable manifolds of the same dimension. Vertices representing equilibrium
points of a particular subset constitute a row. The vertices representing the sources
are at the top row; the next row contains the vertices corresponding to the equilibrium
points having a (n- 1)-dimensional unstable manifold, etc., down to the bottom row
which contains the sinks. Notice that in this graphical representation, all arrows are
directed downwards.
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For an investigation of the vectorfields, having the properties above, with respect
to their structural stability properties and their position within the set of all vectorfields,
one is referred to [10]. For our purposes it is important to realize that the systems

Xt + uX2 constitute an open class of systems exhibiting "honest" nonlinearities,
and that an investigation of such systems might give us hints as to what can be achieved
and expected in a broader theory on nonlinear controllability.

3. Local controllability. In this section two local controllability results are presen-
ted; they are essential in the proof of a theorem on global controllability, to be derived
in the next section. By local controllability at a point p we mean that there is a
neighborhood of p, such that for any two points a and b in that neighborhood, a
piecewise constant control u (t) with a finite number of switchings exists, which controls
a to b, i.e. x,(t)(T, a)- b for some finite time T, where xu(,)(’," represents the flow
ofthe control system Xl(X) + u(t)XE(X), x M. A control system has the accessibility
property to (from) a point p, if the set of points that can be steered towards p (that
can be reached from p) by means of piecewise constant controls, has a nonempty
interior.

THEOREM 3.1. Let {Xt, X2} denote the Lie algebra generated by {Xt, X2} and
suppose that dim {Xl, X2}(Xo) n, where n is the dimension ofthe state manifold. Then
Xo is contained in the closure of the interior of the reachable set of Xl + uX2 from Xo.
Itfollows that the system has the accessibility property to (from) Xo, even with bang-bang
control I12].

Note that if X2(xo)-0 and if b=Xl(Xo), A=DXE(Xo), then rank
[b, Ab,. , A"-lb]= ndim {Xt, XE}(xo) n. We will refer to this assumption by
saying that the rank condition is satisfied.

The following theorem is the well-known result of Lee and Markus [9].
THEOREM 3.2. The system :- X(x)+ UXE(X) is locally controllable at a point xe,

with xe an equilibrium point of Xt(x), if [b, Ab,..., A"-lb] has full rank equal to n.
Here b :- X2(x), A :- DXl(X) and n is the dimension of the state manifold.

Remark. Local controllability has been established for piecewise constant controls
with values in some interval I-m, +m]. By the work of Krener [8], the result remains
true when the admissible controls are restricted to bang-bang controls with a positive
and a negative value.

4. The global controllability theorem. In this section we prove a global controllabil-
ity criterion for systems of the form Xl(X) + uX2(x), u R, x M and M compact.
It is a standard assumption that the rank condition at each equilibrium point p of XI
is satisfied (i.e. rank [b, Ab,. , An-b] n, with b :- X2(p) and A := DXI(p)). Con-
sider the diagram associated with XI as described in 2. The top line contains the
vertices representing the sources sot, so2," of X; the saddlepoints sak, saEk,
with unstable manifold of dimension k occupy the (n+ l-k)th row; the sinks
si, si2, are at the bottom row; so may also be denoted as sa and si as sa.

If p is an equilibrium point of X and Xo WS(p), then limt_ x(t, Xo)--p. This
means that the trajectory through Xo of the vectorfield Xt is in an arbitrary small
neighborhood of p after some time. Similarly, if Xo WU(q), with q an equilibrium
point of X, then limt__ x(t, Xo)-q, i.e. in any neighborhood of q (no matter how
small), there is a point y such that the set {x(t, y), t>-0} contains Xo. Both these
properties will be used frequently in the sequel. For easy reference, they are designated
by "LIM" (for limit behavior).

For global controllability, an obvious necessary condition is that each sink of X
can be controlled to each source of X--since one must be able to connect any two
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points along the trajectories of the control system. We claim that this condition is also
sufficient. Indeed, first assign to each equilibrium point s of X1 an open ball (s) given
by Theorem 3.2; recall that any two points of (s) can be connected along the
trajectories of the control system Yc X + uX2. Let a* and b* be two arbitrary points
on the state manifold M. Then, by the assumptions on the structure of Xl, a* W (sa)
for some saddle sa and b* WU(sa’) for some saddle sa’. Indicate on the diagram
(consisting of vertices and arrows) representing X, a path, following arrows, which
connects sa; with some sink sir. Such a path exists by the defining properties of X
(if sa; is a sink itself, then the path degenerates into a vertex sa). Also indicate a
path in the direction of the arrows connecting some source so, with sa? (if sa’ is a
source, the path degenerates into the vertex sa?). Recall that it has been assumed that
all sinks can be steered to all sources, in particular, sir can be connected with so,. We
now show how to control a* to b*. First, starting in a* apply the control u 0; after
some time tl, a := x(t, a*) (sak), by LIM. Next, by local controllability in (sa)
and by LIM, a can be steered to a point bl (sa;) such that b is on the right "track",
as traced out above. More specifically, the path mapped out above has an arrow leaving
sa; and pointing towards another equilibrium point of Xl. The point bl is chosen such
that, when setting again u 0, after some time b settles in the neighborhood of that
equilibrium point. It should be clear that by repeating this procedure a finite number
of times a* can be controlled to the neighborhood tg(sir) and therefore to sir. Now
Sir is steered to sot (possible by assumption). But sot can be connected with b* by
applying a control law similar to the one connecting a* with sir. We have shown that
if the rank condition is satisfied at each equilibrium point of X, and if each sink of
X can be controlled to each source of Xj, then the system : Xj + uX2 is globally
controllable. What is needed now, is a control strategy that shows how to attain an
arbitrary source of Xmstarting in an arbitrary sink ofX--along the trajectories of the
system X + uX2. Here, the dynamics of X2 will play a prominent part. Notice that
there are simple (nontrivial) examples, showing the necessity of a global controllability
condition beyond a combination of local accessibility (or controllability) conditions.

We now propose such a condition and illustrate its main features by means of a
working example. We also show how to establish global controllablility for this
example; by doing so we will to some degree have covered the general case.

Consider the unit sphere S2 3 centered at the origin. Let X and X2 be smooth
vectorfields on S2. The vectorfield XI has two equilibrium points: a source in the
north-pole NP- (0, 0, l) and a sink in the south-pole SP- (0, 0,- 1). The other orbits
of the flow are the meridian lines. As for X2, let it also have two equilibrium points;
a sink Xe, say somewhere in Europe, and a source in the USA. The equilibrium points
of X2 are separate from the equilibrium points of Xl. It follows from the previous
paragraph, that if NP can be attained from SP, then the system on S is globally
controllable. We proceed to show how this can be accomplished. First associate with
NP and SP its local controllability neighborhoods (NP) and (SP) as given by
Theorem 3.2. Then attach to Xe its accessibility set C(xe) given by Theorem 3.1
(assume the rank condition is satisfied at Xe). Notice that the (X)-trajectory through
SP as oo, enters any neighborhood ofx. What is required for global controllability
is that this (XE)-trajectory through SP approaches x the "right" way, i.e. the set
{XE(t, SP), > 0} intersects ( x). This is the global controllability condition for this
particular case. By this condition and by continuity of solutions of differential equations
with respect to data there is a k*, positive and large enough such that for some t the
trajectory corresponding to X / k*X2 sends SP in C( Xe) at t; from there on it can
be steered towards x by a bang-bang control denoted by u* (Theorem 3.1). We denote
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the control sequence steering SP to x by {k*, u*}. Apply this control to all points in
ff(SP). This results in a neighborhood g(x) of x. Since NP belongs to the unstable
manifold of x, corresponding to -X2, then, by LIM and by continuity of solutions
of differential equations with respect to data, there is a control -[k*[, negative and
large enough, which steers an open set ift C g(x) into ff(NP). Since (SP) can be
steered onto g(x) (by definition of g(x)), there exists an open set start C2 (SP)
which by {k*, u*} is mapped onto ift. The control law realizing the connection of SP
with NP now follows immediately. First send SP to some point in start by means of
a bang-bang control (possible by Theorem 3.2). Then apply {k*, u*} to reach a point
in irt. Apply now -Ik2*l to end up in ff(NP) from where NP can be reached, by local
control at NP (Theorem 3.2). This concludes the proof of global controllability for
our system living on S2.

It is important to realize that it has not been assumed that the X2-orbit through
NP intersects r)(x). Also notice that not the whole reachability set C(- x) must
be known. Local information (in the neighborhood of x) on the reachability set would
suffice, since for some T, {x2(t, SP), > T} belongs to a neighborhood of x anyway
(the smaller the neighborhood, the larger T). For more details, see Remark 5.1.

In order to give a proof in the general case, a few remarks are useful. It is noticed
that in the working example the equilibrium points SP and NP of X and x of X2
could have been of a different type, without affecting the proof. Essential for controlling
SP to NP is that:

1. The rank condition at x (equilibrium point of X2) is satisfied, i.e. there exists
a set C(- x) with interior (see Theorem 3.1).

2. Both equilibrium points NP and SP of X belong to W(x)U WU(Xe) (mani-
folds considered with respect to X2).

3. The orbit of X2 through SP, and ( Xe) have nonempty intersection.
If 1, 2, and 3 are valid, we say, by way of definition, that SP is controllable to NP, by
turning at Xe. For the general system X1 + uX2, we will say that sak (equilibrium
p6int of X) is controllable to sa (equilibrium point of X), by turning at p (equilibrium
point of X2) if, mutatis mutandis 1., 2., and 3. are satisfied. The possibility to control
sak to sa by turning at p will be designated on the "vertices-arrows" diagram of X,
by a new arrow with label "p".

Assume that for the system X + uX2, on the diagram representing X, there
exists a path from each sink to each source, consisting of arrows and labeled arrows,
then we say that the diagram ofX is complete (with respect to X2), or, has been completed
by X2. Given completeness of the diagram of X with respect to X2, a repeated
application of the techniques described above leads to our main theorem.

THEOREM 4.1. The system : X + uX2, defined on a compact manifold M, u
is globally controllable with piecewise constant control if:

1. The rank condition at each equilibrium point ofX is satisfied.
2. The diagram ofX is complete with respect to X2.
COROLLARY 4.2. The system X + uX2 defined on a compact manifold M, u

is globally controllable by bang-bang control, under the conditions specified in Theorem 4.1.

Proof. The arguments instrumental in the proof of global controllability of the
system - XI / uX2 have been based on the following control procedures:

l) local controllability in the neighborhood of the equilibrium points of X (as
a consequence of the rank condition assumption at the equilibrium points of X) and
local accessibility at some of the equilibrium points of X2 (as a consequence of the
rank condition assumption at the equilibrium points of

2) letting u 0 so that the dynamical properties of X are brought to bear;
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3) letting u k or -k, with k large enough to let the dynamical properties of X2
or -X2 have their impact. We will show that there are two numbers and -l with
l R and large enough so that the control laws referred to in 1), 2) and 3) can be
replaced by control laws only taking the values and -/.

As for the local controllability arguments near equilibrium points of X1 and X2
care has been taken to only use bang-bang controls. The control values have not been
specified, since not relevant, except for the necessity of a positive as well as a negative
control value. Therefore take any number 11; all local controllability arguments can
be made to work with control laws having values ll and -ll.

By the rank condition at equilibrium points of X2, there exist accessibility sets
from where the equilibrium points can be reached by piecewise constant controls.
These sets are dependent on the control values allowed: it follows from [8] that the
accessibility set corresponding to controls with values s or -s contains the accessibility
set corresponding to controls with values r and -r when Isl > Irl. The same remarks
are valid for controllability sets at equilibrium points of X1. Therefore, whenever an
equilibrium point of X1 is being controlled (by using a large control, say k or -k) to
the accessibility set of an equilibrium point of X2 and then to the equilibrium
point of X2 itself (by local controllability with controls Ii and -11), this could have
been realized by using controls k and -k (if k> 11) or by controls ll and -11 (if
k<ll).

The proof of global controllability also requires the use of high-valued controls
at other occasions. It should be clear from the remarks above that by taking the highest
(denoted by l) of all control values encountered in the proof, one can carry out the
local controllability arguments and the global controllability arguments (as far as
restricted to 3) by using controls with values and -/.

There is still one problem left (see 2): do control values and -l suffice to
"simulate" a control identical to zero? That it does, is a consequence of a well-known
theorem 17, p. 11 which says thatmsince 2X (X - IX2) + (X1 lX2)--the orbit
corresponding to XI can be approximated as closely as required by switching between
X1 + lX2 and XI- lX2. It is further remarked that, in establishing global controllability
of X + uX2, whenever u is set equal to zero and thus the trajectories of X are
followed, approximate trajectories would do as well.

We have now shown that in controlling m M to n M, there exists a number
1 R such that m can be controlled to n with control values k and -k, [kl > I11. By
continuity of solutions of differential equations with respect to initial conditions and
by local bang-bang controllability at equilibrium points of X1, there exist neighbor-
hoods of m and n that can be controlled to each other. (In controlling m to n, the
last step consists in controlling a point in a neighborhood of some equilibrium point
of X1 to n; thus one can also reach arbitrary points in a suitable neighborhood of n,
by local bang-bang controllability at the equilibrium point of X1 under consideration.)
By compactness of M M it follows that there is a largest K such that X1 + uX2

is globally bang-bang controllable with control values k and -k with [kl > K.

5. Discussion.

5.1. Here we would like to discuss the controllability condition to some extent.
Point 2 in the statement of Theorem 4.1 is a sufficient condition that guarantees the
possibility of controlling the sinks of Xl to the sources of X. Other procedures can
be imagined. Consider the following one as a possible replacement of point 2 of
Theorem 4.1 (we will again restrict to the system on S2 defined earlier). Let x0 M be
such that Xl(xo) O. Then the sink si(of XI) is controllable to the source so (of X) if
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i) we have local accessibility at Xo (i.e. C( Xo) and C(xo) have nonempty
interior);

ii) the orbit of X2 through si intersects (7( Xo) (interior of the accessibility set
towards Xo);

iii) the orbit of X2 through so intersects (Xo) (interior of the accessibility set
from Xo).

This is in fact the "obvious" global controllability condition. Controlling si to so would
then be done as follows" control si to (( - Xo) (by ii) and then to Xo and ((Xo-) from
where, one can reach so (by iii).

The main point of 4 is that letting Xo be an equilibrium point of X2 yields some
substantial benefits. Indeed, condition iii) turns out to be superfluous (as has been
shown in 4). This is important" not only does this provide a weaker sufficient condition
but also the nonpresence of condition iii) allows extending the ideas of 4 to classes
of systems on "non"-compact manifolds as will be illustrated in 5.4. In addition,
conditions ii) and iii) are strong when taken together: they seem unlikely to be satisfied
in general as they relate the trajectories of a vectorfield (X2) through two unrelated
points si and so. In other words, only for particular points x0, the relation expressed
by ii) and iii) has a chance to be satisfied. Checking it would require a whole lot of
information on the flow of X on the (global) reachability set of Xo (let alone the
problem of picking candidates for Xo). On the other hand, in the condition described
in 4, local information (in the neighborhood of Xo) on the reachability set C( - Xo),
with Xo an equilibrium of X, is enough, since after some time, the trajectory of X
through SP is in the neighborhood of x0 anyway.

5.2. Here we try to give an evaluation of the position of Theorem 4.1 with respect
to other global controllability results for systems with a drift term (for symmetric
systems the standard Lie-algebraic condition can be found in [13]). It is first remarked
that the controllability literature contains few results on global controllability. There
is the result of Jurdjevic and Sussmann [7] for systems on Lie groups, which in fact
reduces to conditions for local controllability in the neighborhood of the identity
element of the Lie group. There is also an example in Brockett [3] where global
controllability is derived from conditions on the drift term, like the periodicity of all
its trajectories or denseness of its "Poisson-stable" points. In addition we mention the
approaches of Hunt [14] and R. M. Hirschorn [15].

It seems natural, that in constructing global controllability for the system
X + uY (X and Y are C-vectorfields with no additional restrictions) some interaction
of the vectorfields X and Y is necessary. For linear systems Ax + Bu this interaction
is expressed by rank [B, AB, , A"-1B] n. In this paper it is shown that for systems
of the form Xt + uX:z an interaction at the local level (a number of rank conditions)
and an interaction at the global level (the completeness condition) imply controllability.
It is stressed that the interaction expressed by the completeness condition requires a
minimal amount of information on the flows of X and X2.

5.3. Linear systems : Ax + Bu, y Cx, x " exhibit a duality between con-
trollability and observability. The system (A, B) is controllable if
rank [B, AB, , An-1B] n the system (A, C) is observable if
rank [C’, A’, C’,..., (A’)n- C’]= n. This shows that the system Ax + Bu, y Cx
with A A’ and B C’ is controllable if and only if it is observable. In order to write
this ("symmetric") system as a gradient system, we introduce the function V(x, u)=
1/2x’Ax + x’bu, with A A’, u scalar and b an n-vector (we have restricted the
discussion to systems with scalar input and output). Let gradx V and gradu V denote
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the gradient of V with respect to x and u respectively. Then the system --gradx V,
y gradu V is controllable if and only if it is observable. One might be tempted
to jump to similar conclusions for systems derived from nonlinear functions
W(x,u)-f(x)+ug(x), xM, u . Is =gradxW(=gradxf+ugradxg), y=
gradu W (= g(x))--gradients taken with respect to some Riemannian metric---observ-
able if and only if it is controllable? We will try to answer this question immediately,
but not before mentioning that it contains some typical nonlinear aspects, like depen-
dence of observability on the inputs; it can be argued that because of the existence
of universal inputs--these aspects play a secondary role and are therefore discarded.

It is noticed that as far as local controllability and local observability are concerned,
in the neighborhoods of equilibrium points of gradxf, some sort of duality can be
maintained. Indeed, local controllability and observability are satisfied if a rank
condition and a dual rank condition are satisfied, by the present paper and by [1].
Global duality cannot be extrapolated. In ], it has been shown that global observability
on compact manifolds can be achieved without a global observability condition and
hence the duality breaks down, since for global controllability a global condition is
necessary (see Theorems 4.1 and 5.1).

5.4. We have illustrated and proved a global controllability result for control
systems -X/ uX2 defined on compact manifolds. Let us quickly recapitulate the
control procedure for the system considered earlier, defined on S2. In order to control
"a" towards "b", both "a" and "b" arbitrary points on S2, we have first controlled
"a" towards SP (eq. point of X), then into a neighborhood of Xe (eq. point of X2),
from there to NP and finally to "b". It is this particular control procedure that has
been generalized towards more general systems on compact manifolds. However, it
should be remarked that for the system on S2 we could have "stopped" at Xe, from
where "b" could have been reached, i.e. we did not have to go to a neighborhood of
NP to finally reach "b". This remark makes it possible to extend our theory to classes
of systems on noncompact manifolds. At the moment, we will suffice with the following
example. Consider the system Ax + u(Bx- b) with x 2, B nonsingular, u R.
Assume that A be a sink and that B has complex conjugate eigenvalues (real part 0).
Furthermore assume we have local controllability at the origin and local accessibility
at B-b. We claim that this system is globally controllable. First remark that by the
eigenvalue property of B, the origin can be controlled to the accessibility region of
B-b and thus also to B-b. To show that any point m can be controlled to any point
n, repeat the proof outlined for the system on S2, except for "stopping" at B-b (as
explained above)" the role of SP and xe is played respectively by the origin and B-b
(there is no equivalent of NP in the example under discussion).

Actually the drift term Ax does not have to be a sink. Let Bx be as above. Without
loss of generality assume that the eigenvalues of B have negative real part. Assume
that the drift term f(x) has an equilibrium point at the origin and is such that local
controllability at the origin and local accessibility at B-b is satisfied for the system
: f(x) + u(Bx b). We claim that this system is globally controllable with no further
assumptions on f(x). Indeed, for the same reason as above the origin can be controlled
to B-b. Also B-b can be controlled to the origin (for the negative system the origin
can be controlled to B-b, therefore B-b can be controlled to the origin for the
original system). In order to control an arbitrary point rn to an arbitrary point n the
following control procedure is applied. First control m to a point m close to B-b
(by taking u large and positive). From there m is controlled to a point m_ in a
neighborhood of the origin. By local controllability at the origin it is controlled to a
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point m3 in the neighborhood of the origin such that the control sending the origin to
B-lb sends m3 to a point m4 in the neighborhood of B-b which by u large and
negative is then finally sent to n.

Except for an extension ofthe theory to systems defined on noncompact manifolds,
it should also be clear that including (hyperbolic) periodic orbits in Xt and X2 next to
equilibrium points (and thus extending the analysis to Morse-Smale vectorfields) adds
no fundamental difficulties 1].

5.5. The next point to investigate might consist of studying controllability of- XI + uX2, x M compact, X1 and X2 Morse-Smale, with bounds on the control. It
is clear that for this problem, information on the dependence of the phase portrait of
X1 + uX2 as a function of u (within its bounds) is helpful. On the other hand, systems
of the form : X +,k uiXi, x M compact, all Xi Morse-Smale, with more thani=1

two controls, all ofthem unbounded, are controllable if only a number of local conditions
are satisfied. Indeed, such a system is globally controllable if dim {X2, , Xk}(Xe)
n at each equilibrium of X,..., Xk. Therefore in this case, bounds on the controls
are needed in order to have a nontrivial problem.

Part II. An application: controllability by means of two vectorfields.

1. Introduction. Part II is concerned with the number of smooth vectorfields,
defined on a smooth connected paracompact manifold, necessary to achieve global
controllability. A set of vectorfields is globally controllable, if for any two points ml
and m2 on the manifold, there exists a trajectory controlling ml to m. We will not
dwell on the technical definitions and terminology involved and refer the reader to [1]
and [20] for more specifics.

The problem has quite an interesting history. From the results of [21], it follows
that on each smooth connected paracompact manifold, a set offour vectorfields exists
constituting a globally controllable system; the arguments used in the proof require
the vectorfields to have a differentiability degree which is related to the dimension of
the manifold. From the work of Sussmann [23], it follows that this differentiability
requirement can be weakened. Sussman then proved in [22], by means of different
methods, how to bring the number down to three. Finally the problem was settled in
[20] where it has been shown that on each smooth connected paracompact manifold
a globally controllable set of two smooth vectorfields exists. The result consists of a
careful construction which--although not claimed by the authors--seems to be unique
in some sense; i.e., it produces a controllable set of two vectorfields but seems not to
leave much choice as to the vectorfields involved.

We want to present an alternative approach to the result of Levitt and Sussmann,
which shows that on each smooth connected paracompact manifold there exists a large
class of systems : X + u Y, globally controllable by bang-bang control; this obviously
implies controllability by means of two vectorfields. It is remarked that stronger
differentiability requirements and more switchings are needed than in [20], but in
return, we are able to construct a variety of basically different systems, controllable by
bang-bang control. The construction is based on the theory developed in part I, which
will be referred to when necessary.

The organization of Part II is as follows. In 2 we associate with each C,
vectorfield X =-grad f, (f belonging to an open and dense set of CC(M, )), defined
on a compact manifold, a C-vectorfield Y such that : X + uY is globally control-
lable. Then we show that this system is globally controllable with two-valued controls.
In 3 we show that for systems X! + uX2, Xi Morse-Smale with no periodic orbits,
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there exist Morse-Smale vectorfields X2 such that the system above is bang-bang
controllable. In 4 the results are extended to noncompact manifolds.

2. Global controllability on compact manifolds. Assume X =-gradf (gradient
taken with respect to some Riemannian metric) with f a C-Morse function [18]
defined on a compact manifold M and such that the Hessian off at its critical points
is cyclic [24]. Such functions exist and they are in fact open and dense in C(M, R).
Indeed, pick a Morse function which is slightly altered if necessary in the neighborhood
of the critical points so as to have a cyclic Hessian. The alteration might consist in
adding the product of a quadratic form with small coefficients and cyclic Hessian
together with a smoothing function. This proves the density; openness is obvious.

Under the assumptions above, X can always be C-approximated by a new
vectorfield (also denoted by X), such that X is Morse-Smale [16] having cyclic
derivatives at its equilibrium points. We will now construct a C-vectorfield Y such
that X + u Y, u scalar, is globally controllable. It is remarked that the following
construction of Y is just one of the different possibilities that can be imagined. For
an alternative, see the following section.

It is proved in 4 (Part I) that a necessary and sufficient condition for global
controllability is that all sinks of X must be controllable to all sources of X. This will
be accomplished by constructing Y such that it has an equilibrium point p, which is
a turning point (Part I) connecting sinks of X with sources of X. The vectorfield Y
ismroughly statedma compound of a number of vectorfields. First, a smooth vectorfield
is defined in the neighborhood of p. Then a number of "tracks" are mapped out from
all sinks and sources of X towards p, and on a neighborhood of each track a smooth
vectorfield is defined. The rest ofthe manifold carries the zero-vectorfield. The neighbor-
hoods above overlap partially. As a consequence, at some points of M, more than one
vector is defined. These vectorfields considered together, define a discontinuous vector-
field Ydisc (after adopting a reasonable selection rule at the points of M with two
vectors defined). If, in the construction of Ydisc care has been taken that the rank
conditions and the completeness condition (part I) are satisfied, then the system
X -F u Ydisc is globally controllable. Of course a smooth vectorfield Y is needed and

this will be realized by means of a partition of unity argument. A technical problem
in the construction of the vectorfields constituting Ydisc is therefore that the completeness
condition must persist when smoothing these vectorfields into a vectorfield Y.

The formal construction of Y goes as follows. Pick a point p different from the
critical points of X. Consider an open neighborhood U(p) of p, which does not cover
critical points of X. On U(p) a C-function g with one minimum at p and with no
other critical points is defined. It is also assumed that p is a nondegenerate critical
point of g. Consider the vectorfield on U(p) defined by Y[ u(p) -grad g (gradient is
taken with respect to some metric). Assume that the rank condition at p is satisfied.
(If it is not, one can always make sure that it is, by locally adding to g a well-chosen
small quadratic form with one minimum at p, see the first paragraph of this section).

Let R be such that g-l(/) is nonempty. Let g-(< 1) be the set points of M,
having a g-value smaller than I. Consider a neighborhood V(p) ofp properly contained
in g-( < l). By the local rank condition at p there exists an open subset Acc (p) (not
necessai’ily being a neighborhood of p) of V(p) such that any point in Acc (p) can be
controlled to p along the trajectories of-grad fl ,(p)/ u YI (p without leaving V(p).
Let y(., .) be the flow corresponding with Ylu(p. Consider the set {y(t, x)): <0,
x Acc (p) and the expression is defined}. Take the intersection G of this set with
g-(l). By construction of Y[ t:(p, this intersection is nonempty and open with respect
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to g-l(/). For each sink (si) of X consider an imbedding imb(si): (0, 1)-)M such
that:

1) (si) belong to the image of the imbedding and no other equilibrium points do;
for different sinks the corresponding images of the imbeddings are pairwise disjoint.

2) the image of imb(si) intersects the interior of G and has no points in common
with V(p);

3) its velocity field, together with X, satisfies the rank condition at (si); (possible
by cyclicity of X).

4) its velocity field equals the field YIu(p) for all points on the image of imb(si)
in g-(<- 1).

The velocity field on imb(si) is now extended to a smooth vectorfield on an open
set U(imb(si)) image ofthe imbedding; this open set does not cover any new equilibrium
pointsmother than (si)mof X and has no points in common with V(p). The extension
ofthe velocity field is actually carried out by first considering e, such that imb(si) [e, e]
contains (si) and points of g-( < 1) and then extending to a neighborhood U(imb(i))
of imb(i) [e, e] by means of a partition of unity argument [19, p. 29]. This construc-
tion is repeated for each sink (si)j and each source (so)j of X, except that for the
sources G could have been replaced by g-l(/).

Consider an open set O which has no points in common with the images
of the imbeddings above, neither with V(p). But O is chosen such that O U
(I,.1 (U(imb(si)j))) LI (LI(U(imb(so)))) U g-( < 1) covers M. Let O carry the zero vector-
field; the other open sets of the covering carry the vectorfields defined above.

We will now smooth these locally defined vectorfields into a smooth vectorfield
Y defined on M. This will be accomplished by a partition of unity argument. The
construction of the locally defined vectorfields has been carried out (points 2 and 4)
such that this smoothing process will not destroy the crucial properties leading to p
being a turning point. Consider a smooth partition of unity subordinate to the covering
defined above. Define Y(x) as the sum of each locally defined vectorfield evaluated
at x, multiplied with a "weight" according to the partition of unity. The vectorfield Y
is smooth, satisfies the rank conditions at the sinks and sources of X and at p, and by
the construction above completes the diagram of X. Therefore the system X + uY
is globally controllable on M, by Theorem 4.1 of Part I.

The control system X + uY constructed above is actually globally controllable
by means of two controls, i.e. there exist real numbers such that any two points
of M can be connected along the trajectories of the vectorfields X + IY and X- IY.
This follows from the proof of Corollary 4.2 of Part I. Indeed, although X and Y are
not Morse-Smale, the arguments used in the proof of Corollary 4.2 carry over and
thus global controllability by bang-bang control is implied by global controllability.

3. Morse-Smale systems are globally bang-bang controllable by Morse-Smale
systems.

THEOREM 3.1. LetX be a Morse-Smale vectorfield (defined on a compact manifold)
with no periodic orbits and with at least one equilibrium point q q not a source) which
is cyclic (i.e. the derivative ofX at q is cyclic). There exists a Morse-Smale vectorfield
X2 on M such that : X + uX2 is bang-bang controllable.

Proof. Let p be a point on the stable manifold of q with respect to X. Let p be
close enough to q such that there exists an open ball U(p) around p which covers q
but does not cover any other critical points of X. The point p will turn out to be the
only sink of the Morse-Smale system X_ on M, to be constructed. It is remarked that
the construction that follows is just one of many alternatives possible.
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It is well known [20], [25] that there exists a C-Morse function f on M which
has one minimum at p, which at ditterent critical points of f, takes different values and
for which Ma {m M,f(m)<=a} is compact, for every real a. In addition its critical
points are different from the equilibrium points of Xt. Let Co p, Cl, c2," (finite in
number) be the critical points off arranged so that f(p) <f(cl) <f(c2) <" . Consider
the vectorfield -grad f. This vectorfield will now be changed into X2. Consider neighbor-
hoods U(ci) of ci, i#0, such that f(U(ci))<f(c+l) and such that Xl restricted to
U(c) does not leave the stable manifold of ci corresponding to -gradf invariant. This
can be accomplished as follows. Take U(c) small enough such that in local coordinates
Xi restricted to U(c) is a rectilinear vectorfield (Xi(c)0!); if XI would leave the
stable manifold invariant, change locally such that the stable "eigenspace" of
D(-gradf) of the local representation of -gradf at c is no longer invariant. This
altered vectorfield will still be denoted by -gradf.

A second, and more crucial alteration will now be made on the restriction of
-gradf to U(p). We assume that U(p) is small enough so that -grad f has only one
critical point p(a sink) in U(p). Assume that the Hessian of f at p is cyclic and that
the rank condition for Xl and -D gradf is satisfied at p (see 2 if it is not). Therefore
there exists an accessibility region Acc( - p) towards p. Take an imbedding of the open
unit interval into U(p) which connects q to Acc(p) as explained in the previous
section. Define U(imbq))c U(p) and V(p) as in the previous section where U(imbq))
now carries a vectorfield -grad g which is constructed so that it is tangent to the image
of the imbedding and so that the rank condition at q is satisfied. The latter is possible
by cyclicity of X at q.

Now consider an opela set O which has no points in common with the image of
the imbedding, neither with V(p) and such that O t_J U(imb(q) equals U(p). Let -gradf
be defined on O and let -grad g be defined on U(imb(q). Smoothing the-functions f
and g by means of a smooth partition of unity subordinate to the cover of U(p) and
taking minus the gradient results in our vectorfield X2, when restricted to U(p). It is
remarked that the partition of unity cannot introduce new equilibrium points in X2 if
we assume that the vectorfield -grad g on the image of the imbedding crosses the level
surfaces off in the "lower f-value direction". Outside U(p), X2 is defined by -grad f.
It is remarked that X2 is a gradient vectorfield and that gradient vectorfields can always
be C approximated by Morse-Smale vectorfields which leave the vectorfield
unchanged in the neighborhoods of critical points 16]. Therefore X2 (keeping notation)
might be assumed to be Morse-Smale.

We will now prove that the system --XI 4-uX2 is bang-bang controllable. Let
Cl(q) be an open neighborhood of q which is locally controllable. Notice that p can
be controlled to q (u- 0 and local controllability at q). Let O(p) be a neighborhood
of p small enough such that the control mapping p to q maps O(p) into C(q). By
construction of the system : X + uX2 there is a control which steers q to p. Let
C(q)c C(q) be such that this control maps C(q) onto O(p)c O(p). We claim that
any two points a, b of O(p) can be controlled to each other. Indeed first "a" is
controlled into a C(q) by the control sequence steering p to q; then a is controlled
towards a2 C(q) by local control at q, with a2 such that the control sequence
controlling q to p, controls a2 to b.

Take two arbitrary points m and n on M not in O(p). Assume we know how to
control m towards a point "a" in O(p) along the trajectories ofthe system X 4- uX.
A similar control procedure controls n to some point b O(p) along the trajectories
of the negative system; therefore there is a control sequence that controls some point
be O(p) towards n, along the trajectories of the original system. But "a" can be
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controlled to b (previous paragraph), thus showing how to control m to O(p) ends
the proof of global controllability.

If m belongs to the stable manifold of p with respect to the vectorfield X,_, then
a control K, positive and large enough controls m to O(p). In the following, we can
assume that m is not a critical point of X2 (if it is, apply u 0). Assume m belongs
to the stable manifold of a critical point ci different from p. Take a control, positive
and large enough such that rn is controlled to some point ml in U(ci). Apply u =0
for some time such that ml is controlled to a point m2 which is off the stable manifold
of c and such that f(m2) <f(c/ l). Then m2 belongs to the stable manifold of a critical
point cj with j < i. Repeating this procedure, one finally arrives in O(p). This concludes
the proof of global controllability.

To show global bang-bang controllability we recall that as is shown in Corollary
4.2 of Part I, in controlling m to n we could have used control values k and -k (the
trajectory u 0 is approximated by switching between k and -k where k is the largest
control value applied). By continuity of solutions of differential equations with respect
to initial conditions and by local bang-bang controllability at q there exist neighborhoods
of m and n that can be controlled to each other by bang-bang control with values +k
and -k. Repeating this argument for all couples (m, n) M M and by compactness
of M M there exists a finite number K such that X + uX2 is controllable with
control values l, -l with >-K.

4. Bang-bang controllability on noncompact manifolds. We offer an alternative to
the paper by Levitt and Sussmann [20] on controllability by means of two vectorfields.
We will construct two vectorfields Xt and X2 such that X + uX2 is bang-bang
controllable. Again the vectorfields that we will be considering are one of many choices
possible. Our construction is inspired by the theory of the previous section.

Let X2 =-grad f, f Morse, be a vectorfield with one sink p. This time, since M is
noncompact, X2 might have an infinite number of equilibrium points. Both X and
X2 have the same characteristics on U(p) (for notation see previous section) as in the
previous section. This time however X is smoothed out equal to zero, outside of U(p)
except for small isolated neighborhoods of the critical points of X where X is a
rectified parallel vectorfield smoothed off to zero, that maps points on the stable
manifold of X2 out of the stable manifolds.

It follows from 3 that X + uX2 is globally controllable by bang-bang control.
In controlling m to n, the trajectories that connect m with n are in part located inside
U(p) and in part outside of U(p). In controlling m to n one can use control values
+1 and -1 (or any other values, one positive and one negative) as long as one is
outside of U(p), since X 0 (except for the neighborhoods of critical points of X2).
Once arrived in U(p), since U(p) is a subset of a compact set, there exist control
values k and -k that implement the required control strategy as explained before.
Bang-bang global controllability is an immediate consequence.

5. Remarks.

5.1. The rank conditions require X and X, to be of sufficiently high differentiabil-
ity class, a condition not necessary in the theorem of Levitt and Sussmann [20]. Notice
that by [20], X and X can be taken to be real analytic.

5.2. The methods in [20] set a uniform bound on the number of switchings--
depending on the dimension of the manifold. We are unable to do so because X is
approximated by X + lX2 and X1- lX2, with a number of switchings depending on

X and X themselves.
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MEASURABLE SELECTION THEOREMS FOR MINIMAX
STOCHASTIC OPTIMIZATION PROBLEMS*

ANDRZEJ S. NOWAK"

Abstract. This paper resolves the measurability questions which arise in the analysis of various minimax
stochastic optimization models posed in Borel spaces. For a large class of such models, we provide a set
of sufficient conditions which ensure that the questions have positive answers. These conditions are essentially
weaker than those described in the existing literature. Moreover, they allow us to conclude a fundamental
theorem yielding some new results on the existence of universally measurable selections of extrema for both
zero-sum stochastic games and minimax stochastic optimal control problems. In particular, a random version
of the well-known minimax theorem of Fan is in this way established. The fundamental theorem yields also
a descriptive set theoretic fact concerning the projections of Borel sets. The paper indicates also some
counterexamples to possibly more general problems.

Key words, universally measurable selections, zero-sum stochastic games, minimax stochastic optimal
control, projections of Borel sets, uniformization of analytic and coanalytic sets

1. Introduction. The aim of this paper is to study some measurability issues which
naturally arise in various minimax stochastic optimization problems in Borel spaces.
The basic tools of this paper are the fundamental facts concerning Borel and analytic
sets in complete separable metric space and some known uniformization (selection)
theorems. Also some results concerning probability measures on Borel spaces are
employed. For a detailed discussion of most of the facts (with proofs) that we need
the reader is referred to the excellent book by Bertsekas and Shreve (see [4, Chap. 7
and Appendix B]).

The notation and basic definitions of this paper are as follows. We use R to denote
the real line and R* to denote the extended real line, i.e., R* R LI {-oo, oo}. The set
of positive integers is denoted by N. If X and Y are sets, then projx is the projection
mapping from X Y to X. Let X be a topological space. If there exists a Polish (i.e.,
complete separable metric) space Y and a Borel subset B of Y such that X is
homeomorphic to B, then X is said to be a Borel space. It follows that a Borel space
X is metrizable and separable. A separable metric space X is said to be an analytic
space if X is the continuous image of a Polish space. It is known that every Borel
space is analytic. An analytic set in a Borel space X is a subset of X which is an
analytic space when endowed with the relative topology. It is known that the finite or
countable union, intersection, and product of analytic (Borel) sets is analytic (Borel)
[4, Chapter 7]. The complement of an analytic set relative to a Borel space is called a
coanalytic set.

Let X be a Borel space. We denote by x the Borel tr-algebra of X. In addition
to x, we are interested in two more tr-algebras in X. The universal or-algebra, denoted
by q/x, is the o’-algebra of all universally measurable subsets of X. The limit tr-algebra,
denoted by x, is the smallest tr-algebra containing the Borel subsets of X and closed
under operation (A) (Suslin operation). It is known that x cx c 07/x (see [4]).

Let X and Y be Borel spaces. A function f: X--> Y is called limit (universally)
measurable iff-(B) x(f-l(B) llx) for every B y. Clearly, iff is limit measur-
able then it is universally measurable. An extended real-valued function f: X--> R*, is
called upper semianalytic (u.s.a.) if the set {x X: f(x) >= c} (equivalently, the set

* Received by the editors March 6, 1984.

" Institute of Mathematics, Technical University of Wroctaw, Wyspiafiskiego 27, 50-370 Wroclaw,
Poland.
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{X X: f(x) > c}) is analytic for each real number c. (A function f: X R* is called
lower semianalytic if -f is upper semianalytic.) It is known that every Borel measurable
function is u.s.a., and every u.s.a, function is limit measurable.

We are now prepared to describe the fundamental result of this paper. Let S, X,
and Y be Borel spaces. Let A be an analytic subset of $ X, and let B be a Borel
subset of $ Y. Denote by A(s) the s-section of A, that is, A(s) {x: (s, x) A}, s S.
Let B(s) denote the s-section of B, s $. Assume that A(s) and B(s) are nonempty
for every s S. Define the following set

(1) C {(s, x, y): s S, x A(s), and y B(s)}.

In 4 we shall prove the following lemma.
LEMMA 1.1. The set C is an analytic subset of S X x Y. If in addition the set A

is Borel, then so is C.
Let u C R be an u.s.a, function on C. We define two functions r: A R* and

w: B R* as follows:

(2) r(s, x) inf u(s, x, y) and w(s, y)= sup u(s, x, y),
yB(s) xA(s)

where (s, x) A, and (s, y) B. Further, we define two functions v., v*: S R* by

(3) v.(s)= sup r(s, x) and v*(s) inf w(s, y), s S.
xA(s) yeB(s)

The functions (2) and (3) arise in the analysis of some minimax stochastic
optimization problems such as stochastic games or minimax stochastic control problems
(see, e.g., [13] and [4]). From the point of view of the applications they would satisfy
some measurability conditions. Our purpose is to give sufficient conditions (in the
weakest possible form) that ensure the desired measurability properties of the functions
(2) and (3).

We now arrive at our fundamental result:
THEOREM 1.1. Assume that B(s) is tr-compact for each s S, and u is the limit of

a nondecreasing sequence {u} of upper semianalytic functions on C such that, for each
(s, x) A and n N, u, (s, x,. is continuous on B(s) endowed with the relative topology.
Then:

(a) The function r is upper semianalytic.
(b) The function w is (s (R) Y)-measurable.
(c) Both the functions v. and v* are upper semianalytic.
In 4 we prove that Theorem 1.1 implies the following fact.
THEOREM 1.2. Assume that A is a Borel subset ofS x X, B(s) is or-compactfor each

s S, and u is a Borel measurable function on C such that, for each (s, x) A, u (s, x,.
is lower semicontinuous on B(s) endowed with the relative topology. Then the conclusions
of Theorem 1.1 hold.

Remarks. (1) The proof of Theorem 1.1 is postponed to 4. It utilizes some
measure and game theoretic arguments. For example, to resolve some measurability
issues a general minimax theorem of Fan [7, Thm. 2] is engaged. In this respect, the
methods used here are similar to those of [12] and [13] where some particular cases
of Theorem 1.1 were studied.

(2) The assumptions of Theorem 1.1 are inspired by the papers of Brown and
Purves [6] and Shreve and Bertsekas [17]. Their measurable selection theorems are
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crucial in our development. The conclusions of Theorem 1.1 (Theorem 1.2) may fail
in general. For a detailed discussion of this fact see 3.

(3) Suppose the assumptions of Theorem 1.2 are satisfied. If in addition the set
A(s) is tr-compact for each s S, and, for each (s, y) B, u(s,., y) is upper semicon-
tinuous on A(s) endowed with the relative topology, then all functions defined in (2)
and (3) are Borel measurable. This follows from Brown and Purves [6, Corollary 1].
(Recall that the set C is Borel in this case.)

In order to give some. applications of Theorem 1.1 we need the following important
fact.

LEMMA 1.2. Let S and Y be Borel spaces, and E be a nonempty setfrom the product
tr-algebra s(R) 3y. Then the projection projs (E) of E from S x Y on S belongs to s.
Moreover, there exists a limit measurable function g:S-> Y such that g(s) E(s)-
(y: (s, y) E) for every s projs (E).

Proof. This is a corollary to Leese [1 l, Thm. 5.5].

2. Measurable selections for minimax stochastic optimization problems. In this
section we present some possible applications of the fundamental theorem from 1.
In the first place we give an application to game theory. Consider a two-person zero-sum
game model (S, X, Y, A, B, u) where:

(a) S is a Borel space, called the state space.
(b) X and Y are Borel spaces of actions for players and 2, respectively.
(c) A and B are the constraint sets. It is assumed that A is an analytic subset of

S x X, and B is a Borel subset of S Y. Moreover, all the s-sections A(s) and B(s)
of A and B, respectively, are assumed to be nonempty. Let C be the set defined by (1).

(d) u: C --> R is an upper semianalytic pay-offfunction for player 1.
Players and 2 observe the state s S and then choose actions x A(s) and

y B(s), respectively. As a consequence of the actions chosen by the players, player
2 pays player u(s, x, y) units of money. Player tries to maximize his income and
player 2 tries to minimize his loss.

A strategy for player is a universally measurable function f: S-> X such that
f(s) A(s) for each s S. Strategies for player 2 are defined analogously.

Let v. and v* be the functions defined by (3). The function v. (v*) is called the
lower (resp. upper) value function of the game. If v. v*, this common function is
called the value function of the game and will be denoted by v.

Define the following sets;

and

O1 {s S: v.(s) inf u(s, x, y) r(s, xs) for some xs A(s)}
yB(s)

0_= {s S: v*(s) sup u(s, x, y) w(s, y) for some y B(s)}.
xA(s)

A strategy f* of player is called e-optimal (e > 0) for him when

r(s,f*(s))= v.(s)
r(s,f*(s)) >- v,(s)-

ifsO,

if s 01, V,(S) <

r(s,f*(s)) >=- if s e! 0, v,(s)
E



MEASURABLE SELECTION THEOREMS 469

A strategy g* of player 2 is called e-optimal (e > 0) for him when

w(s, g*(s))= v*(s)

w(s, g*(s)) <= v*(s)+ e

w(s, g*(s)) <-- if s 0, v*(s)
E

if s 0,

if s 02, Vg(S) > --00,

The game model above is abstracted from the theory of sequential stochastic
zero-sum games (see [13] and its references). Besides the universal measurability of
the value functions v, and v* the central problem arising in the analysis of such games
is the existence of e-optimal universally measurable strategies for both players. The
following theorem is an answer to the mentioned questions.

THEOREM 2.1. Suppose the assumptions of Theorem 1.1 are satisfied. Then:
(a) The lower value function v. is upper semianalytic and, for each e > O, player

has an e-optimal limit measurable strategy.
(b) The upper value function v* is upper semianalytic and, for each e > O, player 2

has an e-optimal limit measurable strategy.
Proof (a) The function v. is u.s.a, by Theorem 1.1 (c). The existence ofan e-optimal

limit measurable strategy for player follows from Theorem 1.1(a) and a selection
theorem by Shreve and Bertsekas (see [4, Prop. 7.50 and Appendix B] or [17, pp. 968,
971]).

(b) The function v* is u.s.a, by Theorem 1.1(c). To prove the last statement of
the theorem we define

I {s S: v*(s)- -oo},

E {(s, y) B: v*(s)= w(s, y)},

F={(s,y) 6B: w(s,y)<-_-} fqI Y,

G={(s,y)B: w(s,y)<-_v*(s)+e}-(EUF).

Note that I s, and projs (E) O. From Theorem 1.1(b), it follows that all the sets
E, F, and G are in 5fs (R) 3y. Therefore applying Lemma 1.2 to E, F, and G, we complete
the proof.

From Theorem 2.1 we can deduce a random version of the well-known minimax
theorem of Fan [7]. To do this we must introduce some definitions.

A function u: C--> R is called concavelike on A(s) for each s S if for any
sGS, xI, x2GA(s and A [0, 1] there exists xoA(s) such that

u(s, xo, y)>-Au(s,x,y)+(1-A)u(s, x2, y) for all yB(s).

A function u: C -> R is called convexlike on B(s) for each s 6 S if for any s S, Yl,

Y2 B(s) and A [0, 1], there exists yo B(s) such that

u(s,x, yo)<-_Au(s,x, yl)+(1-A)u(s,x,y_) forallxA(s).

Here is a random version of Fan’s minimax theorem.
THEOREM 2.2. Suppose that B(s) is compact for each s S and the remaining

assumptions of Theorem 1.1 are satisfied. If in addition u is concavelike on A(s) and
convexlike on B(s) for each s S, then the game has a value function v and v is upper
semianalytic. Moreover, for each e > 0, both players have e-optimal limit measurable
strategies.
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Remarks. (1) Under the compactness assumption of Theorem 2.2 the set 02 is
equal to S, so player 2 has an optimal limit measurable strategy. The conclusions of
Theorems 2.1 and2.2 remain valid if the assumptions of Theorem 1.1 are replaced by
the ones of Theorem 1.2.

(2) Theorem 2.1 generalizes [12, Props. 3.1, 3.2] while Theorem 2.2 extends
[12, Thms. 4.1, 4.2].

(3) The mathematical facts stated in Theorem 2.1 may have another interpretation.
Namely, they may be applied to some minimax (or maximin) stochastic control systems
related to those of [4, Chaps. 2-5]. Suppose u is a one-stage costfunction of a minimax
stochastic control system where S is the state space, Y is a control space, and X is a
disturbance space. Then v* is the optimal one-stage cost function. From Theorem 2.1, it
follows that v* is u.s.a., and the controller has an e-optimal one-stage policy. (The
terminology used here is taken from [4].)

As a next application of the fundamental theorem from we provide a random
version of Fan’s inequality [8]. This inequality has many applications to game and
control theory (see, e.g., [2]). In what follows we fix that X- Y and A(s)= B(s) for
each s S. The set C is defined by (1). We assume now that X is a subset of a linear
topological Hausdorit space and is endowed with the relative topology. Let u be a
real-valued function on C. We say that u(s,., y) is quasiconcave for each (s, y) B if
the set xA(s): u(s,x,y)>c is convex for each (s,y)B and cR.

Here is a random version of Fan’s inequality.
THEOREM 2.3. Besides the assumptions above suppose that X is a Borel space and

A is a Borel subset ofS X such that A(s) is a compact convex setfor each s S. Assume
further that u C - R is a Borel measurable function such that u (s,., y) is quasiconcave
for each (s, y) B and u(s, x,. is lower semicontinuous on B(s) for each (s, x) A. If
in addition

sup u(s, y, y) <-_ 0 for each s S,
yB(s)

then there exists a limit measurable function g S--> Y such that

g(s)B(s) and sup u(s,x,g(s))<-O for each sS.
xA(s)

Proof. Define E {(s, y) B: SUpxA<s) U(S, X, y) <--_ 0}. By Fan’s inequality
[2, Thm. 7.1.3], the s-section E(s) of E is nonempty for each s S. By Theorem 1.2,
the set E belongs to s(R) Y. Thus the result follows now from Lemma 1.2.

3. Descriptive set theoretic aspects of the fundamental theorem. In this section we
shall discuss Theorem 1.2 from the point of view of descriptive set theory. In the first
place we shall demonstrate that Theorem 1.2 implies a new result on projections of
Borel sets.

THEOREM 3.1. Let A be a Borel subset of S X and B be a Borel subset of S Y
such that each s-section B(s) ofB is tr-compact. Let C be a subset ofS X Y defined
by (1). Assume that D is a Borel subset ofC such that D(s, x) {y: (s, x, y) D} is open
in B(s) endowed with the relative topology. Then the projection projsy (D) ofDfrom
S X Y on S Y belongs to s (R) g.

Proof Let u XD be the indicator function of D. Then u satisfies the assumptions
of Theorem 1.2. By Theorem 1.2 the following set

E={(s,y)B: sup u(s,x,y)<=O}=((s,y)B:w(s,y)<-O}
xA(s)
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belongs to s(R) Y. Note that

(4)

E=B-{(s,y)B: sup u( s, x, y) > O}
xA(s)

B-projsv ({(s,x,y) C" u(s,x,y)>O})

B-projsv (D).

Since both B and E belong to s(R)Y, so projsxg (D) has the same property.
Remark. The conclusions (a) and (c) of Theorem 1.1 (Theorem 1.2) need not

hold in general. This fact was noticed for the first time by Rieder in 14, Example 4.1].
In his example (based on the axiom of constructibility) Rieder has shown that both
v, and v* need not be universally measurable. The same example shows that the
conclusion (a) of Theorem 1.1 may fail in general. For a comment on a related topic
see also [4, p. 302]. (The example of Rieder is also reported in [12, Example 3.1].)

We close this section with an example showing that also the conclusion (b) of
Theorem 1.1 may fail in general.

Counterexample. Assume that S- X Y= R, and A(s)= B(s) for each s S.
According to Aumann [3], it is consistent with the usual axioms of set theory to assume
that there exists a function g" R R whose graph is a coanalytic subset of R2, but g
is not Lebesgue measurable. (To obtain this fact the axiom of constructibility is
assumed.)

Let F S x Y-graph (g). Then F is an analytic set in S x Y, and, by [4, Prop. 7.39],
there exists a Borel set Dc S xX x Y such that projsg (O)= F. Let u=xo be the
indicator function of D. Then u is a Borel measurable function on S X x Y. From
(4) we get

E {(s, y)" sup u(s,x,y)<=O}=Sx Y- F graph (g).
xX

Suppose that E s(R)Y. Then by Lemma 1.2 the function g is limit measurable,
which leads to a contradiction. Therefore E s(R) Y.

4. Proof of the fundamental theorem. We start with a proof of the properties of
the set C defined in 1.

Proof of Lemma 1.1. We define two sets

A* {(s, x, y): s S, x A(s), y Y},

B* {(s, x, y): s S, x X, y B(s)}.

Note that A* proj B*x (A) and =projsy (B) and C=A*fqB*. Since the projec-
tion mapping is continuous, so the set B* is Borel, and by [4, Prop. 7.40] the set A*
is analytic. Thus C is analytic. Of course if in addition A is Borel, then so is C.

We now mention some auxiliary measure theoretic facts that we shall be using.
Let T be a Borel space. We denote by
and assume that Pr is endowed with the weak topology. By [4, Corollary 7.25.1], Pr
is a Borel space too. If in addition T is compact, then so is Pr [4, Prop. 7.22].

For any metric d on T, let Ua(T) be the space of bounded real-valued functions
on T which are uniformly continuous with respect to d.

The following lemma follows from [4, Prop. 7.19].
LEMMA 4.1. There exists a metric d on T consistent with its topology and a countable

dense subset {f,} of the unit ball of Ud (T) such that thefunction m P x P. --> R defined
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m(p, q)= , 2-" f.(x)p(dx)- I f.(x)q(dx)

is a metric on PT-equivalent to the weak topology of
From (32) and (35) of [5] we can deduce the following fact.
LEMMA 4.2. Let f" S X Y R be a bounded u.s.a, function. Then the function

f" S Px PY R defined by

(5) f(s, p, q) f(s, x, y)p(dx)q(dy), P Px, q e P, s e S,

is u.s.a, on the Borel space S Px x Py.
COROLLARY 4.1. Define the following sets"

A {(s, p)" s S, and p PA(s)}, B {(s, q)" s S, and q Pn(s)},
and

C {(s, p, q)" s S, p PA), and q Pn)}.
Assume that A is analytic and B is Borel. Then the sets A and C are analytic while the
set B is Borel.

Proof. Let f= Xc be the indicator function of C. By Lemma 1.1, f is u.s.a, on
SXxY. Note that C {(s, p, q): f(s, p, q) >= l}. By Lemma 4.2, f is u.s.a., which
implies that C is analytic. The proof of the fact that A is analytic is similar. Now we
prove that B is Borel. Clearly, B is analytic. Let f =-Xn. The function fl is Borel
measurable and hence u.s.a. By Lemma 4.2, f is u.s.a., which implies that the set
D {(s, q)" f (s, q) <= -1 } is coanalytic. But D B, so B is also coanalytic. Thus from
Suslin’s theorem [10] it follows that the set B is Borel.

COROLLARY 4.2. Let f" C R be a bounded u.s.a, function. Then the function f
defined on C by (5) is u.s.a.

Proof This follows from Lemma 4.2, Corollary 4.1, and the fact that the intersec-
tion of two analytic sets is analytic.

LEMMA 4.3. Let S and Y be Borel spaces, and h" S Y- R be a function.
(a) If h(., y) is limit measurable for each y Y, and h(s, is continuous for each

s S, then h is (s (R) Y)-measurable.
(b) If h(., y) is u.s.a, for each y Y, and h(s,. is continuous for each s S, then

h is u.s.a.

Proof Part (a) follows directly from [9, Thm. 6.1]. A proof of (b) can be given by
a straightforward translation of that of part (a), using the fact that the countable union
and intersection of analytic sets is analytic.

The following lemma is a special case of Theorem 1.1.
LEMMA 4.4. Assume that B(s) is compactfor each s S, and u is a boundedfunction

on C. Let the remaining assumptions of Theorem 1.1 be satisfied. Then"
(a) The function r is u.s.a.
(b) The function w is (s(R) Jy)-measurable.
(c) Both the functions v. and v* are u.s.a.

Proof We recall that u is assumed to be the limit of a nondecreasing sequence
{u,} of u.s.a, functions on C such that, for each n e N and (s, x) e A, u, (s, x, is
continuous on B(s) endowed with the relative topology. By [4, Lemma 7.30], u is u.s.a.
Moreover, the assumption above implies that, for each (s, x)e A, u(s, x,.) is lower
semicontinuous on B(s).
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(a) By the proof of [12, Prop. 3.2], the function defined by

fn(s, x) inf un(s, x, y), (s, x) A,
ycB(s)

is u.s.a. Using 16, Prop. 10.1 ], we can show that

limf,(s, x) inf lim u.(s, x, y) r(s, x),
ycB(s)

(s,x)A.

(Recall that B(s) is assumed to be compact.) By [4, Lemma 7.30], the function r is u.s.a.
(b) To prove this statement we introduce some measure theoretic tools. We embed

X(Y) in the space Px (PY) of probability measures on x (Y) endowed with the
weak topology. The embedding of Y in Py means that every y Y is recognized as a
probability measure 6y concentrated at point y and it is a homeomorphism [4, Corollary
7.21.1].

(6)

Define

a(s,p,q)=f[, u(s,x,y)p(dx)q(dy), (s,p,q)C,

#(s, q) sup li(s, p, q), (s, q) 6 B.
pc P,(s)

We put ti(s, p, y) tT(s, p, By) and #(s, y) #(s, By), where (s, p, By) C. Let tk, k N,
be the functions defined by (6) where u is replaced by t/k, Clearly, every function
fig(S, p,.) is continuous on PB(s). By Corollary 4.2, both /k and fi are u.s.a, for each
k N. By the monotone convergence theorem fik/tT. This implies that tT(s, p, .) is
lower semicontinuous (1.s.c.) on PB(s) for each (s, p) A, and consequently so is (s,.
for each s S.

Define

f,(s,q)= inf [(s,t)+nm(t,q)], (s,q)6SPy,
PB(s)

where m is a metric on Py defined in Lemma 4.1. Since if(s,.) is 1.s.c., so, by the
proof of the theorem of Baire (see [1, p. 390] or [4, p. 147]), we get f,/ on B.
Consequently, f,/ w on B, because the function # restricted to B is equal to w.

We shall prove that f,(.,y) is limit measurable on S and f,(s,.) is continuous
on Y for every s S, y Y, and n N. Then by Lemma 4.3(a), f, is (s(R)3y)-
measurable for each n N, which implies that so is w. The continuity of f,(s,. for
each s 6 S and n N follows from the proof of Lemma 7.7 in [4]. Let y be an arbitrary
element of Y. In order to show the measurability of f,(., y), we define

(7) g,(s, p, t, y)= a(s, p, t)+ nm( t, y),

where (s, p, t) C, y Y, and n N,

(8) g’,(s, p, y)= inf g,(s, p, t, y),
tcPn(s)

where (s, p) A, y Y, and n N.
Clearly,

(9) f,(s, y)= inf sup g,(s, p, t,y), (s, y) S Y.
t Pn(s) pc P,(s)

Thus, applying the minimax theorem of Fan [7, Thin. 2], (8) and (9), we get

(10) f,,(s, y) sup inf g,,(s, p, t, y) sup g’,,(s, p, y), (s, y) S Y.
pc PA(s) tc Pa(s) pc P(s)
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We now show that gn(’, Y) satisfies the assumptions of our lemma. By Corollary
4.1, the sets A, C are analytic, and B is Borel. Note that B(s)- PB(s) for each s S,
so each B(s) is compact. By Corollary 4.2, gn(., y) is u.s.a. Moreover, there exists a
nondecreasing sequence {gnk} of u.s.a, functions on C such that gnk(S,P, ",Y) is
continuous on B(s) for each (s, p) A, k N, and g,k(’,y)/gn(’,y) as k-o. As a
matter of fact, gnk is the function (7) where t is replaced by tk. From the proof of
part (a) of our lemma we infer that the function g’,(., y) defined by (8) is u.s.a, on A.
This, (10), and [4, Prop. 7.47] or [17, p. 968] imply that fn(., y) is u.s.a, on S. Thus, we
have shown that f(., y) is limit measurable for each y Y, and fn(s,. is continuous
for each s S, which terminates the proof of (b).

(c) The function v. is u.s.a, by (a) and [17, p. 968] or [4, Proposition 7.47]. It
remains to show that v* is u.s.a. Recall that

v*(s) inf w(s, y), s S.
yB(s)

But w is the limit of the nondecreasing sequence {f,} from the proof of part (b). Recall
that every f(s,. is continuous and f,(., y) is u.s.a. By Lemma 4.3(b), everyf is u.s.a.
Thus the fact that v* is u.s.a, follows from the proof of part (a) of the lemma.

To prove Theorem 1.1 we shall also use the following fact which follows from
the main result of Saint-Raymond from [15].

LEMM 4.5. Let S and Y be Borel spaces and let B be a Borel subset of S x Y such
that each s-section B s ofB is nonempty and r-compact in Y. Then there exists a sequence
{B}(n N) of Borel subsets of S x Y, each of which with nonempty compact s-sections
B, s ), such that

B Bn+l for each n N and [3 B, B.

Remark,. Saint-Raymond has shown the above fact under a stronger assumption
that both S and Y are compact metric spaces. However, by Urysohn’s theorem, the
Borel spaces S and Y may be homeomorphically embedded in compact metric spaces,
say S* and Y*, so that B may be recognized as a subset of S* Y*. Note that such
an embedding of S x Y in S*x Y* is a Borel homeomorphism preserving the
compactness of the s-sections of B. Thus the result of Saint-Raymond is valid in the
more general case above.

Let {B,} be a sequence of Borel sets from Lemma 4.5. For any u" C- R and
n N, we put h. Xu and

su x, yr,(s, x) yn.(s)inf h,(s, x, y), (s, x) A, w’(s, y) xeAs) h,(s, ),

(s, y) B, and

v’,(s) inf w,(s, y), s S.
yBn(s)

LEMMA 4.6. Let u be a bounded nonnegativefunction and let the remaining assump-
tions of Theorem 1.1 be satisfied. Then for each n N the function h, is u.s.a. Moreover:

(a) The function r is u.s.a.
(b) The function w is (s(R) g)-measurable.
(c) The function v is u.s.a.

Proof. This is a corollary to Lemma 4.4.
LEMMA 4.7. Assume that u is nonnegative. Then rn/ r on A and w’ w on B as

Proof. The proof is straightforward.
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Finally we give the following simple lemma.
LEMMA 4.8. Let f,, f: T R n N) be functions.
(a) Iff,, /f on T, then suptrf,(t)/ suptrf(t).
(b) Iff,, f on T, then inft rf,( t) inft rf( t).
(c) Iff =max {f, -n}, then suptrf,(t) suptrf(t).
(d) Iff, min {f, n }, then inft rf, (t) inft r f(t).
Proof of Theorem 1.1. First of all we note that the conclusions (a) and (b) of

Theorem 1.1 hold for any bounded nonnegative function u. This follows from Lemmas
4.6, 4.7 and from the fact that the limit of any sequence of u.s.a. (product measurable)
functions on a Borel space (product of Borel spaces) is u.s.a. (product measurable)
(see [4, Lemma 7.30]). It remains to prove (a) and (b) for unbounded functions.

Let u be a function satisfying the assumptions of Theorem 1.1. For each n N,
we define

u, max {u, -n} and u"=min{u,n}.

It is easy to check that u, and u" satisfy the assumptions of Theorem 1.1 for each
n N. Define r, (r") and w, (w") by (2) where u is replaced by u, (u").

(a) Suppose u is unbounded and nonnegative. By Lemma 4.8(d), we have r"/ r
on A. Since r" is u.s.a, on A for each n N, so is r by [4, Lemma 7.30]. The result we
have already obtained can be (in an obvious way) extended to the case of all functions
u which are bounded below. Suppose now u is unbounded. By Lemma 4.8(b), we
have r, r on A. We have already shown that each r, is u.s.a. (u, is bounded below).
Thus r is u.s.a, by [4, Lemma 7.30].

(b) The proof of (b) for an unbounded function u proceeds similar lines as that
of (a). (We use parts (a) and (c) of Lemma 4.8 instead of (b) and (d).)

(c) The fact that v. is u.s.a, follows from part (a) ofTheorem 1.1 and [4, Prop. 7.47]
or [17, p. 968]. It remains to show that v* is u.s.a. It is easy to check that v’,- v* as
n o. For each n N and a bounded nonnegative u the function v, is u.s.a, by Lemma
4.6(c). Thus v* is u.s.a, for each bounded nonnegative function u. Suppose now that
u is unbounded and nonnegative. It is easy to see that w" min { w, n} for each n N.
By Lemma 4.8(d), we have

inf w"(s, y)/ inf w(s, y)= v*(s),
yB(s) yB(s)

This and [4, Lemma 7.30] imply that v* is u.s.a, for every nonnegative function u.
Clearly, this result can be extended to the case of any function u which is bounded
below. Now using this fact and Lemma 4.8(c), (b), we can prove that v* is u.s.a, for
any (unbounded) function u.

Proof of Theorem 1.2. We have to prove that u is the limit of a nondecreasing
sequence {u,} of Borel measurable functions on the Borel set C such that, for each
(s, x) A and n N, u,,(s, x,.) is continuous on B(s). This can be done in a similar
way as the proof of 16, Prop. 11.6]. Note that without loss of generality we can assume
that u is bounded. (If u is unbounded then we can apply the arguments given below
to the function arctg (u) instead of u, which also satisfies the assumptions of
Theorem 1.2.) For each n N, let u, be defined by

u.(s,x,y)= inf [u(s,x, t)+nd(t,y)],
tB(s)

(s,x)eA, ye Y,

where d is a metric on Y consistent with its topology. By Corollary of Brown and
Purves [6], the function u, is Borel measurable for e-ch n N. It is easy to check that
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u,(s, x, is continuous on Y for each (s, x) A and n N. By the proof of the theorem
of Baire (see [1, p. 390] or [4, p. 147]), we have u,/ u as n , which terminates the
proof.
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ALGORITHM MODELS FOR NONDIFFERENTIABLE OPTIMIZATION*

E. POLAK" AND D. Q. MAYNE

Abstract. It is shown that a number of seemingly unrelated nondifferentiable optimization algorithms
are special cases oftwo simple algorithm models: one for constrained and one for unconstrained optimization.
In both of these models, the direction finding procedures use parametrized families of maps which are
locally uniformly u.s.c, with respect to the generalized gradients of the functions defining the problem. The
selection of the parameter is determined by a rule which is analogous to the one used in methods of feasible
directions.

Key words, nondifferentiable optimization, algorithm theory, algorithm models, semi-infinite optimiz-
ation

1. Introduction. A formal extension of a differentiable optimization algorithm to
the nondifferentiable case consists of replacing gradient vectors Vf(x), used by the
algorithm in solving a differentiable problem, by the vectors h(x)=
argmin {llhlllh 0f(x)}, when applied to a nondifferentiable problem, with Of(x) denot-
ing the Clarke generalized gradient off(x); see [C1]. Such formal extensions cannot
be shown to converge to stationary points. The reason for this is that while gradients
are usually locally uniformly continuous, generalized gradients usually are not even
locally uniformly upper-semi-continuous (u.s.c.).

An examination of the nondifferentiable optimization literature, see e.g. [B2], [C3],
[G1], [G2], [L2]-[L4], [M1], [M3], [P1]-[P8], shows that in order to overcome this lack
of local uniform upper-semi-continuity, the search direction procedures of nondiffer-
entiable optimization algorithms invariably replace gradients not by generalized
gradients, but by better behaved supersets which are obtained in a variety of ways.
These supersets reflect the local behavior of the functions in question. When only local
Lipschitz continuity is assumed, the supersets consist of bundles of generalized
gradients which are generated by exploring a neighborhood about the current iterate;
see e.g. [B2], [G1], [P3]. When the problem functions are convex, subgradient bundles
are used as supersets, see e.g. [L2]-[L4]. When the problem functions are semi-smooth,
a special line exploration method can be used to eliminate the need for acquiring a
bundle of generalized gradients; see e.g. [M1], [M3], [P3], [P4]. When the problem
functions are in some sense piece-wise differentiable and allow one to determine
whether one is at a differentiable point or not, the need for constructing generalized
gradient bundles disappears altogether since much simpler supersets can generally be
used, as we see from [C3], [G2], [M3], [P1], [P5], [P6].

In [P7], we find a theory dealing with the extension of ditterentiable optimization
algorithms to the nondiiterentiable case. This theory requires the use of bundles of
generalized gradients, computed in an e ball about the current iterate, with the value
of e > 0 controlled by a mechanism analogous to the one used in the Polak method
of feasible directions [P9] and in phase I-phase II methods such as those in [P2]. The
theory in [P7] does not contribute to the understanding or the construction ofalgorithms,
such as those in [C3], [G2], [M3], [P1], [P5], [P6], that do not use generalized gradient
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" College of Engineering, Department of Electrical Engineering and Computer Sciences, University of
California, Berkeley, California 94720.
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bundles, and it leads to implementable algorithms only when all the problem functions
are semi-smooth.

It has generally been thought that the cumbersome algorithms, which fit within
the framework established in [P7], have nothing to do with the highly specialized
algorithms in [C3], [G2], [PS], [P6], which exploit the properties of such functions as
f(x) max {b(x, t)[t . T}, with T a closed interval, or f(x)=max eigenvalue (Q(x))
with Q(x) a ditterentiable, complex valued Herrnitian matrix. It is shown in this paper
that this impression is wrong by showing that both classes of nondifferentiable optimiz-
ation algorithms can be seen as special cases of two simple algorithm models: one for
constrained and one for unconstrained optimization. These algorithm models make
use of generalized gradient supersets which are "almost" lower semicontinuous (a
global version of this concept was first used in [P8]). In particular, it is shown in this
paper that both the generalized gradient bundles used in [P7] and the supersets used
in the algorithms in [C3], [G2], [M3], [P1], [P5], [P6] have this "almost" 1.s.c. property.
The algorithms in [C3], [G2], [M3], [P1], [P5], [P6] solve problems involving functions
of the form f(x)=cb(g(x)), where g: R"- R is continuously ditterentiable and
b" R" --> R is locally Lipschitz. It is shown that the supersets used by these algorithms
are the generalized gradients of perturbation functions. Some rules for the construction
of appropriate perturbation functions are given.

It is to be hoped that as a result of the work reported in this paper, both the
exposition of nonditterentiable optimization algorithms and the invention of new ones
will be considerably simplified.

2. Unconstrained optimization. In this section we shall consider algorithm models
for solving problems of the form:

(2.1) min f(x)
l

where f: R" R is locally Lipschitz continuous. Extensions of our results to normed
spaces are quite straightforward and hence will be left to the interested reader.

We recall that a locally Lipschitz function f(. is differentiable almost everywhere,
and that one can define for it a generalized gradient of(x) [C1], by

(2.2a) Of(x co {lim Vf(x + vi }

where the vi 0 as i a3 are such that Vf(x + vi) exists and co denotes the convex hull
of the set in question. It is shown in [C 1] that the map Of(. is u.s.c, in the sense of
Berge [B 1] and bounded on bounded sets.

When f(. is only locally Lipschitz, the ordinary directional derivative

f(x+hh)-f(x)
(2.2b) df(x, h a_ lim’

h’,O

may not exist. Instead, see [C1], one defines the generalized directional derivative of

f at x, in the direction h by

(2.2c) dof(x,h)&l-
f(x+y+Ah)-f(x+y)

A’O
yO

It was shown in [C 1] that

(2.2d) dof(x, h) max (:, h>.
c3f(x)
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As we recall, given an xi R" the Armijo gradient method [A1], [P9], for ditterentiable
optimization in R", first computes the steepest descent direction

(2.3a) h(x,) a--A arg min {1/211 h - + df(x,, h)} -f(x,)"
bERn

next, with a,/3 (0, 1), it computes the step size

(2.3b) A, max {[k+,f(x,+h(x,))-f(x,)<=-allh(x,)[[},

where / {0, 1,2,...}; then it updates according to

(2.3c) xi+l xi + hh (x,).

The simplest idea for extending this method (as well as others) to the nondifferenti-
able case, consists of replacing (2.3a) by

(2.3d)
h(x,) __a arg min {1/2[Ih[I + dof(x,, h)}

-arg min {1/211 hll=l h Of(x,)},

while leaving (2.3b), (2.3c) unaltered.
Unfortunately, because Of(. is not continuous, such extensions fail to be conver-

gent. Consequently, many unconstrained optimization algorithms compute a search
direction h(x) at x by solving an auxiliary problem of the form (2.3d), but with
dof(x, h) replaced by a kind of e-generalized derivative df(x, h), with e > 0, defined
by

(2.3e) df(x, h) max (:, h),
Gef(x)

where for every e =>0, and x ", Of(x)c Gf(x), and the sets Gf(x) are compact,
convex and "almost" l.s.c., thus making up for the lack of continuity in Of(. ). We note
that because Of(x) Gf(x) for all e >= 0, we always have dof(x, h) <= d,f(x, h). When
this substitution is made (2.3d) becomes

(2.3f)
h(x,)--aarg min {1/21lhll=/ df(x,, h)}

-arg min {1/2ll hl)l h Gf(x,)}.

In addition, a mechanism must be introduced for driving e to zero. The Polak method
of feasible directions [P9] provides an idea for this purpose.

The commonly utilized properties of the maps Gf(x) can be summarized as
follows.

DEFINITIONS 2.1. We shall say that {Gf(’)}_o, Gf:R" 2a", is a family of
convergent direction finding (c.d.f.) maps for the locally Lipschitz function f:" 1 if

(i) for all x ll, Of(x) Gof(x);
(ii) for all x ", e < e’:=Gf(x) G,f(x);
(iii) for any e->_0, Gf(x) is convex and bounded on bounded sets;
(iv) Gf(x) is u.s.c, in (e, x), in the sense of Berge [Bl] at (0, ), for all eR";
(v) given any : ", > 0 and > 0, there exists a t; > 0 such that for any

x B(, ;) - (xl IIx- ll-<- ;} and any 0f(:), there exists an r/ Gf(x) such that
IIn-ll<_-. D

Part (v) of Definition 2.1 will be used in proofs in conjunction with the Lebourg
mean value theorem [L ]. For this purpose the following equivalent statement is useful.
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LEMMA 2.1. Condition (v) of Definition 2.1 holds if and only if given any ",
x" B(x, ) and any q’ Of(x’),?, > 0 and > O, there exists a > 0 such thatfor any x,

there exists an rl" Gf(x") such that rl"-rl’ll <- 6.
Proof. Let x’= : and x x" in the above statement; then we see that (v) in

Definition 2.1 is satisfied.
=:> Suppose (v) in Definition 2.1 holds. Then given 9, 7 > 0 and i > 0, there exists

a p > 0 such that
(i) for any 0f() and x" B(), ), there exists an r/" Gf(x") such that

(ii) for any x’ B(), 3) and r/’ Of(x’), by u.s.c, of Of(" ), there exists an fi 0f())
such that

II- n’ll =< a/2.
x" B(5,/3) and 7 e Of(x’) there exist r e Of() and r"e Gf(x")Hence, for any x, e

such that

We note that the property in Lemma 2.1 was referred to in [P8] as "upper-semi-
continuity of Gf(. with respect to Of(. )" and was found very useful in establishing
optimality conditions for minimizing sequences.

The simplest known example of a family of c.d.f, maps (see [P7]) for a function
f(.) are the maps Of(x) defined by

(2.4) of(x) a__ co {Of(x’)}.
x’a(x,)

It is obvious by inspection that they satisfy the properties (i)-(v) in Definition 2.1.
Let v (0, 1), eo> 0, 6 > 0 be given. We define the set g by

(2.5) {0} u {o, o, eo," .}

and, given a family of c.d.f, maps { Gf(. )} for f(. ), we define the maps h" R" X -’)n

and e’R"--> g as follows"

(2.6)

(2.7)

h(x) A -arg min { llvll2l v Gf(x)},

e(x) &max {ee glllh(x)ll>=6e}.

The map e(. has the following important property which is crucial to the success of
our algorithms.

PROPOSITION 2.1. For every such that 00f(:), there exists a/>0 and
> O, g, such that e (x) >- > 0 for all x B(, ).

Proof Since Gf(x) is u.s.c, in (e, x) at (0, ) for any e ", it follows that h(x)ll =
is l.s.c, in (e,x) at (0, 2). Since 0 Gof(), ]lho()[[-*>0. By 1.s.c. of IIh(x)ll =, it
follows that there exist a fi> 0 and an ? e (0, e*/2],
for all x B(x", ). Hence e(x) >= for all x

We now proceed to state an algorithm model.

ALGORITHM MODEL 2.1.
Parameters: 8 > 0, eo > 0 (for e (x)) a,/3 (0, 1) (for Armijo step size rule). A

family {Gf(. )}>=o of c.d.f, maps.
Data: Xo
Step 0: Set i= 0.
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Step 1: Compute e(xi) and hi =a h(,,)(xi).
If e(xi) 0, stop.

Step 2: Compute the largest hi ilk,, ki N+ such that

(2.8) f(x, + A,hi)-f(x,) _-< -A,ae (x,).

Step 3: Set xi+ xi + hihi, set + and go to Step 1.

THEOREM 2.1. Let {xi} be a sequence constructed by Algorithm Model 2.1.
a) If {xi} is finite, with last element Xk, then O Of(Xk).
b) If {xi} if infinite, then for any accumulation point of {xi}, O Of() holds.
Proof. a) Since e(Xk) 0 if and only if 0 Of(Xk), this part of the theorem is clearly

true.
b) Suppose {xi} is infinite and that xi -/(, with K c {0, 1,2,...} infinite and

O Of(). Then by Proposition 2.1 there exists an io such that e(xi)>- ve()> 0 for all
i K, i_-> io. Since the sets Gof(Xi) are bounded on bounded sets and
Gof(Xi by (ii) of Definition 2.1, it follows that there exists a be (0, c) such that
ve()6<-[[hil[2<-b for all iK, i>= io. Next, by the mean value theorem of Lebourg
[L1], for h >_--0,

(2.9) f(xi + Ahi)-f(xi) A(h,,

with scia Of(xi + sAhi) and s (0, 1). Referring to Lemma 2.1, let g (1 a)[ve()]/2.
x" B(R, 3), given any r/ Of(x’), thereThen there exists a > 0 such that for all x,

exists an rl"G()f(x") such that II,"-,’ll-<_(1-)[(;)]’/2. Now let
fi/2b, so that if xie B(R, /2), then (x+ s.hi)e B(R, ) for all s e (0, 1). Then there
exists an i >_- io, such that for all e K, i_-> i,

(2.10) f(xi+flrh,)-f(x,)=flr(h,, scix)= fl[(h,,
with xe G()f(x,)c G(,)f(x,) such that
(1- )(e(x,))l/= (1- )[I h, ll. Since (h,, x)-II h, by construction of h,, (2.10)now
yields that

(2.11) f(x, + flh,)-f(x,) fl [- h, 2 + h, [(1 a)(8(Xi)) 1/2]
-flallhil[ --ae(Xi).

Hence for all e K, i, we must have fl and therefore for all K, il

(2.12) f(Xi+l) f(xi)

Since {f(xi)}-o is a monotonic decreasing sequence by construction, (2.12) implies
that f(xi) - as . But by continuity off(. ), and the monotonicity of {f(x)} =o,
we must have that f(x)f() as io, and hence we have a contradiction, which
completes our proof.

As we have pointed out earlier, the maps Gf(x) a--Of(x) defined in (2.4) are
c.d.f, maps. Unfortunately, (see [M1], [P7]), only whenf(. is convex or, more generally,
semi-smooth do we know how to construct an adequate approximation to
arg min {[[h[[ h Of(x)}; consequently implementable algorithms based on Of(x) have
been proposed only for these cases.

We now turn to a special class of locally Lipschitz functions f(. for which it is
easy to determine, whether any given point x is a point of differentiability or not. For
such functions, it is possible to construct much nicer c.d.f, maps than Of(x). An
examination of the literature shows that this construction involves the use of the
generalized gradients of locally Lipschitz perturbation functions f(. ).
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The class of functions we are about to consider have the form

(2.13) f(x)=(g(x))

where g" " --> m is continuously ditterentiable and b"" --> is locally Lipschitz. We
note that by the chain rule [C1]

(2.14) Of(x)c Go(X) a--{, ,= Og(x)------- }Ox Y’ y e oqb(z)’ z=g(x)

We now introduce the family of perturbation functions {fv(’)}vam, f:"
defined by

(2.15) f,,(x) a__ c(g(x)+ v).

We note that f(.) is locally Lipschitz continuous and that by the chain rule [C1],
O/o(x) Gfv(x), where

{ Og(x)r }(2.16) Gf(x) a-- - Ox
y, yeO6(z),z=g(x)+v

We will show that there are a number of functions f(.), of the form (2.13), for
which, given x, e >-0, it is possible to define vectors v(x) such that IIv,(x)ll <-- Ke (with
K fixed) and Gf(x)a__ Gf<x)(X) are c.d.f, maps. Clearly, we will need the following
hypothesis.

Assumption 2.1. For all x
The various known rules for constructing the vectors v(x) can be traced as being

derived from those for the function

(2.17a) f(x) - max gJ(x)
jm

where m { l, 2, , m} and g" " are continuously differentiable. For any x "and e >- 0, let

(2.17b) I(x) {j mlf(x gJ(x) <_- 2e}.

Then

(2.17c) Of(x)= co {Vg(x)},
je lo(x)

and Assumption 2.1 holds. Since for any v ", fo(x) maxjm (gJ(x) + v), if we
define v(x) a__ (f(x) -g(x) e) for allj It(x) and set v(x) 0 otherwise, we find that

(2.17d) Gf,<x)(X)=,<x)CO {Vg(x)}
and that for all ve" such that Ilvll<-_ e, Gfv(x)= Gfo<x)(X). We now consider the
class of functions of the form (2.13) for which a similar fact holds. We shall give some
additional examples later.

PROPOSrrON 2.2. Let f:"-> be of the form (2.13), satisfying Assumption 2.1,
and let I1" be some norm on ". Suppose that for all x " and e > 0 there exists a

v (x) n" such that v (x)ll <= e and for all v " satisfying v[I <= e we have

(2.18) Gfv(x)= Gfv<x)(X),
where Gf(. was defined in (2.16). Then Gf(x)= Gf<x)(X) defines a family of c.d.f
maps, with Vo(X 0 by definition.
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Proof^ (i). We refer to Definition 2.1. Because of Assumption 2.1, it is clear that
Of(x) Gfo(x)= Gof(x) for all x R". (ii) By construction, see (2.18), it follows that
if e’> e >= 0 then for any x ", Gf(x) c G,f(x). (iii) For any e >= 0, Gf(x) is
obviously convex, and bounded on bounded sets. (iv) We now show that Gf(x) is
u.s.c, in (e, x) at (0, ;) for any ; ". Let ;" and 6 > 0 be given and let a--4-g().
Since 04(’) is u.s.c., there exists a t9 > 0 such that 0b(z) c Ng(0b()) for all z R"
such that IIz-ll_-<p, with Ng(0b()) a 8-neighborhood of Ob(). Since g(.) is
continuously differentiable and IIv(x)ll--< for any xR", it follows that there exists
a t3 > 0 such that with t? ^=p>0

(2.19) IIg(x) + v(x) g(5,)l <=

for all x B(R, ) and e [0, t?]. Consequently, Gf(x) is u.s.c, in (e, x) at (0,2). We
now show that property (v) of Definition 2.1 holds. Let 2 ", t> 0 and 6 > 0 be
given. Then, since g(.) is continuous, there exists a p*> 0 such that for any x,
B(, p*), ]]g(x’)-g(x")il <-_g. Let rt’ Of(x’)= Gof(x’), then rt’=(Og(x’)T/ox)y for
some y’ 0b(g(x’)). Now, by definition of v(.

(2.20) Gfo(x") Gf(x") for all v < ,
Letting v*= g(x’)-g(x"), we find that

(2.21a)
G/o.(x") n

Og(x")r }Ox
y, y6Odp(g(x")+[g(x’)-g(x")])

Og(x")r
Ox Y’ y e Ob(g(x’))

Since IIv*ll_-<a, for y’eO4)(g(x’)) as above, we must have (Og(x")r/Ox)y’e
Gfo.(x")c Gf(x"). Now r/’ a-(og(x")r/ox)y’ e Gef(x") and

(2.21b) "11 x 0x
Ily’ll,

Since 0b(.) is bounded on bounded sets and 0g(.)/0x is uniformly continuous on
B(, p*), it follows from (2.21b) that there is a e (0, p*] such that for any x’, x"e
B(, ), given an r/’ e Of(x’) there exists a r/"e Gf(x") such that I1’-n"ll-<-. This
completes our proof.

Apart from the function f(x) defined in (2.17a), which satisfies the assumptions
of Proposition 2.2, we can cite the following two interesting examples which also fall
within the framework of Proposition 2.2.1

Consider the function

(2.22) f(x)= E Ig(x)l
jm

where the gj.n_.)Nl are continuously differentiable. For any v’, fv(X)&
jemlgJ(x)+vJ and hence, gven any xeN and e>0, fwe define v() =-g() if
g(x) < e and set v(x) -0 otherwise, we find that G v(X)C () for all ve

All the examples that we give involve semi-smooth functions [M2]. However, we do not seem to need
this fact explicitly.
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such that Ilvl[-< e. This is clear from the fact that, with = g(),

(2.23) Gfv() Y sgn [gJ(x)]VgJ()+
jV:J(--t-v)

where
Finally consider the function

(.4

2 co {Vg(),-Vg())}
jGJ(+v)

f(x) max st(x, to)

where "R" I’-’ is continuously differentiable and fl c E1 is a compact interval.
In this case the function g(x)(. = ’(x, assumes values not in E", but in L([I). For
any v E L(f), we define

(2.25a) f(x) =max [st(x, to)+ v(w)]

and Obtain that

(2.25b) Gf,(x) co {Vx’(x, w)},

where ,)(x)A--{WEf[f,(X)=C(X,O)+V(W)}. Clearly, if we set v(x)(o)=
f(x)-(x, oo)-e for all wE(x)A{ooEl]f(x)-(x, w) =<2e}, arrd v(x)(w) 0 for
all other o)E f, we find that Gf,(x)c Gf,(,,)(x) for all v E L(f) such that [[vl[<= e.

This results in

(2.26a) Gf(x) co {V’(x, to)}.

The above set may have an infinite number of elements and hence is not a convenient
set to use for finding descent directions. Referring to [G2], we find that when o(X)
is a finite set for all x E En, it is possible to use the much smaller set

(2.26b) Gf(x) a__ co {Vsr(x, to)}
o,(x)

where f(x)&{oE(x)[o) is a local maximizer of ’(.)}. It is easy to see that
Gf(x) corresponds to the perturbation function fv(x)(’), with v(x)(w)=
f(x)- ’(x, w) for all o E (x) and is arbitrary otherwise up to the requirement that
fi()(x)=(x). Quite clearly, Gf(x), as defined in (2.26a) does not satisfy the
assumptions of Proposition 2.2. However, showing that the maps Gf(.), defined by
(2.26a), are c.d.f, maps is a great deal simpler than the original proof of convergence
in [G2], as we now show.

PROPOSITION 2.3. Consider the function f(. defined by (2.24) with lq [tOo, (.Of],
Suppose that for every x E " ,o (x, tfi) 0 for at most a finite number of th E 1 and that
,o(x, to)Ofor wE{tOo, tof} (where o, a--O/Oto). Then the maps {Gf(. )}>=o defined by
(2.26b) form a family of c.d.f maps.

The proof of Proposition 2.3 requires the following three facts which we establish
first.

FACT 2.1. For any e > O, x E ", let

(2.27) (l(x)={toE(x)[,o(x, to)= 0} U [{Wo, to} f3 l(x)].
Then (. is u.s.c.

Proof Suppose x as - and to E (x) are such that to 03 as . Then
(i) f(x)- (x, to) <= e for all and hence, by continuity off(. and st(., ), a3 E l(x),
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and (ii) either by continuity of ’(., .) sr(, o3)=0 or o3 {Wo, wy}. Thus a3 (;),
which completes the proof.

FACT 2.2. Given n, > 0, there exists a fi > 0 such that for any x’, x" B(, ),
o(X’) (x").

XV!Proof Since 1) is compact, there exists a t3> 0 such that for any x, B(,
if w’ 1 is such that

(2.28a) f(x’) (x’, w’) 0

then

(2.28b) f(x")- (x", oo’) <= e,

i.e. l)o(X’) c h (x"). [3

The following result is obvious.
FACT 2.3. Let p(x) - meas ((x)). Then (i) e’< e"lx,(x) <-_ I,,(x), and (ii)

tx is continuous.

ProofofProposition 2.3. Referring to Definition 2.1, we find that (i) Of(x) Gof(x)
and (ii) that e < e’Gf(x)c G,f(x), by construction in (2.26b). (iii) Clearly, G(x)
is always convex and bounded and bounded sets. (iv) Next, let x " be arbitrary.
Since by assumption the set () is finite for all e >_-0, there exists an g>0 such that
f() (()) for all e [0, g]. It now follows from the u.s.c, of (. that f(. is
u.s.c, at ) for all e [0, g] and hence, from the continuity of V,’(.,. ), it follows that
Gf(x) is u.s.c, at (0,)). We now turn to property (v) in Definition 2.1. Let x
g> 0 and > 0 be given. Then (a) there exists a ps > 0 such that for all x’, x" B(, p)
and w’, w"e [To, (.Of] satisfying IT’-w"[-<_ p, we have

(2.29) IlVsr(x ’, w’) V ’x(X", w") <= 8.
(b) Since 12o(:) is a discrete set, there exists an e (0, g] such that t,()=<p/2.
Hence, by continuity of ,(. ), there exists a p26 (0, p] such that ,(x)=< p for all
x e B(), p2). (c) By Fact 2.2, there exists a t; e (0, p2] such that o(X’) o(X’) (x")

Xt!for all x, e B(2, fi). (d) Now consider any x x" B(), fi). If rt’ Of(x’), then

(2.30) r’= E tx ’Vx’(x’, w’)

where/x’-> 0 and ,o,ao(,,/x" 1. By (c) D,o(x’)c,(x")c(x") and tx,(x")<-p.
Since every disjoint interval of ll, (x") must contain at least one o9" e -1 (x’l), it follows
that for every w’ e llo(X’) there exists an o9o, e f,(x") c ll(x") such that IT’- o9o,1 -< p.
Hence the vector r/"e Ge(x") defined by

(2.31) rt"= 2 x Vsr(x,
o’eao(x’)

satisfies

(2.32)
o’efo(x’)

which completes our proof.
Next we turn to problems involving eigenvalues of Hermitian matrices, see e.g.

[C3], [P6]. We shall consider only one case. Let Q:"C be a continuously
ditterentiable, complex matrix valued function such that Q(x) is Hermitian for all x.
For any rn x rn Hermitian matrix M, we denote its eigenvalues as rl[M]--
o’’[M] and we consider the case where

(2.33) f(x) - r’[Q(x)].
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Thus for any Hermitian matrix V Cmxm, we define the perturbation function fo(" by

(2.34) ]v(X) ol[Q(x) + V].

We proceed by analogy with the example in (2.17) in defining a "maximal" perturbation
matrix V (x). Clearly, there exists a matrix of complex orthonormal left eigenvectors
U(x) such that U*(x)U(x)- I and

(2.35) O(x) u*(x)X(x) U(x)

where X(x)&diag (o’[Q(x)], trm[Q(x)]). Given e > 0, we define V(x) by

(2.36) V(x) a= U*(x)A(x) U(x)

where A(x)&diag (hi,(x)), with hi(x)=tr’[Q(x)]-cr’[Q(x)]-e for all iI[Q(x)]
and hi(x)=0 otherwise, where I[Q(x)]&{imlo’[Q(x)]-o’i[Q(x)]<-2e}. This
choice of V (x) clearly "maximizes" the set

,2.37) Gfv(X) a--co{y Yi=( Uv(x,z’dQ(x,Uv(x)z)dx’ ,i=l,2,...,n,[[z[,=l}
where, given that Io[Q(x)+ V]= {1, 2,..., kv(x)}, Urn(x) consists of the first kv(x)
columns of U(x) (see [P6] for a proof that Of(x) Gfo(x)). We claim that Gf(x) a__

Gf,,,o,(x), as defined by (2.36) and (2.37) is a c.d.f, map, but we omit a proof, which
can be constructed by referring to [P6]. We note that in [P6] a somewhat larger set
Gf(x) was used so as to avoid computational difficulties caused by the need to
distinguish between eigenvalues that are very close to being equal. We find that in
[P6], for any e->_ 0, x I"

(2.38a) k,(x)&max (k/ lltr’[Q(x)]-cr’+[Q(x)]<-2e for all i<-_k}
kern

which leads to the definition

(2.38b) Gf(x)co y y’= U(x), U(x)z i= 2,... n, llll-1OX

where U(x) consists of the first k,(x) columns of U(x). Since k,(x) >- ko,x(x), it is
clear that (2.38b) results in a larger set than (2.37) for V V(x); however, the general
properties relevant to convergence of the two sets are the same.

This concludes our demonstration that a large number of seemingly unrelated
algorithms for various unconstrained nondifferentiable optimization problems can be
seen as manifestations of a single, relatively simple principle.

Before proceeding to constrained optimization problems, it remains to point out
that when f(. is a locally Lipschitz continuous function from a Banach space into, one must use an alternate definition of Of(x), see [C1]. Also, the computation of a
descent direction according to

(2.39a) h(x) arg min {1/211 hll + df(x, h)}

may not be a tractable problem. In that case, (2.39a) may be replaced by

(2.39b) h(x) arg min d,f(x, h) arg min max (:, h)
Ilhll<--I Ilhll<l (xi)Gef(x)

where the action of a : ’, the dual of , on an h is denoted by (:, h). All the
proofs in this section have valid analogs when (2.39a) is replaced by (2.39b).
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3. Constrained optimization. In this section we restrict ourselves to problems of
the form

(3.1) min {f(x)IfJ(x) <- 0,j m},

where m & { 1, 2,. , m} and fj:n __> il, j {0} m, are locally Lipschitz continuous
functions.

We shall assume that we have for all the functions f, j {0}Urn, families of
convergent direction finding maps {Gift( )}>_-o (see Definition 2.1). We define
R and $(.)/, as follows

(3.2) $(x) & maxf(x),
jm

(3.3) ,(x)+-max {0, $(x)}.

We are about to state a phase I-phase II algorithm of a form quite similar to the
ones treated in [P2], [PT]. First, for any x Rn and e >= 0, we define the e-most violated
constraint index set

(3.4a) I(x) {j m If(x) -> (x)+- e}

and we set

(3.4b) J(x) a__ {0} U I(x).

Next, for e => 0 given, we define the phase I e-search direction at x by

h(x)--a argm2n {1/211hll+ max dfJ(x, h)}
jell(x)

=-argmhin{1/211hlllh eo {G,f(x)}},
j Ie(x)

where co denotes the convex hull, and we define the phase II e-search direction at x
by

hy(x)--a arg mn {1/211hl[=/ max df(x, h)}
(3.6)

=-argmn{1/211hlllh co {Gf(x)}}.

Finally, we define the cross-over function

(3.7) F(x) g e-v)+

where >0 is a parameter. It will become clear sholy that when 6(x)>0, for
appropriate values of e, h(x) is a descent direction for 6(x), while when ff(x)0,
hy(x) is a feasible descent direction for f(. ). The cross-over from one to the other is
incorporated in the search direction

(3.8) h(x) r(x)he(x) + (1 r(x))h,(x).
As we have already seen in the preceding section, we need a mechanism for driving
e to zero. To this end, (cf. [P7, (3.13)]) we define

(3.9) O(x)

and, with as in (2.5), and > 0,

(3.10) e(x) & max {e lO(x)e}.

(3.5)
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ALGORITHM MODEL 3.1.
Parameters" ( > 0, eo (for e(x)); a, fl (0, 1) (for Armijo step size rule). Families

{Gf(.)}o, j{0}Um of c.d.f, maps.
Data: Xo
Step 0: Set 0.
Step 1: Compute e(xi) and

If e(xi) 0, stop.
Step 2: If @(xi)+> 0, compute the largest hi ilk,, ki N+ such that

(3.11)

(3.12a)

and

(3.12b)

O(x, + A,h,)- (x,) -<_ -A,aSe (xi).

If @(xi)+-_<0, compute the largest hi ki, ki e N+ such that

f(x, + Aih,)-f(xi) <- -AiaSe(xi)

0(Xi -1- hihi <= O.

Step 3: Setxi+|=xi+hihi, set i=i+l and go to Step 1.

To ensure that the above algorithm does not jam at an infeasible point, we must
introduce the following commonly used hypothesis.

Assumption 3.1. For every xI such that @(x)_->0, h,o(X)
This assumption guarantees the existence of a point x* such that 4,(x*)< 0.
To establish the convergence properties of Algorithm Model 3.1, we shall need

the following results.
LEMMA 3.1. For every e >-_ 0 and any x

(3.13) ]]h(x)[[2>= O(x).

For a proof of this lemma, see [P7, Lemma 3.1].
LEMa 3.2. Thefunction O,(x) defined in (3.9) has thefollowing properties: a) For

anyx, if e">-e’>-O, then O,,(x)<-O,(x). b) O(x) is l.s.c, in (e,x) at any (0, ).
Proof. a) Since e"> e’ implies that I,,(x) I,(x) and that G,,,f(x) G,,f(x),

this part is obvious, b) By definition of c.d.f, maps, Gf2(x) is u.s.c, in (e, x) at any
(0, ), j 0, 1,..., m. Let " be arbitrary.. Then, given > 0, there exists a/ > 0
such that I(x)c I(x)c I() for all (e, x) [0, ] x B(.,/). Because of this and the
u.s.c, of the Gf2(x) at (0, ), there exist * (0, ] and p* (0,/] such that

(3.14) co {Gf(x)}c co {Gf(x)}c NI co {GfJ(;)}|
j l(x) j I,(.) /

where N(-) denotes a 8 neighborhood of the set in parentheses. Consequently,
I[h(x)ll is l.s.c, in (e, x) at any (0, ;). Similarly, it can be shown that IIh(x)ll is l.s.c.
in (e, x) at any (0, ;). Since F(. is continuous, it follows that O(x) is l.s.c, in (e, x)
at any (0, :), which completes our proof.

The following result can be established in essentially the same way as Proposition
2.1 and hence a proof will be omitted.

COROLLARY 3.1. For every such that 0o(:)>0, there exists a >0 and a
g: > O, g: such that e (x) >-_ g: > 0 for all x B(, ).

THEOREM 3.1. Suppose that Assumption 3.1 holds and that {xi} is a sequence
constructed by Algorithm Model 3.1. a) If {xi} isfinite, with last element Xk, then O(Xk) <= 0
and

(3.15a) 0e co {of(Xk)}
jCJo(Xk)



ALGORITHM MODELS FOR NONDIFFERENTIABLE OPTIMIZATION 489

b) If {xi} is infinite, then for any accumulation point ; of {xi}, we have d/(;)<= 0 and

(3.15b) 0e co {0f(:)}
jeo()

Proof a) Suppose that {x}= is finite. Then, by construction, e(Xk) =0 and hence,
by Corollary 3.1, 0o(X) 0, so that

(3.16) r(Xk)hyo(Xk)=(1--V(Xk))ho(Xk)=O.

Suppose now that F(x)< 1, i.e. @(xu)>0, then (3.16) implies that ho(xk)=O. But
this contradicts Assumption 3.1 and hence we must have @(x)=0. Since F(Xk)= 1,
hyo(Xk)=O and hence, since of(xk)=Gof(xu),j=O, 1,..’, m, we find that (3.15a)

{xi} i=o has anmust hold. b) Suppose that accumulation point x, i.e., that x x, with
K c+ infinite, that ()0 and (3.15b) fails to hold. We consider two cases.

Case 1. 6(x) > 0 for all e+. Then, by (3.11) {6(x)}o is monotone decreasing,
and 6(x) () by continuity of (. ). Hence 6(x) (2) as i. We shall now
show that this leads to a contradiction and in the process also show that this pa of
the Algorithm Model 3.1 is well defined.

Since 6(x) 0 for all i, we must have () 0 and hence h,o() # 0 by Assumption
3.1. Consequently, 0o()>0 either because ()>0 or because (3.15b) fails, i.e.,
because ()=0 and hyo()# 0. Thus, by Corollary 3.1, there exists an io such that
e (x) g > 0 for all e K, io. Since the sets Gof(x) are bounded on bounded sets
and G()f(x)c Gof(x) by (ii) of Definition 2.1, it follows, via Lemma 3.1, that
there exists a b e (0, ) such that

(3.17) 0 < 8 < Be(x,) h, ll2 b,

for all K, R io. Now, by the mean value theorem of Lebourg ILl], for j m

(3.18) f2(x,+A,h,)-O(x,)=[f(x,)-6(x,)]+A,(,,h,),
where , Of(x + sAh) with s (0, 1). Now, for any G,)fS(x), j I,)(x,), we
have by construction that

(-h,, )= r(x,)(-he(,(x,), )+[1-F(x,)](-h,(x,)(x,),
(3.19) U(x,)II hfx,)(x,)

IIh, =
Hence. poceeding as in the proof of Theorem 2.1, we conclude that there is a

fl,, k +, such that

(3.20a) f(x,+’h,)-(x,)-’llh,ll2-bae(x,)-’a<O
for all j I(,)(x), (where we have made use of the fact that f(x)- 6(x) 0). Next,
since f(x) O(x) < -e(x) -g < 0 for all j I(,)(x), and since the h are bounded
for e K, it follows by uniform continuity of f, on bounded sets, that there exists
a 0 < X X such that

(3.20b) f(x + Xh)- 6(x) -XaSs(x)
for all j l(,)(x), e K, io. Combining (3.20a) and (3.20b) we conclude that
for all e K, i io and hence that

(3.2) 6(x,+,) 6(x,) -for all io, e K. But this contradicts the fact that (x) () and hence we are done.
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Case 2. There exists an io such that for all _>- io, (xi) -<- 0. If xi --> r and ff() <
-e(), then the theorem follows directly from Theorem 2.1. Hence we only need to
consider the case where ()_->-e(),. Now, for this case, we conclude from Case
above that there is an io and a l fig’ such that for all _-> io, K and A

(3.22) O(x,+Ah,)<-O,

and from the proof of Theorem 2.1 that there exists an i >-io and a , =/3 <--1 such
that (3.12a) is satisfied for all >_- il, e K, with A . Hence we must have that A >_- ,
and for all > i, e K

(3.23) ?(Xi+l)--?(Xi)
ButfO(x)fo() since xi _.>K andfO(. is continuous, which is contradicted by (3.23)
and hence the proof is complete.

Since for continuously differentiable functions fJ(. we may set Gff(x)= Vff, it
should now be clear that any combination of differentiable functions and functions
such as those defined in (2.17), (2.22) and (2.24), (2.33) may appear in the constraints.

Finally, it remains to point out that when the substitute formula (2.39) is used for
problems in Banach spaces, (3.5) and (3.6) become replaced by

(3.24)

and

(3.25)

h(x) e arg min max dff (x, h) arg min max.
Ilhll<_--I je1(x) Ilhll_--<l sCeco{GefJ(x)}

jele(x)

hy (x) arg min max dff(x, h) arg min max
Ilhll_-<l jJ(x) Ilhll--<l o(f(x)}

jeJe(x)

respectively. Again, the arg min max may be set valued.

(s,h)

(sO, h)

4. Conclusion. We have shown that a rather large number of nondifferentiable
optimization algorithms can be presented and analyzed in a unified way. We have also
shown that for an important class of optimization problems, defined by composite
functions, efficient nondifferentiable optimization algorithms can be constructed by
using the generalized gradients of perturbation functions. Furthermore we have estab-
lished rules for the construction of these perturbation functions.

Acknowledgment. The authors wish to thank Dr. C. Lemarechal for pointing out
that the property stated in Lemma 2.1 is equivalent to (v) in Definition 2.1.
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SEMI-DEFINITE MATRIX CONSTRAINTS IN OPTIMIZATION*

R. FLETCHER"

Abstract. Positive semi-definite matrix constraints arise in a number of optimization problems in which
some or all of the elements of a matrix are variables, such as the educational testing and matrix modification
problems. The structure of such constraints is developed, including expressions for the normal cone, feasible
directions and their application to optimality conditions. A computational framework is given within which
these concepts can be exploited and which permits the quantification of second order effects. The matrix
of Lagrange multipliers in this formulation is shown to have an important relationship to the characterization
of the normal cone. Modifications of various iterative schemes in nonlinear programming are considered
in order to develop an effective algorithm for the educational testing problem, and comparative numerical
experiments are described. It is shown that a particular choice of the penalty parameter for an l exact
penalty function is appropriate for this type of problem. The behaviour of the extreme eigenvalues (or sums
thereof) of a matrix is related to the ideas of the paper, and the convexity of such functions is proved,
together with expressions for subgradients.

Key words, positive semi-definite matrix, nonsmooth optimization, educational testing, extreme eigen-
values

1. Introduction. My interest in semi-definite matrix constraint problems was
kindled some time ago (Fletcher 1981a) by studying the educational testing problem;
that is given a symmetric positive definite matrix S how much can be subtracted from
the diagonal of S and still retain a positive semi-definite matrix. Use of the Ii norm
as a measure gives rise to the problem

maximize

(1.1) subject to

e tO, 0 "
S- diag Oi => O,

0>-0,

where e (1, 1,..., 1)r. The first constraint is the semi-definite matrix constraint,
adopting the notation that a positive definite matrix A, defined by

(1.2) zrAz >- O

is written as A => 0. Likewise A > 0 denotes a strictly positive definite matrix. Early
attempts to solve this problem were not very successful (some references are given by
Fletcher (1981a)) and the same is true for early efforts which I counselled (Jayarajan
(1979), Pang (1981)) in which the semi-definite constraint is reduced to an eigenvalue
constraint and standard nonlinear programming techniques are used. In my case this
was due to a presumption that the eigenvalue constraint would be smooth at the
solution, except in rare cases. This has turned out to be incorrect and in fact the large
majority (although not all) of such problems are nonsmooth at the solution.

A related problem to (1.1) is the matrix modification problem which arises in
Newton-like methods for unconstrained optimization. In this case G is a symmetric
but indefinite matrix and the question is how little must be added to the diagonal of
G to make G positive semi-definite. Again use of the Ii norm as a measure gives rise
to the problem

minimize erO
(1.3) subject to G+ diag 0i >= 0,

0->_0.

* Received by the editors March 17, 1983, and in revised form February 16, 1984.
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The difference from (1.1) is essentially that the bounds on 0 are reversed. Another
problem arising in this application would be to look for the least change to all the
elements of G (this would involve the ideas of 2 directly).

In this paper the structure of the semi-definite constraint A _-> 0 is analysed, firstly
in regard to variations in all the elements of A. In 2 various expressions are given
for the normal cone of the set, and for feasible directions and optimality conditions.
Section 3 describes a more practical computational framework within which these
concepts can be exploited, and which allows for the quantification of second order
effects. The matrix of Lagrange multipliers in this formulation is shown to be closely
related to a matrix which arises in the characterization of the normal cone. In 4 an
important subclass is considered in which variations in only the diagonal elements of
A are permitted (corresponding more directly to (1.1) and (1.3)), and the analogous
structure is set out. In 5 various recent iterative schemes for nonlinear programming
are considered (applied to the framework of 3) in an attempt to derive an effective
algorithm to solve the educational testing problem (1.1). One particular feature of
interest is the use of an l exact penalty function, for which a particular choice of the
penalty parameter is appropriate. The numerical results and a comparison with
Woodhouse’s (1976) method are given in 6.

The development of 2 and 4 is also related to the behaviour of the extreme
eigenvalues (or in general sums of extreme eigenvalues) of A. Applications of optimiz-
ation involving such functions occur in the graph partitioning problem (Cullum, Donath
and Wolfe (1975)) and in control theory problems (for example Mayne and Polak
(1982)). The convexity of such functions, and expressions for subgradients similar to
those in 2 and 4, are developed in the Appendix to this paper.

This introduction finishes with a few remarks about notation. Conventionally
A [ao], B [b0] etc. is used to refer to individual elements of matrices. The solution
to a problem is denoted by a superscript * as in 0", A* etc. Iterates in an iteration
scheme are denoted by superscript (k), for example 0(k), A(k) etc. Quantities computed
from these quantities are superscripted correspondingly, for example D(A*) is denoted
by D* and so on.

2. The positive semi-definite matrix cone. The set of all n n symmetric positive
semi-definite matrices

(2.1) K {AIAeR"’, AT= A, A>=0}

is a closed convex cone of dimension 1/2n(n+ 1). The convexity is an immediate
consequence of the definition (1.2) and the dimension is the number of free parameters
in a symmetric matrix. For example if n 2 and A-[ y], then the cone K is defined
by the inequalities x >-O, y >-O, xy >-z2 and is illustrated in Fig. 1. It can be seen that
matrices on the boundary of the cone are singular, whereas those in the interior are
positive definite.

To derive optimality conditions for problems which involve any closed convex
set K c Rn, it is convenient to introduce the concept of the normal cone OK. If x’ is
on the boundary of K, then OK (x’) is the set of outward pointing gradients (normals)
of all supporting hyperplanes at x’ (see Fig. 2). Consequently any vector g OK(x’)
satisfies gr(x- x’)<-_ 0 for all x K. Thus the normal cone can be defined by

(2.2) OK(x’)={
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FIG. 1. The positive semi-definite matrix cone K.

FIG. 2. The normal cone OK to a convex set K.

If x’ is not on the boundary of K, then it is convenient to define either OK(x’)= {0}
if x’ is interior to K, or OK(x’)= if x’ is exterior to K. Both these definitions are
consistent with (2.2), the latter by virtue of the separating hyperplane theorem.

In order to analyse problems in which the variables are matrices, an innerproduct
defined by

(2.3) A" B aob tr (ArB)
is suitable. It follows from (2.2) that

(2.4) OK(A)={B A" B AeKSUp A" B}.
Observe that if B OK, then B + S OK where S is any skew-symmetric matrix, since
A" S 0. Unsymmetric matrices in OK are of no interest (indeed they could be avoided
by eliminating the symmetry constraint in (2.1) and working directly in a space of



496 R. FLETCHER

dimension 1/2n(n+l)" this requires an inner product equivalent to (2.3) in which
off-diagonal terms are doubled). Therefore OK subsequently refers to the symmetric
normal cone

AK

The case in which K is the positive semi-definite matrix cone (2.1) is now
considered, and some equivalent forms of (2.5) are derived which are more useful.

THEOREM 2.1. IfK is defined by (2.1), then (2.5) is equivalent to

ifA: K,
(2.6) 0K(A)= {BIBr=B,A.B=0, B__<0} ifaK.

Proof. If A K, then OK(A)= (see discussion after (2.2)).
Let A K. First consider SUpAr A" B for fixed B. Let B XfXr be the spectral

decomposition of B with X being the orthogonal matrix of eigenvectors and f diag
the diagonal matrix of eigenvalues. Then using (2.3)

sup A:B= sup C:f= sup C:f= sup c,to
AK AeK CK cu>--O

{0(X toil0 i,
otherwise,

where C=XrAX is in K iff A is in K. Since the toi are the eigenvalues of B, the
second part of (2.6) follows directly from (2.5).

When A is interior to K (A>0), B =0 is the only element of OK(A). The most
interesting case is when A is on the boundary of K (A-> 0 and singular). Let M be
the diagonal matrix whose elements are the nonzero eigenvalues of A and let the
columns of Y be a corresponding orthonormal set of eigenvectors. Then A YMYr

and the condition A: B =0 becomes tr (MYrBY)=0. Because M is diagonal and
M > 0, the diagonal elements of YrBY are zero. Now let the columns of Z be an
orthonormal basis for the null space of A, so that Y Z] is an orthogonal matrix.
Expressing B as

then YrBY= R so it follows that R has zero diagonal elements. Hence from (2.6),
B -<_ 0 implies that R 0 and S 0, and hence that T--- 0. Thus in this case an equivalent
form of (2.6) is

(2.7) OK(A)={B]B=-ZAZ,A=AA>-O}.
An interpretation of the matrix A which appears in this result is given in 3. An
illustration of (2.7) is provided by the matrix [ ] (see Fig. 1). Then Z=[_I] and
A =[a]>_ 0, so that 0K {a[-l _], a >_-0} which is the normal to the cone at this point.
Yet another equivalent expression which follows from (2.9) using Carath6odory’s
theorem is

(2.8) OK eonv -xx r.
x:Ax=O

An alternative way of handling the positive semi-definite matrix cone is to write

(2.9) K {A[Ar A, A,(A) >- 0}
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where A, refers to the smallest eigenvalue of A. It is shown in the Appendix (Corollary
A.2 with m 1) that A,(A) is a concave function, so the constraint A K can be
handled as a regular inequality. Of course the function A,(A) may be nonsmooth and
the subditterential of-A,(A) is required in the optimality conditions. By virtue of
Theorem A.4, this can be expressed in various equivalent forms, namely

(2.10) 0(-A,(A)) {BIBr= B, B>=0, tr B= 1, B" A= A,(A)}

(2.11) ={BIB=XAXT, A>=O, trA 1,
X is an orthonormal basis for Ax

(2.12) =conv xxr lx" Ax A,x, xrx 1,

corresponding to (2.6), (2.7) and (2.8) respectively, together with a normalization--
condition. There is a slight conflict of notation in (2.11)" A, is the least eigenvalue of
A, and is not related to the matrix A. The results in the Appendix are expressed in a
more general form that can be useful in certain applications. For example Theorem
A.4 together with the ideas of 4 gives a direct expression for the subditierential in
the graph partitioning problem studied by Cullum et al. (1975).

In addition to the normal cone another important set associated with any point
x’ in a general convex set K " is the set of feasible directions. This can be expressed
as

(2.13) :(x’) {s =l{xk}, xk- x’, sk s, ak$o}

where ak>=O and sk" satisfy aksk=xk--X’. Thus a feasible direction is the
limiting direction of any feasible directional sequence at x’. This is related to the dual
(or polar) cone of OK (x’), that is the set

(2.14) F(x’) (sl <-_ 0 Vg

which is the set of feasible directions for the supporting cone of all supporting
hyperplanes at x’.

In the case of the positive semi-definite matrix cone (2.1) a feasible direction
becomes a symmetric matrix S, but similar definitions to (2.13) and (2.14) hold,
involving the inner product (2.3). It follows from (2.14) and (2.3) that if Z is a basis
matrix for the null space of A, then

and hence that

(2.15)

F(A) {Sl A: (zTsz) >- 0 VA _-> O}

F(A)={sIzTsz>-o}.

It is easily shown by taking limits in (2.13) that c F. Conversely by taking a direction
S F, a direction S can be constructed, which demonstrates that these sets are in
fact equivalent. To show this construction, let X [ Y Z] as before be the eigenvector
matrix for A (that is, XrX I and XrAX =[o o] where M > 0 is the diagonal matrix
of nonzero eigenvalues). In the case that ZrSZ > 0 then the trajectory

(2.16)

gives ds to

A=A+eS

M+ eYrSY eYrSZ](2.17) XTA.X L ezTsy ezTsz.]
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To show that XTA,X (and equivalently A) is feasible, it is sufficient to show that

(2.18) M+eyTsY>O

and

(2.19) eZTSZ e2 yTSZ(M + eyTsy)-tzTsy >= 0
(by virtue of the existence of block Choleski factors). Clearly for e sufficiently small,
(2.18) holds by virtue of M>0 and (2.19) by zTsz>0. In the case that ZT"SZ->_0
and singular, then the trajectory

(2.20) A A+ eS + cee2I

is similarly shown to be feasible if a > [[M-’II [[SII 2 is chosen. Thus in both cases a
feasible arc of matrices in the direction S is constructed; the existence of a feasible
directional sequence in , follows by taking e ek for any sequence ek $ 0.

The value of the expressions developed in this section lies in their application to
optimization problems involving the constraint A K. Expression (2.15) provides a
characterization of a feasible direction of search which is readily verified. The
expressions for the normal cone ((2.7) in particular is useful) play the part of the
subdifferential in the statement of optimality conditions. This can be done in various
ways, for instance if the functionsf(A) and c(A) ("") are convex and nonsmooth,
and if a regularity assumption holds, then first order necessary conditions can be stated
as follows.

THEOREI 2.2. If A* solves the problem

minimize f(A)
(2.21)

subject to A K, c(A) <= 0,

then A* is feasible and there exist matrices G* Of*, B* OK*, C* Oc* and a multiplier
7r* >- O, 7r* c* 0 such that

(2.22) G* + B* + 7r* C* 0.

Proof See for example Rockafellar (1981, Chap. 5).
Problem (2.21) subsumes problems with smooth convex constraints c(x)<-O

1, 2, , rn through the transformation c(x) max c(x). The theorem also general-
izes to nonconvex problems to some extent, in which case the subditterential is replaced
by the generalized gradient.

Theorem 2.2 is obtained as a consequence of the fact that no feasible directions
of strict descent exist at a minimizing point. In some cases it can be shown that all
feasible directions are strict ascent directions, in which case the conditions in Theorem
2.2 are sufficient. Often however Theorem 2.2 may be satisfied but there may exist
feasible directions along which f(A) has a zero directional derivative. In this case
second order information is required in order to confirm or deny the existence of a
minimizer and to provide effective algorithms, and this point is considered in the next
section.

3. A computational framework. The theory of the previous section is valuable in
that it gives a characterization of first order conditions for problems involving the
constraint A K, in particular the result that the matrix A in (2.7) is positive semi-
definite. However a disadvantage is that it does not take into account second order
effects, whereas it may be important to do this in order to obtain a second order rate
of convergence in an algorithm. Also nothing is said about how to compute a basis
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matrix Z for the null space of A. These omissions are rectified in this section in the
context of a partial LDLT factorization of A. Assume that the rank of A* is known
to be m (1 <-_ m < n). Permuting rows and columns if necessary, and partitioning

A=[All A1
A21 A22J

where Al is rn x m, then for A sufficiently close to A*, partial factors

(3.1) A LDLr, L
Lzl I D

can be calculated where Lit is m m unit lower triangular, Dl is m m diagonal and
D > 0, but D2 has no particular structure other than symmetry. At the solution D* 0.
In general

(3.2) D2 A2- A2AI1A2T
and this expression enables the constraint A K to be written in the form

(3.3) D(A) =0.

The advantage of this formulation is that expressions for both first and second
derivatives of the constraints with respect to the elements of A can be obtained; an
example is given in the next section. The condition that A is close to A* is needed to
ensure that D(A) > O.

The partial factorization (3.1) also gives rise to a readily available basis matrix
Z. Define

(3.4) V=L-r=[ Vl g12]"I
Then

is a basis matrix for the null space of A when D 0 (because AZ 0 and the rank
of Z is n- m). In this case (3.2) and (3.3) can also be expressed as

(3.5) D2(A)=ZTAZ=O.

This formulation also sheds light on the matrix A that appears in (2.7). Consider
for example the problem

minimize f(A)
(3.6)

subject to ZrAZ O, c(A) <- O.

Introducing a matrix A of Lagrange multipliers for the constraint (3.5), the Lagrangian
for the problem can be expressed as

(3.7) (A, A, 7r)=f(A)-A: (ZTAZ)+’rrc(A).

Assume that Z is a fixed matrix computed from A*. Observing that A: (ZTAZ)
A: (ZAZr), then the condition 7A, =0 gives rise to

(3.8) 7Af ZA*Zr + r*7AC* O.
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These terms can be identified with the corresponding terms in (2.22), and so the matrix
A that appears in (2.7) can be interpreted as the Lagrange multiplier matrix for the
constraints D2(A)=0 relative to the basis Z. This can be important in computation
because it enables a solution of (3.6) to be verified as being a solution of (2.21); that
is to say it confirms that the correct choice of m has been made.

4. The diagonal restriction of K. The applications described in have the
particular feature that the off-diagonal elements of A do not vary, and so it is important
to consider the special case in which the positive semi-definite matrix cone K is
regarded solely as a function ofthe diagonal elements of A. The vector a (a,) (a R’)
is used to denote these elements and K is used to denote the restricted set, either as
a function of A

(A) {AIA K, asj a, #j}

where the a, aJs are some fixed values, or as a function of a

(4.2) l(a)={ala’+diag a,e K)

where A’ refers to the matrix [a] with zero diagonal elements. For example problem
(1.1) can be expressed as

minimize eaa, a R’,
(4.3)

subject to a/(a), a <_- a’

in this notation, where S---A’+ diag a and 0 a -a.
Each of K(A) and/a) is a closed convex set (but no longer usually a cone) so

it is important to derive an expression for the normal cone, in particular OK(a). In
fact it can be shown that this set is obtained merely by taking the diagonal elements
of the matrices B 0K, that is

(4.4) OI a) {bib (b,,), B oK (A)}.

This result is by no means immediate, however, since it may not be true for other types
of convex sets. (For example in 2 if K={xlx>-O,x_>-x}, then 0K(0)=
{[gl-<_0, g2-<0}, whereas if K is restricted to variations in x with x2=0, then
K(x) {0} and 0/ R. Thus any element g > 0 is an element of 0/ but there is no
g e 0K with gl > 0. However the converse that g 0K :=>g 0K is always true as shown
below.)

TrEOREM 4.1. OK (a) is given by (4.4).
Proof. If A’+diag as K, then both 0K and 0/ are empty, so (4.4) is trivial.

Otherwise A’+ diag as K, and let B 0K. Then

B" (A’ + diag as) ->- B" A
>- B" (A’ + diag as)

since/(A) c K(A) and hence denoting b (b,),

YANK,
YanK(a),

bTa su.p b Ta
a.K(a)

so that b 0/(a).
Conversely let b 0/(a). The hypothesis that there is no B 0K such that (bi) b

can be contradicted as follows. The vectors (b.), B 0K form a closed convex cone
so by the separating hyperplane theorem there exists a vector s such that sTb > 0 and
sr(b,)<-_OV(b,), B K. The latter condition implies (using (2.14) applied to OK) that
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the matrix S diag si satisfies S F(A’+ diag ai). Using construction (2.20), a feasible
arc Ae can be constructed and in fact Ae K(A). Hence s (a) and so sTb<--O which
contradicts s Tb

Various equivalent forms of OK(a) can be deduced using (2.6), (2.7) and (2.8).
The most useful of these is probably that deriving from (2.7),

(4.5) Ol(a) {bib (b.), B -ZAZ, A A, A _>- O}

that is the set of vectors that are the diagonal elements of all matrices of the form
-ZAZr where A is any symmetric positive semi-definite matrix and Z is the null
space matrix. Likewise feasible directions for the set/(a) are given by

(4.6) :(a) (a)= {s IZr[diag s,]Z>-O}

by virtue of (2.15) and the construction of feasible arcs which follows. Optimality
conditions also follow a similar pattern to (2.21). For example first order necessary
conditions for a* to solve (4.3) are that a* is feasible and there exist vectors b* 0K*
and r* => 0 (,r* R") such that

(4.7) e+ b*+ r* =0,

(4.8) ,r*r(a’*- a*) 0.

As an example of these conditions consider problem (4.3) in which

(4.9) A’= 0 a’=
3

The solution is a*= (2, 2, 41/2) T, no bounds are active (r* =0), and the set

(4.10) /(a)= a 2 a2 >=0

3 3 a3

is illustrated in the vicinity of a* in Fig. 3. It can be observed that K is convex but
not a cone, and is nonsmooth at a*. The rank of A*= A’ +diag a* is m 1, and its
partial factors are

(4.11) D= 0 L= V=
0 11/2 -11/21 ]"

The vector b*=-e satisfies (4.7) and the corresponding B* OK is generated by the
matrix

(A*> 0 as required) and is

(4.12) B* -ZA*ZT

3--
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FIG. 3. The boundary of the restricted cone I(a) in (4.10) (contours of a3).

Another example for which n 4 is

(4.13) A’-

0 2 -2 2

0 3 a’= 4.
2 3 0

2 2

It is readily verified that the solution is a*= (2, 21/2, 4, 61/2) r and in fact the problem
reduces to (4.9) after the first stage of the factorization. The bound a-<_ a’, is active
and has a Lagrange multiplier rr* . However if a] is increased (to a] =6 say) in
(4.13), then the bound at-<-a{ is no longer active, and the vector a (2, 21/2, 4, 61/2) r is
feasible but not optimal (note era 15). The same factorization is obtained as before,
so that D2 0 (feasibility), but the conditions (4.7) and (4.8) do not hold. In fact the
solution to this modified problem is

(4.14) a* (3.455534, 3.183300, 3.183300, 3.455534)

to six decimal places (note era* 13.277668 < 15) and rn 2. In this modified problem
second order effects become important in locating the solution and there exist feasible
directions of zero slope at a*.

There are also some further observations about the computational framework in
3 which are relevant when considering problems involving the restricted cone K (a).

In this case there are at most n free variables, and this can be reduced to n-p if there
are p active bounds at the solution. The equation O2--0 imposes 1/2(n--rn + 1)(n- m)
conditions (because DzE(n-rn)X(n-rn) and using symmetry) so except in degenerate
cases it follows that

(4.15) n-p>=1/2(n-m+ 1)(n- m)

which imposes a substantial restriction on the dimensions of D2. For example if n-p

is 20, then n-m can be no larger than 5. Whenever there is no slack in (4.15), then
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solving the system D2 =0 completely determines the solution of the problem. This
occurs in problem (4.9) with (n, m, p) (3, 2, 0) and in problem (4.13) with (n, m, p)
(4, 2, 1). Otherwise there are more free variables than equations and second order
effects are important in locating the solution. This occurs in the modified form of
problem (4.13) with (n, m, p)=(4,2, 0). Another important feature in (4.3) is that if
there are active bounds on the variables ai i> m, then these would interfere with the
formulation of 3. It is most convenient computationally to permute the variables so
that the active bounds are those on variables ai i= l, 2,. ., p.

5. An algorithm. In this section an algorithm is described for solving problem
(4.3) which arises from the educational testing problem (1.1). The main idea is to
replace the constraint a /(a) by the set of nonlinear equations (3.3) in order to
utilize current nonlinear programming methods which are globally convergent at a
second order rate. The ready availability of second derivatives of (3.3) enables the
sequential quadratic programming (SQP) method (e.g. Fletcher (1981b)) to be used.
This provides locally second order convergence and is an improvement over previous
algorithms (Woodhouse (1976), Jayarajan (1979), Pang (1981)) which appear to con-
verge linearly. The convergence characteristics of the SQP method are improved by
the incorporation of an exact penalty function and the use of second order corrections
(Fletcher (1982a)).I-Iowever there are also some difficulties that arise when replacing
the constraint a K(a) by (3.3) which require special attention. One of these is that
the index m (=rank (A*)) used in partitioning A is not known in advance. However
it is shown that by solving a sequence of problems for different m, each of which is
well-behaved, the correct value of m can be located. Some difficulties arising from the
bounds a _-< a’ are also discussed; these are handled by a permutation technique which
is successful in practice, although it does not allow the standard proof of global
convergence to be used.

In developing an algorithm for solving (4.3), the ideas of 3 are followed and it
is temporarily assumed that m rank (A*) is known (A* A’ + diag a/*), and also that
the variables have been permuted so that the bounds ai < a’ are inactive for i> m.
Then (4.3) can be expressed as

minimize eT"a, a R"
(5.)

subject to D2(a) 0, a _-< a’

where D2(a) refers to (3.2) in which A is the matrix A’+diag ai. The Lagrangian for
this problem is

(5.2) ,(a, A, ’rr)= era-A: D:z(a)+’rrr(a-a ’)

and the first order conditions are given by (4.7) and (4.8). By virtue of (4.4), b* is a
vector whose elements are the diagonal elements of the matrix -ZTA*Z, where A*
(= [A]) is the matrix of Lagrange multipliers for the constraints D2(a)= 0, and Z is
the null space matrix for A*. Setting derivatives of (5.2) to zero and using (3.2) gives

(5.3) Oai- l-h,+,rri=O, i= m+ l, n.

Since the bounds are inactive for i> m, 7F is zero and

(5.4) iii 1, i= m + 1,. ., n,

follows. (For convenience the elements A0 of A are indexed from m+ 1,
correspond to the elements d of D2.)

,n to
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The simple form of (3.2) can be exploited to use the diagonal elements of O2(a)

(5.5) d,,(a) a,-Y a,k[A-]k,a, 0
kl

to eliminate the variables ai. (Conventionally and j will refer to indices whose scope
is from m + to n whilst k, l, r and s refer to indices whose scope is from to m.)
The variables ak are the unknowns, and will subsequently be referred to by a (a Rm).
Thus (5.1) reduces to

minimize f(a) a__ . ak -t- a, (a),
(5.6)

subject to do(a) O, # j, a <- a’,

where a(a) indicates that a is the function of a determined by (5.5). It is easily seen
that the Lagrangian function for (5.6) is again given by (5.2) if the result that A,
is used. In fact (5.6) is unnecessarily redundant in that the equivalent constraints
do(a) 0 and d(a)= 0 are both present. In practice the constraints would only be
stated for >j and the Lagrange multiplier for each constraint in this system would
be 2A0. However it is notationally more convenient to refer to (5.6).

The application of standard nonlinear programming techniques to solve (5.6) is
now considered. In order to write down the SQP method it is necessary to derive
expressions for Vdo and VEdo where V =(O/Oa,... ,O/Oam) r. Now
and so it follows by ditterentiating in AA-C= I that

(5.7)
OA-(

-A# ere A-(.
Oar

Hence from (3.2)

(5.8) OD2 A2,A-/ererA-?A V2ereV2

or

(5.9) Dri)rj.

Ditterentiating again in (5.7) gives

(5.10)

and hence

a:dJ --( DriDsj ar vsi)rj )[A-]rs.(5.11) aaraa
Each iteration of the SQP method applied to (5.6) requires the solution of the QP

subproblem

minimize f(k)+v/k)r+1/26rv2(k)6, 6
(5.12)

subject to d)+Vd)rS=O, i#j,

a(k)+8a

giving a correction vector 8(k), SO that a(k+) a(k) + (k). Also the Lagrange multipliers
(k+l) for the next iteration. Formulaeof the equations in (5.12) become the elements A o
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for the derivatives required in (5.12) are obtained from (5.9) and (5.11). Vdo is given
directly from (5.9), and from (5.6) and (5.5)

(5.13) Vf= e- Vd..

From (5.2)

(k)72d ((k),)(5.14) 72,,o9(a (k) A(k) r)=Y’.-..#_ _ijxa
ij

(note that the diagonal terms are included with A)= from (5.4)). This can be
rearranged using (5.11) as the matrix V20(k) with elements

(5.15)
[V2(k)], 2[ V2A(k)

2[ V2A(k) V],,[ V, D-’
The submatrices of V and D on the right-hand side of (5.15) are calculated using the
partial factors of the matrix A(k) (= A’+ diag ak) in accordance with 3. Since A* => 0
from (4.5), it can be observed that the matrix V2* (= V2*(a*, A*, r*)) is positive
semi-definite. This follows from (5.15) because

zTv2,*Z 2 tr V12A* V[diag zr]A-([diag zs])

(5.16) 2 tr (D-i/2V[diag z]V2A*V[diag z,.]V D-(/2)

>=0

since the matrix inside the trace is symmetric positive semi-definite. Usually V2* is
positive definite in which case, if a(k) is sufficiently close to a*, the basic SQP method
converges and the rate is second order (e.g. Fletcher (1981b)).

Globally however the SQP method may not converge and it is usual to modify
the basic method in some way by introducing an l exact penalty function. In this case
the l exact penalty function for (5.6) is

(5.17) 6(a)= ak+ a,+trI ., ]d#]+ max (a,-a)I
i#j

where the quantities dj and a are functions of a (a e Rm) as above. The assumption
(k)that the bounds are inactive at the solution implies that the max terms are zero if a

is sufficiently close to a*. To ensure that a minimizer of (5.17) satisfies first order
conditions for (5.6), the penalty parameter tr in (5.17) must satisfy
Fletcher (1981b)). But A*>=0 and A imply that max -< and equality can
be obtained. Thus tr >-1 must hold. Since it is advantageous to choose tr as close to
this threshold as possible, the choice tr is recommended. (In practice if the non-
redundant form of (5.6) is used with summation over indices i>j, then a similar
summation is used in (5.17) and the choice tr= 2 is appropriate.)

Various methods of integrating (5.12) and (5.17) exist and have been tried here.
The simplest, that of Han (1977), uses the solution of (5.12) as a search direction, and
the next point is accepted only if it significantly reduces the value of (a). Unfortunately
large values of tr are required to impose a descent property on the method and no
successful algorithm of this type has been obtained. Another algorithm closely related
to the SQP method, but having stronger convergence properties than the Han method,
is suggested by Fletcher (1981 c) (Algorithm 1). It uses the same approximating functions
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as (5.12) but solves a subproblem of the form

minimize f(k) + vf(k) +1/26V(k)+ ’4(k)’-o +Vd)r61

(5.18) subject to a (k) + 6 <= a’,

which is more directly related to (5.17). The parameter O
(k) is the radius of a trust

region constraint and is varied in accordance with standard practice to achieve a
significant decrease in th(a). The subproblem can be solved by techniques analogous
to those used in QP, and asymptotically the SQP method (5.12) and the method based
on (5.18) are equivalent. Method (5.18) solves many of the test problems described in
6; in some cases, however, slow convergence is obtained, apparently caused by

following curved grooves in the graph of b(a) caused by the nonsmooth terms
This type of behaviour has become better understood recently, and a remedy is to
modify the basic algorithm to allow a "second order correction step" in certain
circumstances (e.g. Fletcher (1982a)). With this modification, the resulting algorithm
succeeded in solving all the test problems. In principle however, any effective algorithm
for nonlinear programming can be used to solve (5.6); what is proposed here is in line
with current (albeit recent) methodology, and so is not described in too much detail.
More is given in the report (Fletcher (1982b)) which precedes this paper.

The above description of the algorithm does not, however, take account of certain
features of the semi-definite matrix constraint which require attention. The most
important consideration is how the integer m* -rank (A*) can be identified correctly.
Let the current estimate of m* be denoted by m(k). Any change to m (k) causes an
unpredictable change to b(a(k)), conflicting with the global convergence strategy of
reducing c(a (k)) monotonically, so it is unwise to change m(k) frequently. Consider
therefore the effect of making a fixed but incorrect estimate m of m*. If m < m*, then
the second order correction method converges satisfactorily and ultimately at a second
order rate to the minimizer of b(a). However, because m is too small, there are too
many conditions do(a =0 in (5.6) and so it happens that d0 0 for some indices ij
at the minimizer of b(a). Also A 0 does not usually hold. Therefore the minimizer
of b(a) is not a solution of (5.6). If m > m*, then the second order correction method
may converge to the minimizer of b(a), which is the solution of (5.6) in this case, but
the rate is so slow as to be unacceptable in practice. In the case m- n- > m* it is
similar to the algorithm described by Jayarajan (1979) and Fletcher (1981a). This very
slow rate of convergence indicates that the nonsmooth nature of the problem has not
been accounted for. These observations suggest the following approach in which rn
approaches m* from below. Initially rn is chosen as the smallest integer, r say,
compatible with (4.15). Then b(a) is minimized using the second order correction
method, starting from a (1) a’, A(1) --0 and/9 (1) --/ which is user supplied. If D2(a) --0
at the minimizer, then the solution of (5.6) has been determined and the process
terminates. Otherwise if Oz(a) 0, then rn is increased by one and the process is
repeated. Thus a sequence of nonlinear programming problems, each of which is
well-behaved, is solved until the correct value m* is identified. For the values of n
described here (n _<-20) only a few values of rn need be tried (see Table 6.3) and the
process has proved to be very reliable and reasonably efficient.

Another feature that needs attention is the following. A requirement of the
approach based on (3.1) ff. is that the variables a e R" must permit the matrix A’ + diag ai
to be factorized with D, >0, and this restricts the choice of variables a (k) in the
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nonlinear programming method. The simplest way to deal with this when using (5.18)
is to decrease the trust region radius (choosing p+)= p(k)/4, a(k+)= a), A+)

A()) whenever the solution of the subproblem gives rise to a matrix whose partial
factors (3.1) do not exist. To discourage the algorithm from choosing such matrices,
some additional linear constraints have also been added to the subproblemmmore
details are given by Fletcher (1982b). The main feature of these heuristics is that they
only come into play when a() is remote from the minimizer of 4(a) and so do not
affect the second order rate of convergence. I think it is also likely that the global
convergence property of the second order correction method will remain valid.

Finally, another restriction on the variables a " of (5.6) is that the bounds
a <= a’ i> m must remain inactive. In practice this can only be achieved by permuting
the variables, and a suitable permutation is not known in advance, so the following
heuristic has been adopted. At the start of an iteration each variable is examined in
turn" if it is active and is preceded by inactive variables then these variables are
permuted cyclically so that the active variable is first. Consequently the active bounds
are those on variables ak) r-1,2,..., p. However any such permutation causes a
complete change to the factorization (3.2). The matrix D and the basis matrix Z are
redefined, and the Lagrange multiplier estimates are reset to zero since they are no
longer appropriate to the new basis. Likewise the function b(a) in (5.17) is redefined,
which causes an arbitrary change in the value of ch(a(k)). This conflicts with the global
convergence strategy of reducing 4(a(k)) monotonically. Therefore any convergence
proof is valid only if the number of permutations made during the course of the
algorithm is finite. Whilst practical experience suggests that permutations occur
infrequently, and there is no evidence of zig-zagging, it is an open question as to
whether a counter-example could be constructed.

6. Numerical experiments. The algorithm of 5 is applied to solve the set of
educational testing problems (1.1) given by Woodhouse (1976). The results show that
the method is effective and reliable, and give an indication of how much computational
effort is required. The computations have been carried out on a DEC l0 computer
with a single length precision of 7-8 decimal digits.

In the educational testing problem, the n n matrix S is constructed from an
N n data matrix X (N > n) in the following way. The column means Y x/N
are calculated and then

(6.1) sjk N- (x,j )(x, k)

determines S. Since this computation essentially "squares" the matrix X, which can
cause substantial loss of precision, both (6.1) and the subsequent factorization of
S-diag 0i are carried out in double precision. An alternative to this which has not
been followed up would be to use some form of Square Root Free Givens operations
to compute the factors of S-diag Oi directly from X and 0 in single precision. Double
precision is also used for accumulation of scalar products with single precision for all
other operations. The particular set of problems given by Woodhouse (1976) is derived
from a 64 20 data set which is reproduced by Fletcher (1981a). Unfortunately due
to a poor photocopy, there are some errors in the table given by Fletcher. For this
table to correspond exactly to the Woodhouse table the following corrections are
necessary, the erroneous figures being given in brackets: X3o,1 59 (39), Xl4,13 31 (21),
x22,3 36 (56), x7,8 37 (27), x4,2o 28 (38), x55,2o 76 (75). The corrected figures
check with the S matrix given by Woodhouse: it is sufficient to check the diagonal
elements which are given in Table 6.1.
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TABLE 6.1
Diagonal elements of the matrix S for the Woodhouse 1-20 problem.

407.5394
2 358.5970
3 329.5784
4 317.4363
5 145.1069

6 51.71032
7 329.8482
8 275.5652
9 300.9117
10 232.2299

199.7688
12 317.3013
13 277.6419
14 160.7054
15 104.3175

16 325.831
17 512.7696
18 414.6704
19 479.7054
20 459.2835

Woodhouse uses the 64 x 20 data set to generate various test problems by selecting
various subsets of columns to form the matrix X. These subsets are those given in the
first column of Table 6.2, the number of elements in each subset being the value of n.
The results given by Woodhouse are reproduced in Table 6.2 for comparison purposes.
Woodhouse only gives his results to one decimal place, and his solutions do not always
correspond to feasible points, although nearly so. For an accurate comparison, one
(two for the 1-18 case) of the variables is adjusted so that the matrix S-diag 0i is
exactly singular and positive semi-definite. The adjustment required is small: 1.6 units

TABLE 6.2
The results given by Woodhouse (1976).

Columns which
determine X 0* i= 1,2,..., n E 0*

I, 2, 5, 6
1, 3, 4, 5
I, 2, 3, 6, 8, 10

1, 2, 4, 5, 6, 8

1-6

1-8

1-10

1-12

1-14

1-16

1-18

1-20

174.8 235.8 103.4 28.76130
155.9 240.9 128.8 107.3818
0 101.7 20.2 31.5

82.3 69.78108
86.0 119.6 58.4 108.6
45.6 30.34421
116.0 21.2 104.1 131.5
113.2 41.86110
32.0 54.7 79.1 147.9
98.9 29.8 105.2248 80.7
8.6 73.1 57.9 123.7

122.1 28.7 87.1 60.5
37.41804 60.8
18.3 72.2 59.6 125.2
98.9 23.3 95.9 40.4
36.5 48.8 64.5 57.91526
11.7 40.9 95. 138.2
99.1 22.5 34.5 27.3
46.4 29.4 22.9 24.5
2.3 1.985111
6.2 47.4 84.5 127.2

107.7 28.6 36.9 46.4
31.3 4.1 5.9 16.5
3.2 9.6 0.1960485 7.4
4.4 59.4 72.4 124.7

93.2 27.4 26.4 41.9
31.5 44.1 10.4 6.7
0 1.2 0.05523563 4.0

25.9 34.1
no solution obtained

542.76130
632.98179

305.48108

448.54421

527.86111

628.32481

659.91805

741.51527

596.78513

563.09605

607.75524
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TABLE 6.3
Results for method of 5.

Columns which
determine X n m* NQP

1,2,5,6
1,3,4,5
1, 2, 3, 6, 8, 10

1,2,4,5,6,8

1-6

I-8

1-10

1-12

1-14

1-16

1-18

1-20

2 3 14
2 2 12
3 5 9

3 4 13

3 4 14

5 6 29

6 8 34

8 9 29

10 12 36

11 14 42

13 15 27

15 18 39

173.1174 236.8681 103.8765 28.91159
156.2324 240.9354 128.7423 107.2478
0 102.0205 19.87713 31.46058

82.28315 69.84034
59.63703 214.0408 69.79544 115.7275
47.03951 58.22299
152.7057 54.47563 82.93145 99.64148
104.6550 40.95294
14.03226 38.54178 95.09897 158.9009

120.3823 28.37133 106.7753 79.73562
0 43.89229 80.71647 132.8874

126.8620 28.03018 56.62000 92.61001
61.33628 67.82578
18.63315 61.86325 63.42740 127.5681
99.97348 30.77045 96.53485 45.28755
41.60155 45.32906 64.04083 52.45959
0 59.49895 62.91230 109.9237

99.94911 32.71942 79.07282 31.73815
47.42095 33.78883 41.95283 63.59558
4.251664 4.450777
0 63.48564 52.38936 108.1923

92.39511 34.56210 85.75734 21.95673
37.54895 32.96661 28.51149 54.57159
12.92956 4.102086 6.706302 27.38691
0 58.38015 62.16198 107.2306

80.28730 25.38330 70.70336 24.31729
52.43795 41.69481 24.29243 39.17598
15.76098 6.861478 3.259009 14.59315
68.80438 52.16162
0 47.37281 76.58167 101.0016

63.44995 13.38219 41.48301 4.300287
56.36490 33.98319 33.76988 29.95976
17.59711 0 4.328106 13.69029
45.58721 51.58627 57.20664 128.6977

542.77356
633.15784
305.48170

564.46331

535.36227

641.83848

690.78040

747.48921

671.27506

663.46204

747.50574

820.34265

for the {1-10} case, 0.8 units in the {1,2,4,5, 6, 8} case, 0.6 units in the {1-14} case,
otherwise at most --0.2 units. The results obtained by the new method of 5 are
tabulated (in unpermuted form) in Table 6.3. The initial value of t5 is 20. By solving
some of the problems with a different initial t5 it is estimated that these results are
accurate to 5-6 decimal places in the variables 0i and 7-8 decimal places in the function
value 0i. The maximum residual IId, ll, on any problem for the matrix D2(a) is 0.2to-5,
which is as good as can be expected in single length with elements s0---100. By
comparing the values in Tables 6.2 and 6.3 it can be seen that, except for the smallest
problems, the Woodhouse method only gives an order of magnitude estimate of the
correct variables, and there are substantial differences in the best function values that
are achieved. In Table 6.3 the column headed NQP gives the number of times that the
major/QP problem (5.18) is solved. For each of these, a parametric solution of the
/QP problem is also carried out to calculate the second order correction and a partial
factorization of a matrix $-diag 0i is attempted. This amount of computation is well
within the capacity of modern computers, and is quite acceptable for obtaining accurate
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solutions to the educational testing problem. However the amount involved is not
small and would not be acceptable in practice for solving the matrix modification
problem (1.3) which must be solved on every iteration of a modified Newton method.
Therefore it is of some interest to enquire whether yet more effective methods can be
developed.

In addition Table 6.3 gives the initial value r of m and the correct value m* for
each particular problem. It can be seen that only in two cases (1-16 and 1-20) is the
minimization of (a) repeated for four different values of m, otherwise fewer repeats
are required. In most cases it is observed that fewer iterations are required to minimize
(a) as m increases. For each value of m, second order convergence of the method
is observed as predicted by the theory, and there is no evidence of the Maratos effect,
presumably because second order corrections are being used.

The results of Tables 6.2 and 6.3 are given in detail, not only because of their
intrinsic interest, but also because they could be used as test problems for nonsmooth
optimization. One possibility could be to use the problem

maximize eT0
(6.2)

subject to ,($- diag 0) => 0, 0 => 0
which has a nonsmooth constraint. Another possibility is to use the eigenvalue con-
straint in (6.2) to eliminate one of the variables, giving rise to a nonsmooth optimization
problem with simple bounds. Yet another possibility would be to create an l exact
penalty function

(6.3) b(0) -e0 + r(min (A,,(S-diag 0), 0)+Y min 0, 0))

for sufficiently large r.

Finally it is worth remarking that the new method of 5 was initially tested out
on some random matrix problems in which the elements of the matrix S in (1.1) is
generated by using random integers in [-10, 10]. To make S positive definite, a matrix
cI (c an integer) is then added in. The method had no difficulty in handling such
problems, and various problems of dimension n <-_ 12 were used. One point which is
worth making is that by taking c close to the threshold value for which S is singular,
the resulting problem is likely to have a number of active bounds. The permutation
technique described in 5 works well in handling this situation. In contrast the
Woodhouse test problems have very few active bounds and the permutation technique
is rarely required.

Appendix. Subgradients for extreme eigenvalues. These results all concern the
space of n x n symmetric matrices A and the function

(A.1) f(A) E Ai(A)
i=1

which is the sum of the m largest eigenvalues of A where <_-m <-_ n and where Ai(A)
1, 2, , n are the eigenvalues of A ordered according to A _>- A2->_ ->_ A,. The

results specialize to the largest eigenvalue alone (rn 1), and there are corresponding
results for the least eigenvalues by considering f(-A).

THEOREM A.1. f(A) is convex.

Proof An equivalent Rayleigh quotient form off(A) is

(A.2) f(A) max tr (Q’AQ),
{QIQTQ=I}
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(This follows by expanding Q XY where X is the matrix whose columns are the
eigenvectors of A, and Y"". Then tr QTAQ tr yTAY=tr AYY. The condition
QTQ I implies YrY =/, so tr yry tr YYr= m and hence tr A YY" is maximized
when Y=[o/].) Now consider f(A) for two symmetric matrices Ao and A. Then for
any 0 [0, ], and using linearity of the trace,

f((1-O)Ao+OA1)= max trXr((1-O)ao+OAl)X
(xlxx=)

_<-- max (1 0) tr XTAoX + max 0 tr XTAX
{XIXTX=I) xIxTx----)

(1- O)f(Ao) + Of(Al).

Thus f(A) is convex.
COROllARY A.2. The sum of the m least eigenvalues

(A.3) g(A) A,(A)
i=n--m+l

is concave (since g(A)=-f(-A)). [3

Before proving the second theorem, a preliminary result is required.
LEMMA A.3. If aii i= 1, 2,..., n are fixed, then f(A) is minimized by the diagonal

matrix D diag (aii).
Proof. Consider a perturbation of D to D + eM where M is symmetric and m,- 0

l, 2, , n. Define the orthogonal matrix Q eS where S is skew-symmetric. Then
D+ eM is similar to QT(D+ eM)Q and the first order terms of this matrix are
e (DS SD + M). Choosing

&={/(a-a.) if a,,# a,
otherwise

eliminates off-diagonal terms when a. # a. Thus, apart from the O(e) terms, QT(D +
eM)Q is block diagonal, and within each block the diagonal elements are equal. Now
eliminate each off-diagonal element in each block (to within O(e)) by a Jacobi rotation
of angle 7r/4. Each rotation leaves the trace of each block unchanged, but changes
the ii and jj diagonal elements by -em) and em) respectively. Thus the eigenvalues
of D + eM can be expressed as

a. + eb + O( e)
where b 0, summed over any subset of all the indices for which the % are equal.
Hence

f(D + eM) >-f(D) + O(e2).
Taking the limit e $0 it follows that the directional derivative at D is nonnegative in
any direction M, and so by convexity f(A) is minimized by D=diag (a,).

It is now possible to prove the second main result which characterizes the symmetric
subgradients off(A). As in (2.4) B + S is also a subgradient where S is skew-symmetric.

THEOREM A.4.

(A.4) Of(A)= {BIBT= B, B->0, tr B= m, B’A=f(A)}.

Proof. B is a subgradient of f(A) iff

(A.5) B’A=f(A)+fC(B)
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where fc is the conjugate function defined by

(A.6) fC(B) =sup (B" A-f(A))
A

(Rockafellar (1970)). Let B XXr be the spectral decomposition of the fixed matrix
B in (A.6), where fl=diag (toi) and toe->tOE>_- ">_-ton. Using the definition of B’A
(- trXXTA C say, where C XtAX), then

(A.7) f(B) =sup (fl" C-f(C))
c

where the sup is taken over symmetric matrices C. Consider changing only the
off-diagonal elements of C; the term ’C is unaffected and by Lemma A.3, f(C) is
minimized when the off-diagonal elements are zero. Hence only variations in C diag ci
need be considered. In this case f(C) is just the sum of the m largest elements c, and

c if any toi < 0 (let ci -o),

sup ( OiC -f(C))
if toi > m (let ci a --> o),

c ifY toi < m (let c a - -o),

iftoi>_-0 and toi-m,

since in the last case toc _-<f(C) with equality when

Applying these results together with (A.5) gives the required conditions (A.4).
COROLLARY A.5. B is a symmetric subgradient iff B XXr where columns of

X e N"’ are any orthogonal set of eigenvectors for the eigenvalues .,..., .,,, of A
(follows directly from (A.4)).
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CONVERGENCE OF VIABLE SOLUTIONS OF DIFFERENTIAL
INCLUSIONS WITH CONVEX COMPACT GRAPHS*

ARIE LEIZAROWITZ’

Abstract. A convergence property for the viable solutions of a differential inclusion with convex and
compact graph is established. We show that if there is a unique stationary point and no elliptic solutions,
then all the viable solutions converge uniformly to the stationary point. We show that the convergence
property is generic for the set of differential inclusions with a unique stationary point.

Key words, differential inclusions, set valued functions, viable solutions, stationary points

1. Introduction. In this work we establish a convergence property for the viable
solutions of a differential inclusion with a convex and compact graph. Viable solutions
are those which are defined for all positive times. The main result asserts that if there
is a unique stationary point and no elliptic solutions, then all the viable solutions
converge, uniformly, to the stationary point. This result is presented in 3; in 2 we
display our notations and some definitions. In 4 we show that the convergence
property is generic, namely, for most differential inclusions with convex and compact
graphs, a sufficient condition for all the viable solutions to converge is the existence
of a unique stationary point.

The motivation for studying this property arises from the study of the following
infinite horizon problem. Consider, for every trajectory z(. )’[0, )-> R n, the cost flow

c( t) L(z(s), J,(s)) ds

where L(.,. is a convex scalar function defined in Rn R. An overtaking optimal
trajectory is one whose cost flow is less than the cost flow of any other trajectory with
the same initial value, from a certain time on. The problem is the existence of an
overtaking optimal trajectory, given an initial value z(0)= Zo. This problem is studied
in Brock and Haurie [2] and Leizarowitz [5]. In [5] the existence of overtaking optimal
trajectories is established while assuming that a certain differential inclusion G(z)
(which will be described below) is such that all its viable solutions converge uniformly
to a certain point. The set valued function z-> G(z) is related to L(., as follows" It
is assumed that L has the representation

L(z, w)= Lo(z, w)+ rl’w+ oz

where a R 1, r/ R", and Lo(z, w)--> 0 is a convex function with the property

L0(z, 0)=0 if and only if z=
for a certain R". We define the function z G(z) by defining its graph in R" R"
as

graph G= {(z, w)" Lo(z, w)=0}

(namely w G(z) if and only if (z, w) G). The main result of [5] is that if the viable
solutions of : G(z) have the desired convergence property, and if the initial value
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can be steered in a finite time to their common limit, then there exists an overtaking
optimal trajectory satisfying the initial condition.

2. Notation and terminology. We consider a differential inclusion

(2.)
dz(t)
G(z(t))
dt

where z G(z) is a set valued function defined on a bounded domain in R", such that
G(z)c R. We assume throughout that the graph of the set valued map, namely the set

G={(z, w)R"xR: wG(z)}

is compact and convex.
An absolutely continuous function z’(tl, t2)- R" with tl < 6 is called a solution

of (2.1) if it satisfies (2.1) almost everywhere in the interval (t, t). A viable solution

of (2.1) is a solution on (0, oo), namely one which persists for infinite time. (This
terminology is due to J.-P. Aubin. For a detailed discussion concerning differential
inclusions see Aubin and Cellina [1].)

A function z: (0, oo)- R" is called an elliptic solution of (2.1) if it is a viable
solution of (2.1) having the form

z(t) a cos at + b sin at

for some scalar a 0 and a, b R" with la]+lbl 0 (here I" is the Euclidean norm
on R").

We denote the scalar product of the vectors x, y R" by {x, y}. We shall say that
the point z R" is a stationary point of G if 0 G(z). One can easily verify that the
existence of a viable solution of (2.1) implies the existence of a stationary point of G.
(Indeed, if z(. is a viable solution, then the values

z( t) dt, i e( t) dt

converge to some (, O) G for a suitable sequence T-> o.) Thus the existence of a
stationary point will be assumed and for convenience we assume that 0 is such a point,
namely:

(2.2) 0e G(0).

3. The main result. In the proof of the main result, Theorem 3.2, we shall use the
following well-known fact.

LEMMA 3.1. The set of solutions of (2.1) defined on the interval [0, T] is closed as
a subset of C[0, T] (namely, the set of all continuous functions on [0, T] endowed with
the norm IIz(. )11 maxo<=,<=r Iz(t)l).

THEOREM 3.2. Let z G(z) be a set valued function with a convex and compact
graph G c R" R" and such that O G(O).

Then all the viable solution of (2.1) converge, in a uniform rate, to zero if and only
if

(i) zero is the only stationary point of G,
(ii) there are no elliptic solutions of (2.1).
A remark. By saying that all the viable solutions of (2.1) converge uniformly to

zero we mean that, given an e>0, there is a T>0 such that Iz(t)l<e for every t> T
and every viable solution z(. ).
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A remark. Note that the assertion of the theorem concerns only the viable solu-
tions; in particular it holds when there are no viable solutions at all. For example, let
C c R" be a compact and convex set and A be an n x n matrix, with all the eigenvalues
having a nonzero real part. Then the theorem applies to the differential equation
dz(t)/dt Az(t) subject to the constraint z(t) C for all - 0. Clearly when all the
eigenvalues have a positive real part, there are no nontrivial viable solutions. Thus the
asymptotic stability property which we study here is different from the usual asymptotic
stability of differential inclusions. To the latter applies, for example, the method of
Lyapunov functions (see Roxin [6]), which seems to be inadequate in our context.

A remark. We discuss here the meaning and some consequences ofthe assumptions
concerning the set valued function z - G(z), in particular Assumption (i) of Theorem
3.2. A discussion concerning Assumption (ii) of that theorem is presented in 4. In
the special case z R our assumptions imply that the graph of G in RE is a nonhorizon-
tal line segment which contains the origin or else, it is contained in the upper or lower
half of the plane. In higher dimensional spaces the structure is more complicated.
Consider, for example, a control system Az + Bu, z K, u U, where K c R" and
U R" are convex and compact sets. Then the set G {(z, ): z K, u U} satisfy
our assumptions provided that A(K)fIB(-U)={O} and Az=O, zK imply z=0.
On the other hand, not every set G= R"R" satisfying our assumptions can be
represented as above as arising from a linear control system.

A counterexample is the following: Consider z (Zl, ZE) RE, let e (1, 0) and
denote C={Z’(ZI--1)E+z=I}. Define g’CR2 by g(z)=lzle and let G=
conv {(z, g(z)): z C}. Then G satisfies our assumptions. On C the function G is
single valued; hence it coincides with g there. We claim that there are no A, B and
U such that G {(z, Az + Bu): z K, u U}, since such an equality would imply that
B(U) consists of only one point, say a R2; hence g(z) Az + a for all z C. Substitut-
ing z 0, we obtain a 0; therefore g(z) Az, which contradicts the choice g(z) Izle
(e.g. g((1, 1))+g((1, -1)) =2x/ e # g((2, 0))).

A discussion running along very similar lines, yields the following conclusion:
Not every set G c R"xR" satisfying our assumptions can be represented as G=
{Az B(z)u: z K, u U} where K R" and U R are compact and convex, B(z)
is continuous in z, and U has a nonempty interior in

Proof of Theorem 3.2. The "only if" part of the assertion is obvious and we shall
prove here the "if" part.

For any compact and convex set F R"x R" we denote

Fw {w R": (z, w) F for some z R"},

Fz={zeR": (z, w)eF for some weR"}.

For G, the graph of z G(z), we have 0 Gw and 0 Gz, this since (0, 0) G. Let K
be the face of 0 in Gw, namely the largest convex subset of Gw which contains zero
in its relative interior. We consider the set H G given by

(3.1) H {(z, w) e G: w e K}.

The idea of the proof is the following: We shall first prove that all the solutions of
dz( t)/dt H(z(t)) converge uniformly to zero. Here z - H(z) is the set valued mapping
whose graph is H. Then we shall prove that every solution of dz(t)/dt G(z(t))
converges uniformly on compact intervals, to the set of solutions of dz(t)/dt H(z(t)).
Combining these two pieces of information will verify the assertion of the theorem.
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With the above notation for Hw and Hz we claim that for each v Hw there is
a unique element s Hz satisfying (s, v) H. To see this we consider the set valued
function w-> T(w) defined by T(w)= {s Hz: (s, w) H}. We note that this function
has a convex graph, that by (i) of Theorem 3.2 we have T(0)- {0}, and that zero
belongs to the relative interior of Hw. These facts imply that T(v) is a singleton for
every v Hw.

Being single valued and of a convex graph, T is the restriction to Hw of some
linear map B: Span Hw Span Hz.

CLhIM 1. All the viable solutions z(. of

(3.2)
dz(t)
H(z(t))
dt

converge uniformly to zero.
We prove the claim by constructing a subset H’ c H with the following properties:
(a) Span Hv Span H.
(b) The differential inclusion dz(t)/dt e H’(z(t)) has the same set of viable solu-

tions as the relation (3.2). Here z H’(z) is the set valued function whose graph is H’.
Assume for a moment that such a set H’ does exist. Then the restriction of B to

Span Hv is one-to-one and onto itself, and let us denote its inverse by A. Then every
solution of (z(t), (t))e H’ satisfies the equation dz(t)/dt=Az(t) in Hz. Since zero
belongs to the relative interior of Hz, and since by our assumption there are no elliptic
trajectories, it follows that A has no purely imaginary eigenvalues. Thus all the bounded
viable solutions of dz(t)/dt Az(t) converge uniformly to zero as too, and the
assertion of the claim follows.

We now construct a set H’ with the desired properties. We denote Ho H and
Xo Span (Ho)w, Y0 Span (Ho)z. We define Xi/l Xi Y, Y/ B(Xi/) and
Hi+ {(z, w) e Hi: z Y+l, w Xi+}. We show that Hi and Hi+l have the same set of
viable solutions and since Hi+l Hi it is enough to show that every solution of Hi is
a solution of Hi/l. Let z(.) satisfy dz(t)/dt Hi(z(t)). Then by the definition of Hi
we have that z(t) Y for all >= 0; hence (t) e Y Xi Xi/l for all >= 0, which
proves that z(. solves dz/dt Hi+(z(t)).

It follows from Xi Y that dim Xi/l < dim Xi; therefore we conclude that Xi Y
for some _-> 0, and then H’= Hi has the desired properties. Thus Claim is established.

Recall that the set K is the face of zero in Gw. If K Gw, then (3.1) implies that
H G and the assertion of the theorem follows from Claim 1. Assume therefore that
K is a proper subset of Gw. Then there is an r/ R such that

(3.3) (r/, Wo)>-0 for every Woe Gw, (r/, v)>0 for some v Gw,

(3.4) (r/, Wo) 0 for every Wo K.

CLAIM 2. Denoting {s Gz: (r/, s) 0}, we have for every viable solution z(.
of (2.1) the following:

(3.5) dist(z(t),E)-0 as to, uniformly in z(.).

Let z(.) be any viable solution of (2.1). Then the function t-(rl, z(t)) is non-
decreasing (by (3.3)); hence it converges, say to a. This clearly implies that
(, (l/T) or z(t) dr) converges to a as T- oo.

We claim that for every viable solution of (2.1) we have (I/T)J z(t)dt-O as
T- oo. Otherwise, there is an e > 0 and a sequence T - such that I(1/T)Jor’ z(t) dtl >= e

for each i. Since the convexity of G implies ((1/Ti) jor’ z(t) dr, (1/Ti)[z(Ti)-z(O)]) G
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and clearly (1/T)(z(T) z(0)) 0 as , the compactness of G implies a contradic-
tion to condition (i) of Theorem 3.2.

Thus we conslude that (r/, z(t))O as . We claim that this convergence is
uniform in z(.). This is a consequence of the monotonicity of t(rl, z(t)). If the
convergence is nonuniform in z(. ), then, for some e > 0, we can find a sequence of
viable solutions {Zk(’)} and an increasing sequence tk as k3, such that
(*1, Zk(t)) <--e for all 0 <- t<=.tk. It is easy to see from Lemma 3.1 that a subsequence
of {Zk(" )} converges on every compact interval [0, T], to some viable solution Zo(" of
(2.1). But then (rl, Zo(t))<--e for all t_>-0, contradicting (r/, Zo(t))0 as t. The
uniform convergence to zero of (r/, z(t)) implies, by (3.4), the validity of (3.5) and
concludes the proof of the claim.

We now construct a sequence of convex and compact sets

Gw= Ko D K . Kr K

as follows:
Let r/t be the vector r/which appears in (3.3) and (3.4), and define

K, {w Ko: (n,, w) 0}.

Clearly, by (3.4), K c K.
If zero belongs to the relative interior of K, then we stop. Otherwise we repeat

the construction and choose a vector r/2e R" such that (*/2, w)=>0 for all we K and
(*/2, v)> 0 for some v e K, (’/2, W 0 for all w e K. We define

K2 {we K: (*’/2, w) 0}.

We continue this construction until we arrive at a set Kr which contains zero in its
relative interior (which must occur since the dimensions ofthe Ki are strictly decreasing
as long as the construction continues). It is clear from the construction that K c K
and from the definition of K that K c K, thus K K.

CLAIM 3. Let z(. be a solution of (2.1) defined on (-, 3) and such thatfor some
0 <- < r the following holds: dz(t)/dt e Ki for all -< <. Then

dz(t)
eK,+. for all -< <.
dt

We consider in Claim 2 the set K, instead of Gw. Analogous to E we define

Then it follows from Claim 2 that dist (z(t), E/)= 0 for all -< <; therefore
(r/+, z(t)) 0 for all -< <. Hence (r/i+, dz(t)/dt)=Oforall -< <, proving
the claim.

CLAIM 4. All the viable solutions of (2.1) converge, uniformly, to zero.
Assume that the claim is false. Then there are an e > 0 and a sequence of solutions

{Zk(’)}k-_ with a sequence tk as k such that IZk(tk)[>=e for all k>=l. We
consider the sequence of solutions {Sk(" )} defined by:

Sk(t)=zk(t+tk) for--tk <=t<O.

Then we have ISk(0)l >- e for all k >-1.
It is easy to see from Lemma 3.1 that a subsequence of { Sk (")} converges, uniformly

on compact intervals [-T, T], to some solution So(t) of (2.1) (So(t) is a solution in the
interval (-, )). It follows from Claim 3 that dso(t)/dt e K for all -< <o and
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by (3.1) we have that dso(t)/dtH(so(t)) for all -oo< t<oo. Now Claim implies
that So(t) 0, contradicting Iso(0)l_>- e and concluding the proof of the theorem.

Example 3.3. Let G c R" R" be the convex and compact set consisting of points
(z, w) R R which satisfy

Iw-wol/lw-azl<-Iwol
for some nonzero Woe R" and a nonsingular n xn matrix A. Let zG(z) be the set
valued function whose graph is G. For each z, the set G(z) is an ellipsoid of revolution
with foci in Wo and Az. We check that the conditions in the sufficiency part of Theorem
3.2 are fulfilled. If 0 G(z), then IAzl <-0; hence z =0 by the regularity of A. We claim
that there are no elliptic solutions for dz/dt G(z(t)). For every solution we have that
I (t) wol-< Iwol; therefore (Wo, :(t)) >- 0 with equality only when :(t) 0. The existence

of period T> 0 would imply o (Wo, z(t)) dt > 0, contradict-of an elliptic solution z(. "
ing the periodicity of z(.). Thus we conclude that all the viable solutions converge,
at a uniform rate, to zero.

We consider now a slightly different problem and ask the following question:
When does every viable solution z(.) of (2.1) converge to some constant? Now it is
not necessary for G to have a unique stationary point, and we define P to be the set
of all stationary points of G, namely

(3.6) P= {z R": (z, 0) G}.

By (2.2) we have 0 P.
The following lemma, which will imply our result, shall be needed for future

reference.
LEMMA 3.4. Let z - G(z) be a set valuedfunction with a convex and compact graph

G c Rnx R". Let P be defined by (3.6) and assume that

(3.7) (Span P)f’) Gw {0}.

Then all the viable solutions of (2.1) which satisfy z(O)= Zo for a fixed Zo, are viable
solutions of a differential inclusion

(3.8)
dz(t)
F(z(t))
dt

where the mapping z F(z) has a unique stationary point.
Proof. Let z(. be a viable solution of (2.1). Then z(t) z(O) + Gw for all >-_ 0.

Hence z(. is a viable solution of (3.8) where the mapping z F(z) is the set valued
function whose graph is

F={(z, v) G: z z(0)+ Gw}.

Then (3.7) implies that there is at most one stationary point for F and by the existence
of a viable solution there is exactly one stationary point. Thus the assertion follows.

The following result is a consequence of Theorem 3.2 and Lemma 3.4.
THEOREM 3.5. Let z- G(z) be a set valued function with a convex and compact

graph G c R" R". Let P be as in (3.6) and assume that (3.7) holds. Then every viable
solution of (2.1) converges, as - oo, to some point in P if and only if there is no elliptic
solution of (2.1).

4. The nonexistence of elliltie solutions is generic. The condition which appears
in (ii) of Theorem 3.2 is that there is no elliptic solution which solves (2.1). In the
proof of Theorem 3.2 this is shown to be equivalent to the nonexistence of some purely
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imaginary eigenvalue for a certain matrix. This suggests that in some natural sense,
condition (ii) in Theorem 3.2 is generic. In this section we establish this property.

Let Y be the metric space of all the compact sets K c R" x R" with the Hausdorit
metric p which is defined as

p(K, K2) max (max min d(a, b), max min d(a, b)}
aK bK bK aK

where d(., is the following metric on R Rn"

d((x, y), (x’, y’))=

(See Kelly and Weiss [4, p. 237], for a .verification that Y is a complete metric space.)
We consider the set X c Y of all the convex and compact sets G R" R" for

which condition (i) of Theorem 3.2 holds, namely, (z, 0) G if and only if z 0. Then
X itself, with the induced topology, is a metric space. Notice that X # cl X # Y (where
cl X is the closure of X in Y), and X is not a complete metric space.

We are interested in the following subset of X"

A= {GX: there is no elliptic solution of (2.1)}.

We shall show that A is dense in X and that it contains a denumerable intersection
of open and dense sets in X. Since X is not a complete metric space, this does not
imply yet that A is big in the topological sense. However, we shall prove that A is
residual in cl X too. In this sense the condition of Theorem 3.2 holds generically for
sets G in X. (For more details concerning residual sets in a complete metric space
consult Kelley [3, pp. 200-202].)

PROPOSITION 4.1. The set A is dense in X and contains a denumerable intersection

of open and dense sets in X.
Proofi Let us introduce the following terminology. We consider a linear function

M from a subspace S of R" into R. We enlarge M to a linear function M on the
entire R by defining M to be zero on the complement of $. We shall say that M has
no purely imaginary eigenvalues if M does not have such eigenvalues.

It is remarked in the beginning of the proof of Theorem 3.2 that one can associate
with each set K X a linear function Mr, defined on the face of the point 0 in Kw.
Then it is easy to see that K A if and only if Mr has no purely imaginary eigenvalues.

Let K X and e > 0. Then there is an n n matrix M such that

(4.1)

and the restriction of M to the face of zero in Kw has no purely imaginary eigenvalues.
The set K is the graph of the following set valued function w T(w) defined by

T(w)={zR"’(z,w)K}.

We define the set valued function

T(w)= T(w)+(M-Mr)w

both defined on the same domain Kw. The graph of T, denoted K, is a set in X, and
p(K, K) is small if e in (4.1) is small. Clearly, K A; thus A is dense in X.

We prove now that A contains a denumerable intersection of open and dense sets
in X. For each integer m _-> 2 we define the family F,, of all sets K X with the following
property: There exists an elliptic solution z(. ), z(t) a cos at + b sin at, satisfying
(z(t),,(t))K such that 1/rn<=lal<-rn and lal+lbl>-_(1/m). We shall prove that
is closed in X. Since F is disjoint from A and since A is dense in X, we have that
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each X\F,, is an open and dense set in X. Thus the relation A n=2 (XFm) will
complete the proof of the proposition.

Let KF,, for every i>_-l, and let p(Ki, K)-O as i-oo, for some KX. We
should prove that K F,. For each let zi(t) a cos at +
rn and => la, + Ibl--> 1/m, be an elliptic solution for K,. It may be assumed that a- a,
b,-- b and a,- a as i- o, where 1/m<-Ial<= m and 1-> lal+lbl_> 1/m. Then the elliptic
solution z(t) a cos at + b sin at satisfies (z(t), :(t)) E K for all >-0, proving that
K Fm and concluding the proof of the proposition.

THEOREM 4.2. The set A is residual in cl X, i.e., A contains a denumerable intersec-
tion of open and dense sets in el X.

Proof. We shall prove that cl X\X is of first category in el X, namely

(4.2) cl X\X Hk
k=l

where Hk are closed and nowhere dense in cl X. Once we have proved this, let { } i=1

be the open and dense sets in X which are guaranteed by Proposition 4.1, that is"

(4.3) Oi- U f) X

for some open set Ui c y, and

Then, defining

ADfq O.
i=l

V=(Uf)clX)\ LI Hk
k=l

with U and Hk as in (4.3) and (4.2) respectively, we have that each V is open and
dense in cl X, and o= V/c N 7=1 Ui N cl X) U c= Hk c N =l Oi c A proving that A
is residual in cl X.

To prove that el X\X is of first category in cl X, let us denote

W K e cl X" (z, 0)e K implies Izl <
then

(4.4) X CI W.
j=l

We prove now that W is open in cl X. Let {K}=l c cl X\ W be such that K- Ko
as l. For every l=>l there is a z such that Iz, -> 1/j and (zt, 0) K. There is a
subsequence of {z}_-i which converges to some point Zo which satisfies IZol>= 1/j and
(Zo, 0) Ko. Thus each W is an open set, and it follows from (4.4) that it is also dense
in cl X; hence X is residual in cl X, concluding the proof of the theorem, l-1
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(Adj,,g), (adf,g) AND LOCALLY (adj,,g) INVARIANT AND
CONTROLLABILITY DISTRIBUTIONS*
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Abstract. In the study of nonlinear control systems, the concepts of an invariant foliation and an
invariant distribution play important roles. In this paper we explore various forms of these concepts and
show how they occur in the study of controllability, observability and decoupling of nonlinear systems.

Key words, invariant foliation, invariant distribution, nonlinear controllability, nonlinear observability,
nonlinear decoupling

1. Introduction. Through the work of many researchers over the past decade it
has become clear that concepts from differential topology such as foliation and invariant
distribution play a crucial roll in the study of nonlinear systems. These tools were first
used in the study of nonlinear controllability and later observability. More recently
they have arisen in the study of decoupling and linearization via feedback.

As their use has widened, a greater precision in their application has become
necessary. This paper is an attempt at that precision at least as far as my own joint
work with R. Hermann [12], A. Isidori, C. Gori-Giorgi and S. Monaco is concerned
[7]. These papers use differential topological tools to extend to nonlinear systems the
geometric approach to linear systems. Although they are quite successful, they do not
have the same logical simplicity and elegance of the corresponding linear theory. This
reflects a basic fact of mathematical life, nonlinearities are much messier to deal with,
one usually must make strong regularity assumptions and distinguish between a much
larger range of phenomena when in their presence.

In this paper we introduce the basic concepts needed for an understanding of
controllability, observability and decoupling of nonlinear systems. Some of the
theorems contained herein build on and are refinements of those appearing in [12]
and [7]. By slightly modifying some definitions we achieve a synthesis of the previous
work. From this firm platform we are able to treat controllability distributions in a
precise manner and prove several interesting results.

2. Mathematical preliminaries. Throughout this paper we consider nonlinear sys-
tems of the form

(2.1a) : =f(x, u)= g(x)+ g(x)u,

(2.1b) y=h(x),

(2.1c) x(0) x

where x denotes local coordinates on a smooth n-dimensional Hausdorff, paracompact
connected manifold M, u R", y RP, gO and g l,..., g,,, the m columns of g, are
local coordinate descriptions of smooth vector fields globally defined on M. Smooth
means either c or co (analytic). The definitions of differentiable manifold, etc. can
be found in Boothby [18] or Spivak [22].
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Of course (2.1) is a local description; diiterent descriptions of this type are valid
in different coordinate neighborhoods of M. As far as possible we use local coordinate
notation; hopefully this will make the paper accessible to a wider audience.

We denote by T,M and Tx*M the tangent and cotangent spaces at x, and by TM
and T*M the tangent and cotangent bundles. The ring of smooth real valued functions
on M is denoted by (M), the space of smooth vector fields (sections of TM) by
(M) and the space of smooth one forms (sections of T’M) by *(M). (M) and
*(M) are real vector spaces and (M) modules, and (M) is a Lie algebra under
the Lie (or Jacobi) bracket. Locally vector fields are represented by column n vectors
and one forms by row n vectors. The bilinear pairing between a one form to(x) and
a vector field X(x) is then the multiplication of x n and n matrices. It defines a
function denoted by (to, X) (M).

A vector field X defines a flow (t, x), the solution of the differential equation

--( t, x)= X(CP( t, x)),
0t

(0, x) =x.

For each x, (t, x) is a curve defined for in some open interval depending on x.
For some x the curve may escape from the manifold in finite time and hence not be
definable for all t. We use the phrase "for all t" to mean "for all where defined".
For each the map x (t, x) is a smooth diiteomorphism where defined.

A vector field X or its flow (t, x) acts on functions q (M), vector fields
Y (M) and one forms toe *(M). The right side of the following are local
coordinate descriptions which can be taken as the definitions of the symbols to the left.

(2.2a) Adx(O)(x):=(t)*o(x):=o((t,x)),

(2.2b) Lx(q)(x) := (dq, X)(x),

o(-t, z)(2.3a) Ad:(Y)(x) := ((- t). Y)(x):= Y((t, x)),
OZ z=,( t, x)

(2.3b) adx(Y)(x):= LxY(x):=[X, Y](x):=-O-x(X)X(x (x)Y(x),

Ot( t, z)
(2.4a) Ad(to)(x) := (t)*to((t, x)):= to((t, x))

Oz

(2.4b) adx(to)(x) := Lx(to)(x) := (x)X(x) +to(x) (x)
\ Ox -x

We use’ to denote transpose and O/Ox to denote partial differentiation. It is always
applied to a column vector yielding a matrix with the row and j the column index
as in

0 o--
ox (X) :=

\ox
(X)
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Equation (2.3b) defines the Lie bracket of vector fields. It is standard mathematical
notation to denote (2.2b) by Xtp or X(p). We shall not employ these but instead use
Xp for X multiplied by p.

The operator Lx of the above formulas is called Lie differentiation for

d
Ad:(tp)(x),(2.5a) Lx(q)(x) =- ,=o

d
Ad’x(Y)(x)(2.5b) Lx( Y)(x)

,--o

d
Adk-(Y)(x).(2.5c) Lx()(x)=

The following Taylor series expansions are called Lie series:
k

(2.6a) Adc(p)(x) E 7s_,Lkx(O)(x),
k+0

k

(2.6b) Adc(Y)(x) o adkx(Y)(x),

k

(2.6c) Ad(o))(x) k,=o-.!Lkx(cO)(X),
where ad kx(Y) [X, ad kx-’( Y)].

Further identities are

(2.7a) Ad:((to, Y))(x) (Adc(to), Ad:(Y))(x),

(2.7b) Lx(tO, Y)(x)=(Lx(tO), Y)(x)+(to, Lx(V))(x),

(2.8a) Ad([ Y, Z])(x)=[Ad’x(Y),Adtx(Z)](x),

(2.8b) [X[Y, Z]](x)=[[X, Y]Z](x)+[Y[X, Z]](x) (Jacobi identity),

and

(2.9a) Ad(do)(x) d(Ad:())(x),

(2.9b) Lx(d)(x) d(Lx(q))(x).

A fundamental geometric concept in the study ofnonlinear systems is the following.
DEFINITION. A distribution is a submodule of (M). We denote by D(x) the

subspace of TM obtained by evaluating the elements of at x. The union D=
xM D(x) of these subspaces is called the singular subbundle of TM associated to

9. (By definition all singular subbundles of TM are associated to distributions.) If D
(or 9) is nonsingular, i.e., the dimension of D(x) is constant over all x, then D is a
subbundle of TM (in the usual sense of the term).

A local frame for (or D) on an open set q/c M is a family of vector fields
{X {xX,’.., X } such that for each x 0 the vectors (x),-.-, X(x)} are a basis
for D(x) (clearly D is nonsingular iff around each M it admits a local frame).
Given a singular subbundle D associated to a distribution 9, we can define a second
distribution F(D) as the set of all smooth vector fields X (M) such that X(x) D(x),
x M. A distribution is complete if F(D). (After this section all distributions
will be assumed to be complete, and we shall use the term distribution to mean complete
distribution.)
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For nonsingular D, the distinction between D and 9 (or F(D)) is not particularly
important and a certain amount of sloppiness is tolerable. However, one must be much
more careful when considering the singular case. For example, the collection of all
distributions on M forms a lattice partially ordered by inclusion under the operations
of submodule addition and submodule intersection. If 9 l, 92 are complete distribu-
tions, D l, D2 their associated singular subbundles and D the singular subbundle
associated to 91fq 92 then

D(x) (Dl(x) D2(X))
but the inclusion can be proper for some x. For example, for M 2 let @l be the
span of O/Oil and 92 be the span of O/Oil + x20/Ox2 (span always means over of(M)).
Then 91f-1 92 contains only the zero vector field so D(x)= {0}.

No such difficulty occurs with sums; if D is the singular subbundle associated to
91+ 92 then D(x) Dl(x)+ D2(x).

DEFINITION. An integral submanifold L of is a connected, immersed submani-
fold L c M such that for each x L, TxL= D(x). A distribution @ is integrable if its
maximal integral manifolds define a partition of M. This partition is called a foliation
and the maximal integral submanifolds are its leaves.

DEFINITION. A distribution 9 is Adx invariant if Ye 9 implies Adx(Y) 9 for
all t. A distribution 9 is adx invariant if Y implies adx(Y)e 9.

Clearly from (2.5b), Adx invariance implies adx invariance but the converse need
not hold. If everything is then Lie series arguments (2.6b) imply the converse. If
9 is nonsingular then an argument of Hermann [16] also implies the converse.

DEFINITION. A distribution is involutive if 9 is adx invariant for every X 9.
The basic integrability result is next.
THEOREM 2.1 (Sussmann [10]). A distribution 9 is integrable iff9 is Adx invariant

for every X 9.
This leads to the following corollaries.
COROLLARY 2.2 (Frobenius [18]). For nonsingular distributions integrability and

involutiveness are equivalent.
COROLLARY 2.3. (Hermann 16], Nagano 17]). For C" distributions integrability

and involutiveness are equivalent.
DEFINITION. A point x is a regular point of the distribution 9 if the dimension

of D(x) is constant in a neighborhood of x otherwise it is a singular point.
It is easy to see that the regular points of form an open and dense submanifold

of M.
COROLLARY 2.4. An integrable distribution 9 is involutive. An involutive distribution

9 restricted to the submanifold of its regular points is integrable.
The Adx and adx invariant distributions form lattices, while the integrable and

involutive distributions form semilattices (closed under intersections but not sums).
There exist minimal integrable and involutive distributions containing a given distribu-
tion 9, called the integrable and involutive closures of 9. From (2.Sa,b) it follows that
if 9 is Adx or adx invariant then so is its involutive closure.

DEFINITION. A codistribution is a submodule of *(M). (Classically codistribu-
tions are called Pfaffian systems.) Associated to each codistribution is a family of
subspaces E(x)c T*M obtained by evaluating the one forms of at x. The union
E U E (x) is a singular subbundle of T*M. Nonsingularity, local frame, completeness,
etc. are all defined analogously.

There is a duality between distribution and codistributions. To each distribution
@ (codistribution g’) there is a codistribution 9 +/- (distribution z) called its annihilator
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defined by

One has the inclusion

+/-= {to *(M): (to, X)=O, VX },
_L {X (M): (to, X) O, Vto ’}).

which may be proper unless 9(g) is nonsingular and complete. Moreover

(’+)- "n " ((’+ )- $"+/-U $’’),

+ n (’+ c (’ n )).
If , 2 and ln (, 2 and n 2) are complete and nonsingular then the
last inclusion is an identity.

DEFINITION. A codistribution is Adx (adx) invariant if implies Adx()
Vt (adx() ).
LEMMA 2.5. If the distribution is Adx(adx) invariant then the codistribution

is also. If the codistribution is Adx (adx) invariant then the distribution is also.
Proo Suppose is Adx invariant, and Y ; then Ad (Y) . Using

(2.7a) gives

(Ad’ (to), Y)= (Ad’x x(to), Adx (Adc’(Y))) Ad.((to, Ad’ (Y))) 0,

so Ad:(to)e - and @- is Adx invariant. Suppose is adx invariant, to e 9 +/- and
Y e @ then Lx (Y) 9. Using (2.7b)

(Lx(to), Y)= Lx(to, Y)-(to, Lx( Y))= Lx(O)-0= 0

so Lx(to) 9 +/- and @- is adx invariant. The other assertion is proved similarly. QED
DEFINITION. A codistribution g is integrable if the distribution g+/- is integrable.
Let h:M -> P be smooth. We denote by (dh) the codistribution spanned by the

one forms dhi, i= 1,..., p. We denote by W(dh) the distribution which annihilates
(dh), (dh)= (dh)-.

LEMMA 2.6. (dh) is integrable.
Proof. By definition we must show that the distribution (dh) is integrable. By

Sussmann’s theorem this amounts to showing that (dh) is Adx invariant for every
X (dh). By Lemma 2.6 this is equivalent to showing that (dh) is Adx invariant
for every X (dh ).

From the definition

SO

Adx+’( dhi) Adx(Adx(dhi))

t=0

d
Adc(dhi)

d
d-;

By (2.5c) and (2.9b) this becomes

ADS+, d
x (dh,) Adx - t=O

Adx(dhi).

d
d-- Ad(dh,)= AdxLx(dh,) Adxd(Lx(h,)).

But X (dh) implies Lx (hi) 0 hence

Ad (dhi) dh,. qED
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3. Ads and ads invarianee. In the study of linear systems of the form

(3.1a) Ax + Bu,

(3.1b) y Cx,

(3. lc) x(0) x

the invariant subspaces of the matrix A play an important role. Suppose V R" is
such a subspace, i.e., AV

_
V. Then V is spanned by the real and imaginary parts of

a subset of eigenvectors and generalized eigenvectors of A. The invariant subspaces
are the modal subspaces of A.

The nonlinear generalizations of this are several.
DEFINITION. A distribution or codistribution is Adz invariant (adz invariant) if it

is Adf(.,u) invariant (adf(.,u) invariant) for each constant control u
Clearly Adf invariance implies adf invariance but not the converse unless the

distribution or codistribution is nonsingular or cg,. It is easy to see that adf invariance
is equivalent to adg invariance for j- 0,. , m. What is not so obvious, but follows
from Lemmas 3.2 and 3.3, is that Adf invariance is equivalent to Adg invariance for
j 0,. ., m. As one expects from the results of 2, the sum and intersection of Adz
or adz invariant (co) distributions is also, the involutive closure of an Ady or adz
invariant distribution is also and the annihilator of an Adz or adz invariant (co)
distribution is also.

Before we go any further let us relate these concepts to that of an invariant
subspace of a linear system (3.1). Let V be an invariant subspace, and define as
the set of vector fields on R" which take values in V. (We are using the canonical
identification of " with each of its tangent spaces TxR".) The associated subbundle
D is nonsingular with D(x) V (thought of as a subspace of Tx"). For each constant
control u " we obtain the vector field f(x, u)= Ax + Bu and corresponding flow
dp( t, x) eAt(x + I’o e-As Bu ds).

We claim that is Ads and adf invariant. By the above remarks it suffices to
verify that is Adg and adg invariant forj =0, , m. But gJ(x)= B (thejth column
of B), a constant vector field, and any basis for V considered as constant vector fields
defines a global frame for 9. Let v e V considered as a constant vector field in then

(3.2a) adgo(v) -Av, Ado(v)
(3.2b) adg(V) =0, Ado(v)= v, j= 1,..., m.

Since a frame for @ is invariant, it follows that all of @ is.
We refer to such a @ as a constant distribution on R" because it has a global

frame of constant vector fields but of course contains nonconstant vector fields. If
gJ is a constant vector field (such as B) and @ is a constant distribution then @ is
always mdg and adg invariant. Therefore one need only check the mdgo and adgo
invariance of constant distributions. This fact frequently leads to differences between
the formulation of a linear result and its nonlinear generalization as we shall see
throughout this paper.

We have just noted that for a linear system the constant distributions which are
Ads or ady invariant are precisely the invariant subspaces of A. One might ask whether
there are any nonconstant distributions which are invariant. If one restricts to nonsin-
gular distributions the answer is essentially no.

PROPOSITION 3.1. Suppose the linear system (3.1) is controllable and is a nonsin-

gular Adf (equivalently adf) invariant distribution for (3.1). Then is a constant

distribution, hence corresponds to an invariant subspace of A.
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Proof Let the dimension of be d and let X1, Xd be a local frame. By
assumption for j=0,. , m and k= 1,. , d

[gJ, X] 9.

Using the Jacobi identity (2.7b)

[[g’, gJ], Xk] [g’[g, Xk]]-[g[g ’, Xk]] ,
so @ is invariant under any bracket [gi, g]. By repeating this argument it follows that
@ is invariant under any multiple bracket [g,. [gJ.-,, gr]. .].

Now gO= Ax, g B(jth column of B) and

ado(gJ)=(-1)rArBj,

[g’, ad?(g)] O,

where i,j- 1,. ., m and r-> O. The controllability assumption implies that there are
n linearly independent vectors of the form AB. View these as constant vector fields
and denote them by y1, y.

Since each yk is a bracket of g’s, it leaves invariant, hence there exist functions
F such that

d

yk, X’] Y
i=l

Let Fk denote the d x d matrix (rj) and X the n x d matrix (X xa); we abbreviate
the above as

Y, X] xr.
We make a change of local frame for by choosing a d x d invertible matrix

valued function 3,, the new basis is the set of columns ..1,..., ..a of " X. We
seek a basis which commutes with yk, i.e.

0=[Yk, 2]=[Yk, X3,] Yk, X]3,+ XLvk(3,) X(Fk3, + Lvk(3,)).

Hence 3’ should satisfy the linear partial differential equation

Lye(3’)

There is a local solution to this equation if the integrability (mixed partial)
conditions are satisfied. Since yk, yt] 0 these are

which reduce to

or

LyLy,( 3") Ly,Ly( 3")

Lv,(r e)

r,r )v r r’)
But these follow from the Jacobi identity (2.8b) and the linear independence of the
columns of X for

yk[ yl, X]] -[ Y’[ Y, X]] [[ Y, Y’]X] O,

yk, XF] y, xrk O,

x(r r + (r’) r’r 0.
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Hence we can find 3’ such that the vector fields )1, .d of the new local
frame for commute with the constant vector fields Y, , Y" which span ". From
this one can conclude that ., ..d are constant vector fields so locally has a
constant frame. On the common domain of definition of two such constant frames,
the change of frame matrix must be constant so any Such constant local frame extends
to a constant global frame for 9. QED

The statement that AVc V can be interpreted as the dynamics (3.1a)
infinitesimally leaves the directions of V invariant. The statement that eAtVc V can
be interpreted as the flow of (3.1a) leaves the directions of V invariant. Both these
statements have direct nonlinear generalizations. If is ady invariant then the dynamics
(2.1a) infinitesimally leaves the directions of @ invariant. If is Ady invariant then
the flow of (2.1a) leaves the directions of invariant.

The constant distribution on R associated to any subspace V ofR is integrable,
the leaves of the foliation that it induces are the cosets x+ V for x ". If V is an
invariant subspace of A then the flow of (3.1a) for any fixed control u(t) carries cosets
into cosets. A concrete way of seeing this is to choose local coordinates x () such
that

V- {x" x, 0}.

In these coordinates the dynamics (3.1a) takes a block triangular form.

The coset space /V is coordinatized by X and since X evolves independently of
x2, the dynamics passes to this space.

In the nonlinear context a similar thing happens. Suppose @ is a nonsingular,
involutive Ady (equivalently ady) invariant distribution. Then locally one can choose
coordinates x (,) so that the leaves of the foliation induced by @ are given by
x constant. In these coordinates the dynamics again assumes a triangular form

(3.4)
1-----fl(Xl, U)---- g(x,)+ gl(Xl)U,

2 =fz(x,, x2, u)= g(x,, x2)+ g2(xl, x2)u,

and the flow for any fixed control u(t) carries leaves into leaves. If the foliation induced
by is regular, i.e., the space of leaves can be given a manifold structure, then this
space is locally coordinatized by x and the dynamics passes to it. See [1] for details.
We close with some technical results regarding Adx invariance which we referred to
in the beginning of this section and which will be used later on.

LEMMA 3.2. Suppose is an Adx invariant distribution and c g; then is Ad(cx)
invariant. Suppose is an Adx invariant distribution, X and q ST(M); then is

Ad(x) invariant.
Ad(x) x.Proof The first statement follows immediately from the identity Ad"’

As for the second let z(t, x) be the solution of

0
-(t, x)= (((t, x), x),
ot

(0, x) =0,
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where @(t, x) is the flow of X. Define (t, x) @(r(t, x), x); then q(t, x) is the flow
of qX for

a(t,x) a ar
o-t o( ,( t, x), x)-g( , x)

x (a,((t, x), x)), ((-(t, x), x))

and

x(,(t, x)), (,I,(t, x))

t,(o, x) (r(o, x), x) (o, x) x.

Now if Y @ then by (2.3a)

Ad(.x)(Y)(x) --z (- t, z) Y(*( t, x))

-(-(t,z),z)V(z)
Oz

=Ad:(Y)(x)
O

z)
OZ

0-7(-, (t, z) V(z)

where z q(t, x) (r(t, x), x) and r r(t, x).
Since OdP/Or(-r, z) X(x) D(x) it follows that Ad[x) Y @. QED
LFMMA 3.3. Suppose @ is Adx, invariantfor 1,2. Then @ is Ad(x,+x 2) invariant.

Proof. Let u(t)= (ut(t), u2(t)) be a bounded measurable function. Let @u(t, to, x)
be the time dependent flow of the time dependent vector field Xu(t,x)=
X’(x)u,(t)+ X2(x)u(t), i.e.

d
(3.5a) d---tdPu( t, to, x) X,( t, ( t, to, x)),

(3.5b) to, to, X) X.
By standard results from differential equations, for each tl, the map Xo-

,(t, to, X) is a local diffeomorphism. If uk(.) converges to u(.) in the weak L
topology on [to, tl] then ,k(tl, to, o) converges to ,(q, to, o) uniformly as small
compact subsets. Moreover each of the derivatives does also.

@ is Adx, invariant if[ the flow i of X carries the vector field of @ back into
@, i.e. if Y@ then (t).Y@. Let uk(.) be equal to (2,0) and (0,2) on intervals
of length 1/k; then u k converges weakly to u(t)=(1, 1). By assumption ,k(tt, to). Y
@ for all to, t and Y @. By continuity ,(t, to). Y @,hence @ is Ad(x,+x 2) invariant.

Remark. One could define Ad and ad invariance with respect to time dependent
vector fields such as Xu(t, x). By modifying the proofs of the above lemmas one can
show that is Adx. (or adx.) invariant for any bounded measurable u(t) if[ @ is
Adx, (or adx,) invariant for all i.

LEMMA 3.4. Suppose is Adx, invariantfor 1, 2. Then is Adz invariant where
Z Ad "x ’(X) for any 7".

Proof Let (t, x) denote the flow of X and define

(3.6) (t, x)= q’(-r, @2(t. dO’(r, x))).
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Since

(t, X) (I)’ (--7"),X2((I)2( t, (I)l( l, x)))

’(-),X(’(, ’I’(t, x)))

Z(’I’( t, x)),

q(0, x) x,

it follows that is the flow of Z. But then

(t), Y ’(-r),2(r),’ (r), Y,

hence Y implies (r),Y @. QED

4. Nonlinear controllability and observability. In this section we review the basic
concepts of nonlinear controllability and observability because they are needed in the
study of disturbance decoupling and noninteracting control and they are nowhere
treated in an appropriate form. The closest reference is our joint work with Hermann
12] but we must apologize for the somewhat confusing terminology that we introduced

there. We hope this section rectifies the situation.
The main difficulty in passing from linear to nonlinear is that typically there are

several reasonable nonlinear generalizations of a single linear concept. The appropriate
choice depends on the context.

Let 0// be an open connected subset of M and T a nonnegative real number.
DEFINITION. A point x r is accessible from x at time T if there exists a bounded

measurable control u(t) generating a trajectory of (2.1) x(t) 71 for t[0, T] such
that x(0) x and x(T) x r. The set of all sets x r, a// accessible from x at time T, is
denoted by sq(x, T, ). If a// is suppressed, M is to be understood as in sg(x, T)=
(Xo, T, 0//). If T is suppressed, the union over all T -> 0 is understood as in sC(x, 2/)
U ro se(x, T, ).

DEFINITION. The system (2.1) is controllable if s(x) M for every x e M. The
system (2.1) is locally controllable if restricted to every open connected subset 07/ of
M, (2. is controllable, i.e., s(Xo, a//) / for every x e 0-//c M.

It is apparent that local controllability implies controllability but not vice versa.
We shall use the modifiers local and locally to mean that a property holds for (2.1)
restricted to every open connected subset of the state space and hence a local property
always implies that property. These definitions capture our intuitive idea of controllabil-
ity and local controllability but unfortunately they are extremely difficult to work with.
Deciding when a nonlinear system is controllable or locally controllable is generally
a difficult task. We are more interested in controllability as one half of what constitutes
a minimal realization, therefore we introduce weaker notions. The time reversible version
of (2.1) is

(4.1a) 2 =f(x, Uo, u)= g(x)uo+ g(x)u,

(4.1b) y=h(x),

(4. lc) x(0) x

DEFINITION. The system (2.1) is reversibly controllable if (4.1) is controllable. The
system (2.1) is locally reversibly controllable if (4.1) locally controllable. Let
sg(Xo, T, ) be the set of points accessible in o-// from x along trajectories of (4.1).
Equivalently the system (2.1) is (locally) reversibly controllable if for every Xo (and
0u), s(xO M(s(xo, 0U)=
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Clearly (local) controllability implies (local) reversible controllability but not vice
versa. Throughout we use the modifiers reversible and reversibly to mean that a property
holds not for (2.1) itself but for its time reversible version (4.1), hence a property
generally implies the corresponding reversible property.

These definitions emphasize one aspect of what one expects in a controllable
system, the ability to steer from one point to another; but there is another: namely,
that there are no uncontrollable modes, no coordinates of the state space which are
unaffected by the control. The following are attempts to characterize this.

DEFINITION. The system (2.1) has the (local) accessibility property if M(x)
(M(x, R)) has nonempty interior for every x M (and open neighborhood R). The
system (2.1) has the (local) reversible accessibility property if (4.1) has the (local)
accessibility property.

THEOREM 4.1. If the system (2.1) has the accessibility property then it is reversibly
controllable. The system has the (local) reversible accessibility property iff it is (locally)
reversibly controllable. The system has the local accessibility property iff it is reversibly
controllable.

Proof Reversible accessibility is an equivalence relation which partitions M.
Suppose the system has the accessibility property so that M(x) has nonempty interior.
This implies that M(x) (the set of points reversibly accessible from x) is an open
subset of the connected manifold M, hence M(x) M. The proof of the second
assertion is straightforward and the proof of the third is found in Hermann-Krener
[12, Thm. 2.1]. QED

In summary the logical implications between various forms of controllability are

local controllability controllability

local accessibility property accessibility property

local reversible controllability reversible controllability

local reversible accessibility property reversible accessibility property.

One would like a simple criterion to decide when a system is controllable or not.
Unfortunately none seems to exist. These are however relatively straightforward criteria
for some of the others. We denote by (f) the distribution spanned (over (M)) by
{f(., u): u constant}. Let (Adf]5(f)) and (adcl(f)) denote the smallest Adr and adf
invariant distributions containing (f). These are the Adr and adr controllability
distributions.

By Lemmas 3.2 and 3.3 the former is spanned by terms of the form

11(4.2a) Adtc Adc,f
where k _>-0 and fJ(x)=f(x, uj) for u constant. The latter is spanned by terms of the
form

(4.2b) adr. adPf

and by the Jacobi identity (2.8b) is involutive. Lemma 3.4 implies that the former is
integrable and is the integral closure of the latter. The next result is related to a theorem
of Chow [21 ].
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THEOREM 4.2 (Sussmann [11]). The system (2.1) is reversibly controllable iff
(4.3) (Adyl (f)) (M).

While this is very elegant, the Ady controllability distribution is not always easy
to compute so the following can be more useful.

THEOREM 4.3 (Hermann-Krener 12]). The system (2.1) is locally reversibly control-
lable if
(4.4) (ad.fl (f)) (M).

If (2.1) is locally reversibly controllable and D is the subbundle of TM associated to the
adz controllability distribution then on an open dense subset of M

(4.5) D(x) TxM.
Equation (4.5) is usually referred to as the controllability rank condition at x. For

a linear system (3.1) the Ady and ady controllability distributions both equal

{Ax, ArBj" r=0,. ., n 1,j 1,. ., m}.

For x- 0 the controllability rank condition (4.5) reduces to the familiar

Rank B, AB, , A B) n.

Now we turn to observability where again we follow [12] in spirit but change
terminology considerably. In what follows always denotes an open subset of M.

DEFiNiTiON. Two points x and x are 0?/distinguishable if there exists a bounded
measurable input u(t) generating solutions x(t) and x(t) of (2.1 a) satisfying xi(0) x
such that xi(t) 71 for all t[0, T] and h(x(t))# h(x2(t)) for some t[0, T]. We let
5(x, ) denote all the points x 07/ which are not 0// distinguishable from x. If 0//

is suppressed, M is understood as in 5(x) 5(x, M).
DEFINITION. The system (2.1) is observable if 5(x) {x} for every x. The system

(2.1) is locally observable if for every open neighborhood 0// of x, (x, )= {x}.
The system (2.1) is (locally) reversibly observable if (4.1) is (locally) observable.

All these definitions require that x be distinguishable from every other point of
M. The local ones require that x and x be distinguishable by local experiments.
Frequently it may suffice that one be able to distinguish a point from its neighbors
either by local or global experiments. Therefore we introduce additional terminology
which was referred to as (local) weak observability in [12].

DEFINITION. The system (2.1) has the distinguishability property if every x has
an open neighborhood V such that 5(x) fq V= {x}. The system (2.1) has the local
distinguishability property if every x has an open neighborhood V such that for every
open 0// neighborhood of x, (x, ?/) V={x}. The system (2.1) has the (local)
reversible distinguishability property if (4.1) has the (local) distinguishability property.

The basic implications between these definitions are as follows.

local observability observability

Ioc. rev. rev. observability
observability

loc. dist. prop. dist. prop.

Ioc. rev. dist. prop. =, rev. dist. prop.
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If one makes a controllability assumption more implications follow; perhaps the most
interesting is

THEOREM 4.4. If (2.1) is locally reversibly controllable then the local distinguishabil-
ity property and the local reversible distinguishability property are equivalent.

We defer the proof to the end of this section.
Let (dh) denote the codistribution spanned by dhi, i= l,...,p and let

(Adz[ (dh)) and (adz[ (dh)) denote the smallest Adf and adf invariant codistributions
containing (dh). We refer to these as the Adz and adz observability codistributions.
They are the spans (over o(M)) of terms of the form

(4.6a) Adtf Adtf’L dhi

and

(4.6b) adz adz, dh

respectively. By (2.94, b) the exterior differential operator d can be pulled to the front
in (4.6) so that by Lemma 2.6 these codistributions are integrable.

THEOREM 4.5 (Goncalves [13]). The system (2.1) has reversible distinguishability
property iff
(4.7) (Adzl(dh)}= g*(M).

THEOREM 4.6 (Hermann-Krener [12]). The system (2.1) has the local distinguisha-
bility property if
(4.8) (adzl (dh)) *(M).

If (2.1) has the local distinguishability property and E is the subbundle of T*M associated
to the adf observability odistribution then on an open dense subset ofM
(4.9) E(x) T* M.

Equation (4.9) is usually referred to as the observability rank condition of x. For
a linear system (3.1) the Adz and adz observability codistributions are the o(M) span
of the rows of the familiar observability matrix,

C
CA

Proof of Theorem 4.4. Clearly the local distinguishability property implies the
local reversible distinguishability property. To see the converse notice that the adz
observability codistribution for (2.1) and (4.1) are the same. Hence by Theorem 4.6,
the observability rank condition holds on some open dense subset F of M. Therefore
(2.1) restricted to has the local distinguishability property, every x and open
neighborhood is such that s(x, ) meets . But this implies x can be distinguished
from its neighbors. QED

5. (Adz, g), (adz, g) and local (adz, g) invariance. In the geometric approach to
linear multivariable systems, as found in Wonham [15], the concept of an (A, B)
invariant subspace plays a crucial role. Recall a subspace Vc R is (A, B) invariant
if one of two equivalent conditions is satisfied,

(5.1) AVc V+(B)
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((B) denotes the subspace spanned by the columns of B) or there exists an m n
matrix F such that

(5.2) (A + BF) V V.

For reasons that will become apparent later we refer to these as the local and
global characterizations of (A, B) invariance. The global characterization (5.2) can be
interpreted as modifying the dynamics (3.1a) by linear state feedback

(5.3) u Fx + v

so as to obtain the new system

(5.4) 2 Ax + By

where , A+ BF. The subspace V is an invariant subspace of the new dynamics.
When working with linear systems it is convenient to restrict oneself to constant

distributions and linear feedback laws (5.3). We could allow a slightly more general
form, say

(5.5) u Fx + Gv

but as far as (A, B) invariance is concerned it is not needed because every constant
vector field leaves every constant distribution invariant. When dealing with (A, B)
controllability subspaces, feedback laws such as (5.5) naturally arise.

A nonlinear feedback (or feedback) is a pair of matrix valued functions a and/3
on M; a(x) and/3(x) are m 1 and m m matrices smoothly varying in x. They are
used to define the feedback law

(5.6) u=a(x)+(x)v

which results in the modified system

(5.7) x= f(x, v)= (x) + g(x)v

where g(x)= g(x)+ g(x)a(x), g(x)= g(x)(x) and gi(x)= g(x)J(x) where/3J(x)
is the jth column of fl(x). It is convenient to combine these into an (m+ l) (m+ 1)
matrix

and reexpress this as

(5.9) f(x) =f(x)y(x)

where f(x) and f(x) are n (m + matrices

(5.10) f(x) (g(x), g(x)), ](x) ((x), (x)).

Hopefully this second use of the symbols f and f will cause no confusion. If there is
no drift term g, then the feedback ), reduces to/3.

DEFINITION. A distribution @ is Qmdf, g) invariant~ ((adf, g) invariant) if there
exists a feedback y such that is Ad f invariant (ad f invariant). If 3’ is invertible
then the distribution is invariant with full control otherwise it is invariant with partial
control.

Unless otherwise stated "invariance" means "invariance with full control". This
issue does not arise in the linear theory, because for reasons mentioned above,
invariance always means with full control.

(1 0)(5.8)
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DEFINITION. A distribution 9 is locally (ads, g) invariant with full control if and
for every constant u and for every X 9

adf( ., u)(X) 9 + (g)

where (g) denotes the distribution spanned by the columns of g.
A distribution 9 is locally (adf, g) invariant with partial control if there exists a

feedback y which is not necessarily invertible such that 9 is locally (ad, ) invariant
where f =fy gfl. Again unless otherwise stated "local (ads, g) invariance" assumes
"with full control".

It is not hard to see that (Ads, g) invariance implies (ads, g) invariance which in
turn implies local (ads, g) invariance. Before we delve further into this area we need
some additional terminology.

DEFINITION. A family of distribution 91, , 9" separates the controls if there
exists locally an invertible feedback y where/3 has been partitioned into submatrices
/3 =(/3, fl+l) such that

(5.1 la) D(x) f’l G(x)= G(x), tr= 1,..., Ix,

(5.11b) ., D(x) fq (x) ={0),

where G, ( and D are the subbundles of TM associated to the distributions (g),
() and 9 respectively. A family of distributions completely separates the controls
if there exists an invertible feedback 3/with/3 (fl,-..,/3") such that (5.1 la) holds.
Such feedbacks 3/are said to be (completely) separating for the family of distributions
9, 9". A distribution 9 separates the controls if considered as a one element
family of distributions it separates.

Notice a does not play a role in these definitions.
LEMMA 5.1. If 9 is nonsingular, involutive and locally separates the controls then

the following are equivalent"
(a) 9 is locally (adf., g) invariant.
(b) There exist an.open cover {0//p} ofM and sep.arating feedbacks 3/ defined on

all such that 9 is ad ff invariant on ll where ff =f3/P (in other words, locally 9 is

(ads, g) invariant ).
(c) There exist an open cover {a//} of M and separating feedbacks 3/P defined on

all such that 9 is Adf invariant on all (in other words, locally 9 is (Ads, g) invariant).
Proof. The equivalence of (b) and (c) follows from the nonsingularity of 9. It is

trivial to verify that (b) implies (a). In [3] it is shown that (a) implies (b) using the
stronger hypothesis that 9 fq (g) and (g) are nonsingular. But the proof only uses
this to show that 9 separates the controls. Moreover the feedback so constructed is
easily seen to be separating. Similar results are found in [4]. QED

This lemma explains our terminology, in particular why we refer to (5.1) and (5.2)
as the local and global characterizations.of (A, B) invariance. For a discussion of the
topological obstructions to global invariance we refer the reader to [20].

LEMMA 5.2. If9 is (Ads, g) invariant or (ads, g) invariant then so is the involutive
closure of 9. If 9 is locally (ady, g) invariant then so is the involutive closure of . If
9 and 92 are locally (ads, g) invariant then so is 9+ 92, hence the set of locally
(adf, g) invariant distributions forms a semilattice under inclusion and addition.

Proof Since (Ads, g) or (ads, g) invariance is equivalent to Ady or ady invariance
for some feedback modified dynamics f, the first statement follows from (2.7). The
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second statement is proved in [3] and the third follows directly from the definition of
local (ady, g) invariance. QED

Remarks. The sum and intersection of (Ady, g) (or (ady, g)) invariant distributions
and the intersection of locally (ady, g) invariant distributions need not be invariant in
the same sense. However the sum of locally (ady, g) invariant distributions is again
locally (ads, g) invariant. This semilattice structure makes them convenient to work
with. In particular it implies that in any distribution @ there exists a unique maximal
locally (ady, g) invariant distribution which we shall denote by @*(@). If 9 is involutive
then so is 9"(9). These remarks are predicated on the assumption of invariance with
full control. They must be modified when considering invariance with partial control.
In particular there may be distributions contained in 9 and properly containing 9"(9)
which are locally (ady, g) invariant with partial control.

Briefly we discuss the dual formulation of the above, for it is useful in computing
maximal locally (ady, g) invariant distributions.

DEFINITION. A codistribution is (Ady, g) invariant ((ady, g) invariant) if there
exists a feedback 3’ such that is Ad invariant (ad invariant). A codistribution
is locally (ady, g) invariant if for every constant u and every to ’ f’)(g)

L(.,,)(to) .
Recall (g) is the codistribution of one forms which annihilate the columns of g.

LMMA 5.3. If the distribution 9 is (Ad, g) invariant ((ads, g) invariant) then the
codistribution 9" is (Ady, g) invariant ((ads, g) invariant). If the codistribution is

(Ady, g) invariant ((ads, g) invariant) then the distribution - is (Ads, g) invariant

((ads, g) invariant). Ifthe distribution 9 is locally (ads, g) invariant then the codistribution
9" is locally (ads, g) invariant. If the codistribution is locally ad, g) invariant and
and f3 (g) are nonsingular then the eodistribution +/- is locally (ads, g) inariant.

Proof. The first two assertions are almost immediate. As for the third let ca

9 VI )(g) 9 + (g))- and X 9’, then

(5.12) 0 Ls(.,,)(to, X) (Lz(.,,)(to), X) + (to, adz(.,,)(X)).

Since 9 is locally (ad, g) invariant the second term on the right is zero hence
Ly(.,,)(to) e 9-The last assertion follows in a similar fashion. Let to e (- + (g))+/- ffl W(g)
(by the nonsingularity of ’) and X e . Since ’ is locally (ads, g) invariant the first
term on the right of (5.12) is zero hence adf(., u)(X)e(8"+(g))+/-= q+(g)
by the nonsingularity of (+ (g))- (g). QED

In disturbance decoupling and other problems one wishes to find 9*((dh)), the
maximal locally (ad, g) invariant distribution in (dk). We now present an algorithm
from [1, p. 342] for the computation of 9"(9) for an arbitrary distribution 9 which
works when all the distributions and codistributions involved in the calculations are
nonsingular. We then specialize to compute 9*((dk)). When there is no possibility
of confusion we shall abbreviate, 9*= 9*(Y((dh)).

Let 9 be an arbitrary distribution and .(9) be the minimal locally (ady, g)
codistribution containing 9 +/-.

Define an increasing sequence of codistributions by

o 9+/- and k+l k -Jr- Lf(k (g))

where the second term on the right denotes the if(M) span of all one forms like LgJ(to)
for j 0,. , m and to k f’) Yg(g).
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THEOREM 5.4 (invariant subdistribution algorithm (ISA)). If there exists a k. such
that k, k.+ then (9) k.. If in addition gk. and k. fq Y((g) are nonsingular then
*() ,.

Proof. By definition ,(9) contains go 9 +/- and is locally (ady, g) invariant. A
simple induction shows that g,(9) contains gk for all k. If gk, gk,+ then g’k, is
locally (ady, g) invariant and clearly minimal.

If gk, and gk, fq (g) are nonsingular then g, is a locally (ady, g) invariant
distribution by Lemma 5.3. By duality it is the maximal such distribution contained
in 9. QED

Computation of g*= 9*((dh)) by ISA.

g’o (dh )+/- dh dh, dhpo

where po p. Let Ao(x) be the Po m matrix whose ith, jth element is (dhi, g)(x). Let
Bo(x) be the Po vector whose ith element is (dhi, g)(x). Assume the rank of Ao(x)
is constant and equal to ro. By rearranging h,. , hpo if necessary we assume that the
first ro rows of Ao(x) are linearly independent at each x. Choose m lad(X) and
invertible m rn/3o(X) such that

(5.13a) Ao(x)to(x)+Bo(x)=(O),
(5.13b) Ao(x)flo(X)

did

where qo and qo are arbitrary (Po-ro) and (Po-to) ro matrix valued functions.
Define = gO+ gad, ,o gild (,, g) where is the first ro vector fields of o

and o2 the last m to. From the functions which are the entries of q and qo if (5.13a, b),
choose a maximal set whose differentials are linearly independent at each x mod o.
Call these hpo+,... hp,. We claim that {dhl,"’, dhp,}.

By definition 1 o+Lf(oO((g)), but a straightforward calculation shows
that this is the same as o+ Lyo(O (g)) where

fo =f,o, 3’0
O0 /{30

because To is invertible. From (5.13b) we see that

(5.14a) dh, Z (g), i= 1,..., ro,

ro
(5.4b) dh,- Y 4,o, dh (g), i= to+ 1,..., Po,

k=l

so gl is the sum of g’o and the Lie derivatives of (5.14b) by Lyo, i.e.

Lyo( dh, ,6o,dh) LZo( dh,) Y, Lyo( 4oi)dh + qoiLyo(dh).
But dhk o and

Lyo(dh)= dLyo(h)= d(O or )=0

for k= 1,..., to. Therefore is spanned by go and the entries of Lyo(dhi) for
i= ro+ 1,. ., Po. But the latter are either zero or the differentials of the components
of qo and o.

g2 is constructed in a similar fashion. Let A(x) be the pxrn matrix

(dhi, g)(x)B(x) be the pl x m vector (dhi, g}(x). Assume A(x) is of rank r and
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rearrange hro+l,""", hpo so that the first rl rows of Al(X) are linearly independent at
each x. Choose a l,/31, etc.

Notice that at each stage of this algorithm we obtain codistributions k spanned
by exact one-forms, hence they are integrable. The new feedbacks ak/l, /3k+l can be
obtained by suitably updating ak and ilk. Moreover ak, and ilk, are feedbacks which
leave 9" invariant. If rk,<m then we can partition k, gk, (1 ’*2k,,gk,) where
R(2k.) 9*qbR(g). We shall make use of this later on.

6. Disturbance deCOulling. Consider the nonlinear system

(6.1a) =f(x, u)+p(x)w= g(x)+ g(x)u+p(x)w,

(6.1b) y=h(x),

(6. lc) x(0) x

The additional input w(t) represents a disturbance which can be neither controlled
nor predicted. We assume it is a bounded measurable function taking values in R t.
The way it affects the dynamics is described by the vector fields which in local
coordinates are the columns of p(x).

DEFINITION. In the system (6.1) the disturbance is decoupled from the output if
for each bounded measurable u(t), the output y(t) does not depend on the disturbance
w(t). The disturbance decoupling problem (DDP) is solvable if there exists a feedback
y such that the disturbance is decoupled from the output for the feedback modified
system

2 =f(x, v)+p(x)w (x) + (x)v+p(x)w
(6.2)

g(x) + g(x)(a(x) + fl(x)v) + p(x)w.

The reversible disturbance decoupling problem (RDDP) is solvable if there exists
a feedback 3’ such that the disturbance is decoupled from the output for the time
reversible version of the feedback modified system

2= f(x, Vo, v)+p(x)w= ,(X)Vo+ ,(x)v+p(x)w
(6.3)

g(x)vo+ g(x)(a(X)Vo+ fl(x)v)+p(x)w.

Notice that in contrast with controllability and observability, reversible decoupling
implies decoupling rather than vice versa. Notice also that the solvability of the RDDP
for the original system implies the solvability of the DDP for the time reversible version
of the original system but is not equivalent to it. This is because in the former the
invertible feedback y must be of the form ( ) while in the latter any invertible
feedback is allowed.

The solvability of the DDP and generalizations involving dynamic output feedback
are treated at considerable length in [1], see also [2]. We would like to review some
of this work using the terminology introduced in this paper and also discuss the
solvability of the RDDP. We consider only the solvability of the DDP and RDDP
with full control. If a partial control solution is acceptable it can be thought of as full
control solution for the system with the unneeded controls deleted.

We state the basic results and defer the proofs to the end of the section.
THEOREM 6.1. The RDDP is solvable iff there exists an (Adf, g) invariant distribu-

tion such that (p) c c yg( dh ).
Every (Ady, g) invariant distribution is also (ady, g) invariant so the above theorem

implies that if the RDDP is solvable then there must exist an (adr, g) invariant
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distribution @ such that (p) c Yg(dh). Since Yg(dh) is involutive we can conclude
that there must exist such a which is involutive. But one can make a stronger statement.

THEOREM 6.2. Ifthe DDP is solvable then there exists an involutive (adf, g) invariant
distribution 9 such that p (dh ).

The converse of this theorem is not true as is shown by Example 6.6. Recall that
the (Adz, g) or (adz, g) invariant distributions do not form a semilattice while the locally
(adz, g) invariant ones do. We denote by 9" the maximal locally (adz, g) invariant
distribution in (dh), 9*= 9*((dh)). In 5 an algorithm for the computation of
9" was presented.

DEFINITION. The DDP (RDDP) is locally solvable if every xM has an open
neighborhood a// and a feedback y defined on which solves the DDP(RDDP)
restricted to

THEOREM 6.3. If the DDP is locally solvable then (p) 9*. If(p) 9" and
9" is nonsingular and separates the controls then the RDDP is locally solvable.

The proofs ofthe above depend heavily upon the following lemmas. (These lemmas
describe basic properties of (Adf, g) and (adz, g) controllability distributions, concepts
which will be introduced in the next section.) Let (Adf,p)l(p)) denote the minimal
Adz and Adp invariant distribution which contains (p). By Lemmas 3.2, 3.3, 3.4 and
Sussmann’s Theorem 2.1, this distribution is integrable. Let (Uo(t), u(t)) be a bounded
measurable input defined on [0, T] for the time reversible version (6.4) of (6.1),

(6.4) 97, f(x, Uo, u) +p(x)w g(x)uo + g(x)u p(x)w.

Let (x, T, Uo(t), u(t)) denote the set of points accessible from x at time T
along trajectories of (6.4) with (Uo(t), u(t)) fixed and w(t) varying over all bounded
measurable disturbances. Let x T- be the endpoint of the trajectory for w(t)= 0.

LEMMA 6.4. Let L be the leaf through xT- of the foliation induced by (Adf,p)[(p));
then 4(x, T, Uo(t), u(t)) L. Moreover for some piecewise constant control
Uo(t), u (t)), x x 7- and4(x, T, Uo(t), u (t)) is a neighborhood ofxo in the topology
of the leaf containing x.

Let (adCy.p)l (p)) denote the minimal ad and adp invariant distribution containing
(p). By the Jacobi identity (2.8b) this distribution is involutive. Let be an open
neighborhood of x and u(t) be a bounded measurable control defined on [0, T] which
generates a trajectory x(t) of (2.1) from x which lies in q/ for all [0, T]. Let
(x, T, , u(t)) be set of points accessible under (6.1) from x in o// at time T with
u(t) fixed and w(t) varying over all bounded measurable disturbances.

LEMMA 6.5. Let all be an open neighborhood of x on which (adf,p)l(p)) is

nonsingular, hence integrable. Let L be the leaf through x 7-; then M(x, T, all, u(t)) L.
Moreover there exists a piecewise constant control u such that M x, T, , u has
nonempty interior in the topology of this leaf

Next we give the proofs of these results and a counterexample to the converse of
Theorem 6.2.

Proof of Lemma 6.4. Without loss of generality we can assume that
(Adf,p)[(f, p))=(M) or in other words, with u(t) and w(t) as controls, (6.1) is
reversibly controllable. For if not, (Ady,p)l(f p)) is an integrable distribution and by
replacing the state space by the leaf of this distribution through x we obtain a reversibly
controllable system. The assumption of reversible controllability insures that 9
(Ad(f.p)l (p)) is nonsingular, for any x and xT- can be joined by a trajectory constructed
from the flows of gJ, j--0,. ., m and pk, k 1," ", 1. But if D is the subbundle of
TM corresponding to 9 then the Jacobian of these composed flows is an isomorphism
between D(x) and
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Now suppose (Uo(t), u(t)) and w(t) are bounded measurable functions on [0, T].
Let x(t) be the solution (6.4) and (t, s, x) the time dependent flow of (6.4) with
w(t) 0, i.e.,

OcI)( t, s, x) gO(( t, s, x))Uo( t) + g(( t, s, x))u( t),
Ot

(t,t,X)=X.

The mapping x--> (t, s, x) is smooth and its Jacobian carries D(x) onto D((t, s, x)).
Consider the trajectory Y(s) defined by

(s)=(T,s,x(s)).

Clearly (0) x (the endpoint of the solution of (6.4) with w(t) 0) and (T) x(T)
(the endpoint of the solution of (6.4) with w(t) as above). Moreover

d(s) O
o(7; s, x(s))(p(x(s))w(s))d---

hence is an element of D(Y(s)). The nonsingularity of implies Y(s) lies in the leaf
L of @ through x. Therefore x(T) Y(T) L and (x, T, Uo(t), u(t)) c L.

To prove the second assertion first we note that @ is spanned by expressions of
the form

Sk SI(6.5) Ad(f+p) Ad(f,+p,)p

where ft(x)= g(x)uo+ g(x)u and p(x)=p(x)w for some constants u, u, w and

s2. By rescaling uj, u2, w we can assume sj < 0 and fix the sum Y.. s2 arbitrarily.
Choose an expression of the form (6.5) which is not zero at x, and define piecewise
constant functions

(6.6) Uo(t)=Uo, u(t)=u, w(t)=w fort[b_,,b)

where tk T and b--b s2. Assume that y,k S2 =-T/2. Let x(t) be the solution of
(6.4) satisfying the terminal condition x(T)c. If we modify w(t) to w(t; e)

w’+w ift6[to, to+lel) ande>0,
(6.7) w(t;e)= w-w if t[to, to+le[)ande<O,

w(t) otherwise,

and let x(t, e) be the solution of (6.4) satisfying the initial condition X(to, e)= X(to)
then O/Oe (x(T; 0)) is precisely (6.5) evaluated at x.

By reversing the order and the signs of the inputs (6.6) we can get from x to
X(to) in time T/2 and use the original sequence of inputs (6.6) to go back to x.
Suppose we vary e only on the second half according to (6.7), x(t; e) is now the
endpoint of the total trajectory and it sweeps out a one-dimensional C submanifold
containing x in its interior which is contained in the integral manifold L of @
through x.

If the dimension of @ is greater than one we repeat the process, this time at X(to)
instead of x. We also choose a new expression (6.5) which is linearly independent of
the tangent to our one-dimensional submanifold pulled back to X(to). This is always
possible since expressions of the form (6.5) span at x.

In this way we generate a one parameter family of controls which generates a
one-dimensional manifold with X(to) in its interior. When this is pulled on to x along
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the original variation we get a two-dimensional submanifold of L with x in its interior.
We repeat the construction until the dimension of @ is achieved. QED

Proof of Theorem 6.1. If the RDDP is solvable by a feedback, 7, let f =f/and
let @ (Ad(y,p[ (p)). Clearly 9 is Ad] invariant, hence (Adl, g) invariant and contains
(p). Suppose 9 is not contained in 3f(dh). Then at some x, D(x)-dh(x). By
Lemma 6.4 there exist T and a piecewise constant (Uo(t),u(t)) such that
s4(x, T, Uo(t), u(t)) is a neighborhood of x in the leaf N of 9 through x. This
implies that Ys(x, T, Uo(t), u(t)) is not contained in a level set of h, contradicting
the solvability of the RDDP.

On the other suppose such a 9 exists. Let be the feedback such that 9 is Ad]
invariant for f=f3’. The integrable closure of 9 must contain (Ad(y,p[(p)) and since
(dh) is integrable it must contain the integrable closure of 9. Hence

(p)c (Ad(y.p)[ (p)) c (dh).

Lemma 6.4 implies that for any fixed (Uo(t), u(t)) and T, s(x, T, u(t), u(t)) is
contained in a leaf of (Ad(].p)l(p)) which in turn is contained in a level set of h.
Therefore the RDDP is strongly solvable. QED

Proof of Lemma 6.5. The first assertion follows from an application of Lemma
6.4 to the system restricted to 07/, for the nonsingularity of (ad(y,p)l(p)) implies it
equals (Ad(f,p)l (p)).

The proof of the second is similar to that of [1, Lemma 3.5]. Suppose 9
(ad(y,pl(p)) is of dimension d on o//. 9 is spanned by terms of the form

(6.8) ad(f+pg) ad(f,+p,p.
9 is the involutive closure of (adil(p)) which is spanned by terms of the form

(6.9) ad ady,po.
Choose an expression (6.9) which is not 0 at x define u(t), w(t, e) for small

e>0by
U( t) u, tj_,, tj],

w if re[to, to+e),
w(t, e)

0 otherwise,

where to-0 and t,..., t, are to be determined. We have to take care choosing u,
w, and tj sufficiently small so that the trajectories x(t; e) of (6.1) from x remain in
07/ and t < T. Henceforth we shall not mention this point.

Since (6.9) is not zero for some choice of t,. ., t,, as we vary e, x(t; e) sweeps
out a one-dimensional submanifold. Suppose that at some point on this submanifold
there is an expression of the form (6.9) which is not tangent to the submanifold. Then
we can repeat this process and construct a two-dimensional submanifold of points
accessible at some later time. We repeat the process until we obtain a d-dimensional
submanifold of accessible points such that every expression of the form (6.9) is tangent
to it. Since the vector fields tangent to a manifold are trivially involutive and 9 is the
involutive closure of (6.9), this manifold must be an integral manifold of 9. This shows
that sq(x, T, 07/, u(t)) has nonempty interior in the leaf topology. QED

Proof of Theorem 6.2. Suppose the DDP is solvable using feedback % let f=f7
and 9 =(ad(],p)[(p)). Clearly 9 is involutive and contains (p), so all we need to
show is that 9 c (dh).

Recall that x is a regular point of 9 if 9 is nonsingular in a neighborhood of
x. The regular points of 9 are open and dense in M hence by continuity it suffices
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to verify that at each regular point x the subbundle D associated to satisfies
D(x)ldh(x).

Let x be a regular point and a neighborhood on which is nonsingular. By
Lemma 6.5, there exists xT- q/ such that (x, T, , v(t)) is a neighborhood of xT-
in the leaf of containing x. (We use and v(t) instead of M and u(t) to indicate
this is the accessible set for fixed v(t) and variable w(t) of the feedback modified
dynamics (6.3).) Since the feedback decouples the output from the disturbance
we conclude that D(xT")_t.dh(x 7-). But x 7- is arbitrarily close to x so
D(x)+/-dh(x). QED

The following example shows that the converse to Theorem 5.3 is not true. We
present it as a time varying linear system

(6.10a) : A(t)x+ B(t)u+ E(t)w,

(6.10b) y=C(t)x,

(6.10c) x(0) x,
which can easily be made into an autonomous nonlinear system (6.1) by letting time
be an extra state coordinate, say Xo t.

Example 6.6. Let p(t) be a c function such that p(t)=0 for t<_-0, p(t)= r/2
for _-> and i(t) > 0 for (0, 1). Define

A( t) f( t)

for t-_< 1.5 and for => 1.5

-sinp(t) -cosp(t) 0\

00)cos p(t) -sin p(t)
0 0

A(t)=lJ(t-2)(i 0 0 )-sin p(t 2) -cos p(t 2)
cos p(t 2) -sin p(t 2)

The free dynamics (6.10a) for u=0 is constant except for t(0, 1)f’1(2,3). On the
time interval (0, 1) the x-x2 plane is rotated through an angle of r/2 and on (2,3)
the x2-x3 plane is similarly rotated. Let

B(t) E(t) C(t):(0 0 1).

Viewed as a nonlinear system (6.1) on the extended four-dimensional space
(Xo t, Xl, x2, x3) the system is not disturbance decoupled. Disturbances at small positive
times affect the x coordinate and are rotated to affect the x2 coordinate. Later after
t-2 these disturbances are rotated to affect x3 and hence the output. Since B(t)=0
the system cannot be disturbance decoupled.

However there is an (ady, g) invariant distribution such that (p)c c (dh).
Of course must be singular else it would be (Adf, g) invariant and Theorem 6.1
would apply. Let tr(t) be a q function such that tr(t)= for <_-1 and tr(t)= 0 for
t_-> 2. Let @ be spanned by the vector fields
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We leave it to the reader to verify that is (adz, g) (in fact adz) invariant, as a start
note that

A(xo)x

0
0

Proofof Theorem 6.3. For given x and o//, let y be the feedback which solves the
DDP on q/. By Theorem 6.2 on 0// there exists an (adz, g) distribution such that
(p)c (dh). Let F be an open neighborhood of x whose closure is contained

in and let be a coo function on F and 0 ott q/. The distribution q {qX" X }
is globally defined and satisfies q (dh). Moreover is (adf, g) invariant hence
locally (adz, g) invariant so q c *. Therefore for each x there exists neighborhood
OF such that on F, (p) c c *, hence (p) *.

As for the second assertion, give x Lemma 5.1 allows us to conclude that in some
neighborhood of a// and x, 9" is (Adz, g) invariant. Since (p)@*g(dh),
Theorem 6.1 implies the RDDP is solvable on a//. QED

7. Controllability distributions. We now define the nonlinear generalizations of
the concept of an (A, B) controllability subspace. These were introduced by Krener
and Isidofi [6], see also [14].

DEFINITION. A distribution (with associated subbundle C c TM) is an (Adz, g)
controllability distribution ad g) controllability distribution if there exists an invertible
feedback T with/3 partitioned as (fl/3 2) such that separates the controls (see (5.11)),
i.e., if= g/3 then for every x

(7.1a) C(x) ’ G(X)-- d(x) 1, C(x) d(x)2-- {o}

and

(7. lb) (Ad]l (ff)) (ad]l(l)}).
It follows immediately from (7.1b) that any such c is (Adz, g) invariant ((adz, g)

invariant), that (Adz, g) controllability distributions are integrable and that (adz, g)
controllability distributions are involutive. Notice that (Adz, g) controllability does not
necessarily imply (adz, g) controllability because the inclusion

could be proper. However if c is (adz, g) controllable and nonsingular then the inclusion
is an identity, hence c is (Adz, g) controllable.

We have already encountered several examples of such distributions. The Adz and
adz controllability distributions of 4 are (Adz, g) and (adz, g) controllability distribu-
tions for the time reversible system (4.1). (Here Uo is an additional control and
y fit=/.) Other important examples are the Adz and adz exact time controllability
distributions (Adzl(g)) and (adl (g)). These first appeared in the work of Sussmann
and Jurdjevic [18], who considered only analytic systems, so there was no need to
distinguish between the two. The first is integrable and for each x and T there exists
a leaf which contains sC(x, T). The second is involutive; if 07/is a neighborhood of
x on which it is nonsingular then for each T sufficiently small, s(x, T, 0//) is contained
in a leaf of (adl(g)) and has nonempty interior in the leaf topology. These statements
follow from Lemmas 6.4 and 6.5.
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These lemmas can be applied to arbitrary (Ady, g) or (ads, g) controllability
distributions. The vector fields go, g and 2 of the feedback modified dynamics for
the controllability distribution become gO, p and g respectively in the context of these
lemmas.

As one might expect there is a local version of the above concepts.
DEFINITION. Let @ be an arbitrary distribution; we denote by c*(9) the minimal

distribution 9 which satisfies

(7.2) 9 (ads() + (g)).

The notation adf() denotes the (M) span of all vector fields [g, X] when
j- 0,. , m and X 9. It is not apparent that the set of distributions satisfying (7.2)
is closed under intersection, hence we do not know that c*(9) always exists. This
will be shown by the controllability subdistribution algorithm.

DEFINITION. A distribution c is locally (adf, g) controllable if c is locally (adf, g)
invariant and c c,(c).

CONTROLLABILITY SUBDISTRIBUTION ALGORITHM (CSA, compare with [15,
p. 10]).

Let 9 be an arbitrary distribution, co= {0} and

(7.3) ck 9 f’) (adf(cck-,) + (g)).

Clearly c c, by induction ck- ccck. For if ck-2c cck-1 then

(7.4)

We claim that (_J cck is the minimal distribution satisfying (7.2), i.e.

(7.5)
k_>0

Clearly
and an induction similar to (7.4) shows that cck= for all k. Hence t_J cck is the
minimal distribution satisfying (7.2).

It is very important to note that for an arbitrary distribution 9, c*(9) is not
invariant and hence not controllable in any of the above senses.

LEMMA 7.1. Let 9 be locally (adc, g) invariant; then c*(9) is locally (ads, g)
invariant and in fact is the unique maximal locally (ads, g) controllability distribution
contained in

Proof Suppose X c*(9) as defined by (7.5). Since 9 is locally (ads, g) invariant
there exists Y (g) such that

(7.6) ads(X + Y 9.

(A word of caution regarding notation is in order. By the above we mean that for
i=0,..., rn there exists Y (g) such that

adgi(X) + YiE

In (7.6) Y is a matrix whose columns are yO,..., y,,. Without mentioning it again
we will continue to abuse notation in this fashion.) Since c*(9) satisfies (7.2) it follows
that

ads(X)+ YE c*(9)

so c*(9) is locally (adr, g) invariant.
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Let cck be defined (7.3). Then cck c c,() SO

= *() n= ’*() n (ad.,,-(-’) + (g)),
cCk= ,() n (a(-,) + (g)),

hence *() is locally (ady, g) controllable.
Suppose is any other local (ady, g) controllability distribution in , define

o= {0} and

k n (adz(k-’) + (g)).

Since o= o and c , a simple induction similar to (7.4) shows that @c k and
hence U k c U k ,(). Therefore *() is maximal. QED

From this lemma we see that every distribution contains a unique maximal
locally (ad, g) controllable distribution. The argument proceeds in two steps. Since
the locally (adz, g) invariant distributions form a semilattice under addition, every
distribution contains a unique maximal locally (adz, g) invariant distribution *().
By the above lemma this distribution contains an unique maximal locally (adz, g)
controllability distribution *(*()). Note that *(*())c *() but generally
this is a proper inclusion. Frequently we shall wish to compute *(*((dh))) which
we shall abbreviate * when there is no possibility of confusion. At the end of this
section we discuss the computation of * by extending the algorithm for * of 5.

The above remarks are predicted on the assumption of full control. There may
exist distributions which are locally (adz, g) invariant with paial control such that
*()c. On the other hand from the CSA we see that if is any locally
(dz, g) controllability distribution with paial control that is contained in then
c *().
The set of locally (adz, g) controllability distributions is a semilattice under

addition.
LEMMA 7.2. Suppose l and are locally (ad g) controllable. en so is

+ 2.
Proo Of course is locally (adz, g) invariant. Let and k be defined by the

controllability subdistribution algorithm (7.3) applied to and % Clearly = o
and c so by induction c k. But

The next lemma is impoant for it shows that if is (ad, g) invariant then
{ad]N (g)} is independent ofthe choice of feedback so long as it leaves N invariant.

LMMA 7.3. Suppose is (ad, g) invariant under . Let and *() be defined
by the CSA (7.3), (7.5) applied to . en for k1

k= ad)-1(
j=O

and

c,() (ady[ (q (g)).

Proof. The second assertion follows from the first which follows by induction.
For k it is clearly true. Suppose it holds for k-1. Let X ck-1. Then

ady(X) ady(X)/-fLx(),).
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Since y ( ) it follows that Lx(y)= (.o .o) and fLx(y). Moreover y is invertible so

ad(X) + (g) adf(X)+ (g).

This allows us to express (k as

cog ad(cck-)+ (9 f’) (g)).
k

ad-l( fq (g)). QED
j=0

COROLLARY 7.4. If c is (adf, g) controllable then c is locally (adf, g) controllable.
Proof. If c is (adf, g) controllable then it is (adf, g) invariant, hence locally (ad, g)

invariant. Let y be a feedback which leaves c invariant and separates the controls,
so that Cx Gx then c,(c) (ad]C f-) (g)) (adl(l)) c so c is locally
(adf, g) controllable. QED

COROLLARY 7.5. If c is nonsingular, involutive and separates the controls then the
following are equivalent.

(a) c is locally (adf, g) controllable.
(b) There exist an open cover

is (adr, g) controllable on 91 under yo in other words, locally c is (adf, g) controllable).
(c) There exist an open cover

is (Adf, g) controllable on yP under yP (locally c is (Adf, g) controllable).
Proof. This follows directly from Lemmas 5.1 and 7.3. QED
Computation of c,_ c,(,((dh)). One could apply the CSA to 9*= *(dh)

computed by the ISA of 5. A more convenient approach is to apply Lemma 7.3 so
that in the notation of the end of 5,

q* (ad,l(,,)).
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A TRANSFER-FUNCTION APPROACH TO LINEAR TIME-VARYING
DISCRETE-TIME SYSTEMS*
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Abstract. In the first part of the paper a transfer-function approach is developed for the class of linear
time-varying discrete-time systems. The theory is specified in terms of skew (noncommutative) rings of
polynomials and formal power series, both with coefficients in a ring of time functions. The transfer-function
matrix is defined to be a matrix whose entries belong to a skew ring of formal power series. It is shown
that various system properties, such as asymptotic stability, can be characterized in terms of the skew-ring
framework. In the last part of the paper, the transfer-function framework is applied to the study of feedback
control. New results are obtained on assignability of system dynamics by using dynamic output feedback
and dynamic state feedback. The results are applied to the control of an armature-controlled dc motor with
a variable loading.

Key words, time-varying systems, difference equations with time varying coefficients, generalized
z-transform, transfer function representation, feedback control, pole assignability

1. Introduction. The polynomial matrix-fraction approach to linear time-invariant
systems has turned out to be very useful in studying several system and control theoretic
problems, such as realization, dynamic compensation, regulation in the presence of
disturbances, etc. For details on this work, the reader may refer to Rosenbrock 1970],
Wolovich 1974], Fuhrmann 1976], Rosenbrock and Hayton 1978], Cheng and Pearson
[1978], Antsaklis [1979], Desoer et al. [1980], Emre and Silverman [1981], to mention
a few.

Given the power of the polynomial matrix-fraction approach, it would be very
desirable to have a corresponding theory for linear time-varying systems. In order to
generalize the matrix fraction approach to the time-varying case, we need to incorporate
time variance into a transform type description of the behavior of the system. Attempts
have been made to develop a transfer-function theory for linear time-varying systems
(e.g., the system function defined by Zadeh [1950]), but until recently there was no
theory which closely resembles the time-invariant case.

In the first part of this paper we develop a transfer-function approach for the
class of linear time-varying discrete-time systems. Our framework is given in terms of
skew (noncommutative) rings of polynomials, formal power series, and formal Laurent
series, all with coefficients in a ring of time functions. The basic elements of the
transfer-function approach we are considering here can be found in an unpublished
paper of Kamen [1974]; however, a full development of this approach is not carried
out in that paper. We also note that our approach differs significantly from the one
considered recently by Murray [1982], in which transfer operators are constructed in
terms of a crossed product.

After the preliminaries in the next section, in 3 we define the transfer-function
matrix of a linear time-varying discrete-time system. Our framework is developed in

* Received by the editors May 31, 1983, and in revised form July 15, 1984. A preliminary version of
the first part of the paper was presented to the 21st IEEE Conference on Decision and Control, Orlando,
December 1982. This work was supported in part by the National Science Foundation under grant ECS-
8200607.

" Center for Mathematical System Theory, Department of Electrical Engineering, University of Florida,
Gainesville, Florida 32611.

$ Present address, Department of Electrical Engineering, University of Minnesota, Minneapolis,
Minnesota 55455.

Present address, Department of Electrical Engineering, University of Illinois, Urbana, Illinois 61801.
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terms of a "generalized z-transform." Using this construct, we show that the z-transform
of the output is equal to the product of the z-transform of the input and the transfer
function matrix. Hence our setup corresponds very closely to the transfer-function
representation of a linear time-invariant system. We also show that the transfer-function
matrix of a system specified by state equations has exactly the same form as in the
time-invariant case.

In 4 we show that uniform asymptotic stability can be characterized in terms of
the skew-polynomial ring framework. This leads to a spectral radius criterion for
uniform asymptotic stability. In 5 we apply the results of 3 and 4 to the study of
dynamic output feedback. Our approach is based on polynomial matrix-fraction
representations for the transfer-function matrices of the given system and the feedback
compensator. If the polynomial matrix-fraction representation of the given system
satisfies a Bezout-type identity, we show that it is possible to assign (up to unimodular
matrices) the closed-loop system dynamics. This result is applied to the control of an
armature-controlled dc motor with a time-varying motor constant resulting from vari-
able loading.

In 6 we consider dynamic state feedback for the class of time-varying systems
which are reachable in a finite number of steps. It is shown that by using dynamic
state feedback, we are able to construct a closed-loop system whose system matrix is
algebraically equivalent to a constant matrix with arbitrary assignable eigenvalues.
Previously, assignability results for time-varying systems were available only for the
very special class of index-invariant time-varying systems (see Wolovich [1968] and
Morse and Silverman [1972]), or for the class of cyclizable time-varying systems (see
Kamen and Hafez [1979]).

2. Preliminaries. With 3’ set of integers and R field of real numbers, let A
denote the R-linear space of all functions from Z into R. With the operations of
pointwise addition and pointwise multiplication, it is easy to see that A is a commutative
ring with identity 1, where l(k)= for all k 3". Let tr denote the right-shift operator
on A defined by

(cra)(k)=a(k-1) for all

Since the shift operator cr is a ring automorphism on A, the ring A is called a difference
ring.

For any positive integer n, we let R denote the space of n-element column vectors
with entries in R. For any vector x R", the norm of x will be denoted by ]]x]l, where
Ilxl] is defined in any one of the usual ways. Given an n x n matrix M over R, we
define the norm JIM of M by

IIMII {sup IIMxll: x Ilxll
Let A/ denote the subring of A consisting of all functions with support bounded

on the left; that is, for any a A+ there is an integer ks (depending on a in general)
such that a (k) 0 for all k _-< ks. For any positive integer n, let A_ denote the R-linear
space of all n-element column vectors with entries in A+.

DEFINITION 2.1. Let m and p be positive integers. An m-input p-output linear
time-varying causal input/output map f is an R-linear map

f: A’ -
such that if u(k) 0, k _<- k,, for some u A’, then f(u)(k) 0 for all k -<_ ku.
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It is well known that for any input/output map f as defined above, there exists
a p x m matrix function W(i,j) such that for any u A’,

f(u)(i)= Y’. Wf(i,j)u(j).
j=-oo

The matrix function W is the unit-pulse responsefunction associated with input/output
map f. Note that by causality, W(i,j) is not defined for i<j.

Our next concept is the notion of a system.
DEFINITION 2.2. Let B be a fixed difference subring (i.e., or(B) B) of A contain-

ing 1. An m-input p-output n-dimensional linear time-varying system E over B is a
quadruple 5 (F, G, H, J) of matrices over B where F is n n, G is n m, H is p n,
and J is p xm.

With a system E (F, G, H, J), we shall associate the dynamical equations

x(k + l) F( k)x( k) + G(k)u( k),

y(k)= H(k)x(k)/J(k)u(k),

where u(k), x(k), y(k) have the usual interpretations. We shall sometimes assume
that J 0, in which case we shall write E (F, G, H). The assumption that J- 0 does
not result in any loss of generality.

In ttie above definition of system, it is important to note that by selecting the
difference subring B, we can restrict attention to a particular class of systems. For
example, we can study the class of linear time-varying systems with bounded coefficients
by taking B to be equal to the set 1(7/) of all bounded functions from Z into the reals
R. It is easy to see that with the induced pointwise operations, I(7) is a difference
subring of A containing 1.

A system - (F, G, H, J) or the pair (F, G) over A is said to be reachable in N
steps if there is a positive integer N such that for any j 7/and any x R", there exists
an input sequence u(j- N), u(j- N+ 1),. ., u(j- l) which drives E from the zero
state at time j- N to the state x at time j. The system or the pair (F, H) is observable
in N steps if there is a positive integer N such that for any j 7/ and any x ", the
output response y(. resulting from initial state x # 0 at time j with u(k) -0 for k->j
has the property that y(k) # 0 for at least one k {j, j + 1,. , j + N 1}. The system
E is canonical if it is both reachable and observable in N steps.

Weiss [1972] showed that reachability can be characterized in terms of the rank
of a matrix function constructed from the matrices F and G" Let Mo, MI,’" ", MN-I
denote the matrices defined by M F(crM_), j l, 2," , N- l, Mo G, and let Uk
denote the k-step reachability matrix defined by Uk =[M0 Ml’’" Mk-l]. Then the
system E (F, G, H, J) is reachable in N steps if and only if rank Us(k)= n for all
k in 7/. Note that this condition is equivalent to right invertibility of Us over the ring
A. There are similar ("dual") criteria for observability. See Weiss 1972] for the details.

In some cases one may be interested in a slightly diiterent notion of reachability:
Suppose that is defined over a diiterence subring B of A.. For example, we could
take B 1(7). Then E is said to be reachable over B in N steps for some positive
integer N if and only if Us is right invertible over B. In the example of B--I(7/),
this notion of reachability is equivalent to uniform boundedness of the inputs u(j N),
u(j N+ 1), , etc. (uniform with respect to j) in the definition of reachability given
above. In fact, in this case, is reachable over/oo(7/) in N steps if and only if

det (UsU(j)) _>- e > 0 for some e > 0 all j in 7/.
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The state transition matrix of a system E (F, G, H, J) is the n x n matrix function
q(i, j) defined by

F(i- 1)F(i-2) F(j), i>j,

(i,j) I, i=j,
not defined, <j.

As is well known, the unit-pulse response function Wz of the .system E is given by

H(i)dP(i,j+ 1) G(j), i>A
Wr.(i,j)= J(j), i=j,

not defined, <j.

The input/output behavior of a system E is described by its input/output mapf where

f(u)(i) E Wr.(i,j)u(j), u A.

Given an input/output map f:A A, a realization of f is a system
(F, G, H, J) over A such that f=It is easily seen (and well known) that the system (F, G, H, J) is a realization
of f and only if

{H(i)(i,j+ l)G(j), i>J} w(i,j(i,j)
j(j), i=j,

where is the unit-pulse response function associated with For results on realizabil-
ity, we refer the reader to Weiss 1972], Evans 1972], Ferrer and Kamen 1984].

3. The transfer-function framework. The commutative ring of polynomials, the
commutative ring of formal power series, and the commutative ring of formal Laurent
series, all with coefficients in the reals , play a central role in the transfer-function
approach to linear time-invariant systems. For linear time-varying systems, the
analogous algebraic objects are noncommutative rings of polynomials, formal power
series, and formal Laurent series, all with coefficients in a commutative ring of time
functions. The definitions of these rings are given below.

As before, let B be a fixed difference subring of A containing 1. With z equal to
a symbol (or indeterminate), let B((z-l)) denote the set of all formal Laurent series
of the form

z-ra NZ, a,B.

With the usual addition, and with multiplication defined by

zrz Zr+t, r, Z,

zr: zr(r), r,
where (ra)(k)= a(k-r), B((z-)) is a noncommutative ring with identity. The ring
B((z-)) is called the skew ring offormal Laurent series over B with coecients written
on the right. Here the term "skew" means that the coefficients of the series do not
commute with the indeterminate. There are two impoant subrings of B((z-)): the
skew ring of polynomials B[z] defined by

B[]= inB((-l))’= -NO
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and the skew ring of formal power series B[[z-I]] defined by

B[[-I]]= in B((-I))’= ---0

Define a projection map

" ((z-l)) - B[[z-]]" 2 z-- 2 -r=-N r=l

We denote a (a) by (a)+ for any a in B((z-l)). By (a)o, we shall mean the constant
coecient of a in B((z-)). For an element a in B((z-)), is said to be strictly proper
if (a) a, and (a) is called the strictly proper part of a.

Given a positive integer r, we shall let B[z] (resp. B((z-))) denote the ring
of r x r matrices over the skew polynomial ring B[z] (resp. the skew Laurent series
ring B((z-))). Any Q in B[z] can be written in the form

q

Q E
i=0

where the Q are r x r matrices over B. The degree ofQ, denoted by deg Q, is the largest
integer such that Q 0. If deg Q q, Q is said to be monic if Qo I r x r identity
matrix. We have the following result on inveibility.

PROPOSITION 3.1. e matrix Q in AX[z] is right-invertible over A((z-)) if
and only if there exists a matrix T in AX[z] such that QT is a monic polynomial matrix

in AX[z]. Further, T can be chosen such that deg Q deg QZ
oo Suppose Q is right-inveible, i.e., there exists a in A((z-)) such that

Q I. Let deg Q d. We can now write

zaI Qz Q(za)++ Q(za).

Notice that deg (Q(zd)) < deg Q d. Therefore the highest degree term of Q(zd)+
is ZdI. Choosing T=(zd)+ which is polynomial,, proves the necessity. Notice that
deg QT deg Q d. Now assume that there exists a T in A[z] such that QT is a
monic r x r polynomial matrix. We can then perform right division of I by QT and
find a in A((z-)) such that QT I, which implies that Q is right inveible over
A((z-)). is proves the converse. E

An analogous result holds for leff-inveibility of Q over Arxr((z-l)) Q is left-
inveible if and only if there exists a T in A[z] such that TQ is a monic polynomial
matrix, in which case T can be chosen such that deg (TQ)= deg (Q). In general,
leff-inveibility of Q over Arxr((z-)) is not equivalent to right-inveibility of Q over
A((z-t)), the pathology being due to the skew nature of our rings.

We shall almost always deal with polynomial matrices that are both left- and
right-inveible, in which case we shall call them invertible and avoid the use of
cumbersome prefixes.

Our transfer-function approach is derived in terms of a generalized z-transform
defined as follows. As in the previous section, let A+ denote the subring of A consisting
of all functions a" Z R with suppo bounded on the left. Let A denote the unit-pulse
function concentrated at the origin, that is, A(k)= when k 0 and A(k)= 0 for all
other k. Now given f A+, the generalized z-transform off is defined to be the series
F(z)e A((z-)) given by

(3.2) F(z)=Ez-%.
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where yr=f(r)A; that is, Yr is the pulse at the origin with magnitude f(r). Note that
we can rewrite (3.2) in the form

F(z) [f(r)z-r] A,
where rf(r)z 5l((z-)) is the (ordinary) z-transform off In other words, we can
view the generalized z-transform as the product in the skew-ring structure of the
ordinary z-transform and the unit-pulse function A.

The transform map f-, F(z) has the following fundamental properties (the easy
proof is omitted).

PROPOSITION 3.3. The map A+ A((z-l))"f F(z) is a left-A-module homomorph-
ism that is, iffe A+ and g A+ have transforms F(z) and G(z), then for any a, A,
the transform of af+ fig is equal to aF(z)+ fiG(z). In addition, for any positive integer
r, the transform of trrf is z-rF(z) and the transform of tr-rf is zrF(z).

Now let f be a m-input p-output map as defined in the previous section, and let
IVy denote the unit-pulse response function associated with f. For each integer r-> 0,
let Wr denote the p x m matrix function on 7/defined by

Wr(j) Wf( r +j, j), j 7/.

We assume that each Wr is over a difference subring B of A containing (we could
have B A).

DEFINITION 3.4. The (formal) transfer-function matrix W(z) associated with the
input/output map f is the p x m matrix over B[[z-]] defined by

(z)= E Z-rW,"
r=0

The input/output equation y =f(u) can be characterized in terms of the transfer
matrix Wy(z) as follows.

PRO’OSITION 3.5. Let y =f(u) be the output resulting from input u, and let Y(z)
and U(z) denote the (generalized) z-transforms of y and u taken component-by-
component. Then

(3.6) Y(z) IVy(z) U(z).

Proof. By definition of multiplication in A((z-)), we have

WAz) U(z) E E z--(-W)u.
k

By a change of variables, we get

(z)U(z)=Ez-

where

y, Y (,-w,_)u.
k

By definition of Wr and u, we have that

E W(r, k)u(k),
yr(j) k

0, j:O.

Thus yr(0)=f(u)(r)= y(r), and the result is proved. 13

j=0
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Note how closely (3.6) corresponds to the transfer-function relationship in the
time-invariant case. This analogy with the time-invariant case is also seen when one
computes the transfer function of a system. To illustrate this we first need the following
result on the invertibility of (zI- F).

PROPOSITION 3.7. Let , (F, G, H, J) be a system over B with state transition
matrix (i,j). Then the matrix (zI-F) has a (unique) inverse (zI-F)- over the skew
ring B[[z-]] given by

(3.8) (zI- F)-1= g-i(o’-l(I)i_l),
i=1

where dpi(j) dp( +j, j).
Proof. By definition of multiplication in B[[z-]], we have

(zI-F) Z z-’(tr-’,_l) I+ Z z-’(tr-’,-(tr-’F)(tr-’,_l)).
i=l i=1

It is easily shown that i (tr-+lF)i_l for i--> 1, and thus

(zI-F)(i=I z-’(tr-’,_l)) I.

Since F is over B, all the are over B, and thus (zI F) has an inverse over B[[z-]].
It is important to note that by definition of multiplication in the skew ring B((z-)),

(zI-F)- is not in general equal to the power series Y z-F-. In fact, this power
series is equal to the inverse of (zI- F) if and only if F is constant (i.e., F(k) F(k2)
for all k, k2 7/).

PROPOSITION 3.9. Let , (F, G, H, J) be a system over B with input/output map
f. Then the transfer-function matrix W.(z) off is defined over the skew ring B[[z-]]
and is given by

(3.10) W(z) J+ H(zI- F)- G.

Proof. Using Proposition 3.7, we have

J + H(zI F)-IG J + E
i=l

J + , z-’(tr-’H)(tr-l,_,)G.
i=1

An easy computation reveals that W (tr-H)(tr-_)G for i>= 1, and since Wo=J
we have the desired result.

By Proposition 3.9 we see that our notion of transfer function in the time-varying
case has exactly the same form as the transfer function in the time-invariant case.
However, it is important to note that the evaluation of the transfer-function expression
is not the same for both the time-varying and time-invariant cases; for example, here
the right side of (3.10) is computed using the noncommutative multiplication in the
skew ring B[[z-l]].

We shall now relate the transfer-function framework to a representation consisting
of the following collection of input/output difference equations with time-varying
coefficients"

(3.1 la)
q

Q,(k+i)w(k+ i)= R,(k+i)u(k+ i),
i=0 i=0
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(3.11b) y(k)= ’. Pi(k+ i)w(k/ i).
i=0

In (3.1 a, b), u A, w A, y AP+, and the Qi, R, P are r x r, r x m, p x r matrices
over A. Taking the generalized z-transform of both sides of (3.liP, b) and using
Proposition 3.3, we get the following polynomial matrix representation"

(3.12a) Q(z) W(z) R(z) U(z),

(3.12b) Y(z) P(z) W(z),

where Q(z), R(z), and P(z) are polynomial matrices over the skew ring A[z] given by

Q(z) y z Q,, R(z)= z’R,, P(z)= z’P,.
i=o i=0 i=o

This leads to the following result.
PROPOSITION 3.13. Suppose that Q(z) has a left inverse Q-(z) Arr((z-)). Then

for any u A’ with zero initial conditions before the application of u (i.e., if u(k)= 0,
k<ko, then we assume that w(k)=0 and y(k)=0, k<ko), (3.liP, b) has a unique
solution y A+ with the z-transform Y(z) ofy given by

(3.14) Y(z) P(z)Q-(z)R(z) U(z).

Further, if P(z)Q-(z)R(z) is over the skew ring A[[z-]] offormal power series, the
map A’- AP+: u-, y, where Y(z) is given by (3.14), is a causal input/output map.

Proof. The result follows easily from the properties of the transform, and thus
will be omitted.

If Q(z) has left inverse Q-(z) and P(z)Q-(z)R(z) is over A[[z-]], by Proposi-
tion 3.13 we see that the input/output difference equation representation (3.1 a, b)
defines an input/output map f with transfer-function matrix

Wf(z) P(z)Q-(z)R(z).

Conversely, suppose that we are given an input/output map f with transfer-function
matrix W(z). Then if W(z) can be written in the form

(3.15) Wf(z) P(z)Q-l(z)g(z)

for some polynomial matrices P(z), Q(z), R(z) defined over the skew ring A[z], we
see that f defines a collection of input/output difference equations given by (3.11 a, b).
Thus there is a direct correspondence between input/output difference equations of
the form (3.1 la, b) and matrix-fraction representations of the form (3.15). For linear
time-invariant systems, this was observed by Rosenbrock [1970].

Example 3.16. Consider an armature-controlled dc motor given by the input/out-
put differential equation

(3.17)
d20(t) + a(t)

dO(t)
dt-’---Y- dt

fl( t)u( t)"

In (3.17), the input u(t) is the applied armature voltage, the output O(t) is the angular
position of the motor shaft, and the time-varying coefficients a(t) and fl(t) are given
by

a(t) 0.74+ 0.3kM(t), fl(t) 5.56k4(t),

where k(t) is the (normalized) effective motor constant. The nominal value of k is
l, but during operation k may vary significantly due to a variable loading applied
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to the motor shaft. We assume that the time variation of kM (t) is known prior to system
operation; for example, the motor may be part of a machining operation whose
characteristics can be measured (e.g., in test runs). By sampling with a suitably small
sampling period T, we get the following approximation to a sampled-data state model
for the motor:

(3.18) O(kT+T) 0 a(kT)T O(kT) + u(kT).
fl(kT)T

Taking the generalized z-transform of both sides of (3.18), we get

T2

zO(z)=O(z)+ Tr(z)+- U(z),

zr(z) (1 ar)r(z) + 13rU(z),

where @(z), F(z), and U(z) are the generalized z-transforms of the angular position
O(kT), angular velocity (kT), and input u(kT), respectively. Combining these two
transformed equations and keeping in mind the skew multiplication in the ring A[z],
we have

where

Q(z)O(z) R(z) U(z),

Q(z)= z2+(aT-2)z+(l-aT),
T2 T2

R(z) z-+fl--(1 + aT).

Thus, the transfer-function relationship for the motor is

(3.19) O(z) Q-’(z)R(z) U(z),

where W(z)= Q-l(z)R(z) is the (generalized) transfer function of the motor. In 5,
we shall use the transfer-function representation (3.19) to design a stabilizing dynamic
output feedback compensator for the motor.

4. Stability. In this section we show that it is possible to characterize uniform
asymptotic stability in terms of the skew-ring structure defined in 3. We begin with
the definition of stability.

Given the system X (F, G, H, J) defined over the difference ring A, consider the
free behavior of the system described by the vector difference equation

(4.1) x(k+ 1)= F(k)x(k).

The system X is said to be uniformly asymptotically stable (u.a.s.) if for every real
number e > 0, there exists a positive integer n such that for all j in 7/

[[x(j)[[ =< implies that [Ix(j+ i)l =< e for all i=> n,

where x(j + i) is the solution of (4.1) at time j + starting from initial state x(j). It is
well known that is u.a.s, if and only if for any e > 0 there is a positive integer n
such that

II(j+i,j)ll<=e for allj7/and all i>-n,

where (i,j) is the state transition matrix.
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As in Proposition 3.7, for 0, 1, 2, , let i denote the n x n matrix with entries
in A defined by i(j)=(i +j, j), j 7/. By definition of )(i,j), we have that

(4.2) o I and ,= (tr-’+F)(o’-i+2F)... (tr-IF)(F) for i>_- 1.

Now suppose that F is over the difference subring 1(7/) consisting of all bounded
functions from 7/ into R. Then by (4.2), i is over I(7/) for all i_->0. Defining the
norm I1,11 by

I1,11- sup II,(J)ll,

we have the following result.
PROPOSITION 4.3. Suppose that F is an n n matrix over 1(7/). Then , is u.a.s, if

and only if I1,11 converges (in ) to zero as i o.
The proof of this result follows immediately from the above characterization of

u.a.s, given in terms of the state transition matrix. (We should note that it is possible
to remove the constraint that F be bounded. For details, see Green and Kamen 1984].)

Now suppose that F is constant, that is, F is an n n matrix over the reals I. In
this case it is well known that 5; is u.a.s, if and only if the matrix norm of the coefficients
of the formal power series

iFi-i Fi-i -i(z-F)-= Y z- E z
i=l i=l

converges to zero. In other words, IIF’II- 0 as i-, o. As we now show, there is a
generalization of this result for time-varying systems. First we need to define what is
meant by a stable power series.

Let P(z) denote an n xn matrix over the skew ring/(7/)((z-)); that is, P(z) is
a matrix Laurent series given by

P(z) E -iz ei,
i=-N

where the P are n n matrices over l(’). The matrix Laurent power series P(z) is
said to be stable if IIPII- 0 as i. In terms of this notion, we have the following
criterion for u.a.s.

PROPOSITION 4.4. Suppose that F is over 1(7/). Then , is u.a.s, if and only if the
matrix power series zI- F)-1 is stable.

Proof. Combine Propositions 3.7 and 4.3.
In the remainder of this section, we show that u.a.s, is equivalent to a spectral

radius criterion for a bounded linear operator on a Banach space.
Let/oo(7/)n denote the R-linear space of n-element column vectors with entries in

1(/). With the norm,

Ilvll-- sup IIv(j)ll,
je’

/(7/)" is a Banach space. Now given an n n matrix F over/(7/), let SF denote the
R-linear map from 1(7/)" into itself defined by

SF( v)( k) (rF)( crv)( k) F(k 1)v(k-1).

It is easy to show that SF is a bounded linear map; in fact, the norm IISFII of SF is
equal to FII, where FII sup F(j)

The map SF arises in the algebraic theory of linear time-varying discrete-time
systems as shown by Kamen and Hafez 1979]. Here our objective is to show that u.a.s.
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can be characterized in terms of the spectral radius p(SF) of SF defined by

p(SF) limit Ilsl] /’= inf IIs ll ’/’.

THEOREM 4.5. Suppose that F is over 1(7]). Then , is u.a.s, ifand only ifp(SF) < 1.
Proof. By induction on i, it can be shown that

S(v)=(ridi)(riv) for all i->l and any v.l(/7) ",

where i is given by (4.2). Since the right-shift operator tr is an isometry, it follows that

IIs IIO,II for all i=> 1.

Now suppose that E is u.a.s. Then there exists a positive integer q such that I1  11 < 1,
and thus IISII < 1, which implies that IlSqF[[ l/q < 1. Hence p(S) < 1. Conversely,
suppose that p(SF)< 1. Then there exists a positive integer q such that [[Sqlll/q< 1,
which implies that [[SII < 1. Thus, IISII 0 as i o, which implies that I[S[I 0 as
i-o. Hence [[@i[[-0, and by Proposition 4.3 the system is u.a.s. [3

A very interesting consequence of Theorem 4.5 is that uniform asymptotic stability
in the time-varying finite-dimensional case is equivalent to asymptotic stability of the
time-invariant infinite-dimensional system

7(k + 1) SFT(k), k >_- 0, 7(0) /(Z)n.
This correspondence has been exploited by Green and Kamen [1984] to obtain new

results on the stability of linear time-varying systems.

5. Application to feedback control. In this section we apply the transfer-function
framework to the study of output feedback. In particular, we obtain a result on a type
of "assignability" by using dynamic output feedback.

Given an m-input p-output system E (F, G, H) over l(Z), recall from 3 that
the input/output transfer-function relationship of the system is given by

Y(z) W(z) U(z),

where Wz(z) H(zI- F)-IG is the system’s transfer-function matrix, and U(z), Y(z)
are the generalized z-transforms of the system’s input u(k) and output y(k). Suppose
that W(z) has the matrix-fraction representation Wz(z)= Q-(z)R(z), where Q(z)
is an invertible element of I(Z)pxp[z] and R(z) is an element of l(7/)Pm[z]. NOW
consider the closed-loop system given by

Y(z) Wx(z) U(z),

U(z)=-W(z)Y(z)+ V(z),

where We(z) is the transfer-function matrix of a (possibly) time-varying feedback
compensator and V(z) is the generalized z-transform of a possible external input v(k).
We assume that We(z) has the matrix-fraction representation We(z)=
Pc(z)Q-(z)Rc(z), where Pc(z) and Re(z) are m xq, q xp matrices over/(Z)[z], and

Qc(z) is a q x q invertible matrix with entries in l(Z)[z]. We can then represent the
closed-loop system given by (5.1) in the form

(5.2) [ Q(z) -R(z)Pc(z)][ Y(z)] [R)] V(z),
-Re(z) Qc(z) X(z)

where

X(z) Q-(z)Rc(z) Y(z).
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From (5.2), we see that the closed-loop system dynamics are determined by the inverse
of the matrix

II(z) := [ Q(z) -R(z)P(z)]-R(z) Q(z)

In particular, from the results in 4, it follows that the closed-loop system given by
(5.2) is internally u.a.s, if II(z) has an inverse II-(z) over l(Z)((z-)) and II-(z) is
a stable matrix series (as defined in 4). Thus, a sufficient condition (which turns out
to be necessary also) for the compensator W(z)= P(z)Q-;(z)R(z) to be stabilizing
is that II-(z) be a stable matrix series.

Instead of asking for a compensator W(z) which results in a stable matrix II-(z),
we can attempt to answer the question as to the extent to which the matrix II-(z) (or
the matrix II(z)) can be "assigned" by choosing the compensator W(z). In the
time-invariant case (with R(z)= I), we have that

det II(z)=det Q(z)Q(z) R(z)P(z)),

and we can consider assigning the coefficients of the polynomial det II(z) by choosing
P(z) and Q(z) (with the constraint that Q(z) is invertible and P(z)Q-;(z) is proper).
This problem was solved by Rosenbrock and Hayton [1978]. But in the time-varying
case, there is no known definition of det II(z). In the time-varying case, we can still
consider the extent to which II-(z) can be assigned by choosing W(z). One such
result is given below.

THEOREM 5.3. Suppose that Wv.( z) has a polynomial matrix-fraction representation
W.(z) Q-(z)R(z) which satisfies the Bezout-type identity Q(z) Y(z)+ R(z) Y2(z)= I
for some p xp, m xp matrices Y(z), Y2(z) with entries in/(7/)[z]. Let V(z) be a monic
p p matrix over l(7/)[z] with deg V(z)>-2 deg Q(z)+deg Y2(z). Then there exists a
compensator with strictly proper transfer-function matrix W(z) P(z) Q-; (z)R(z) and
unimodular polynomial matrices Tl(Z), T2(z) such that

(5.4) H-l(z) T,(z) V-’(z)

Since T(z) and T2(z) are unimodular matrices (having inverses over l(Z)[z]),
the expression (5.4) for H-l(z) implies that the closed-loop system dynamics are
determined by V-(z), which can be arbitrarily assigned. Note that if we choose V(z)
so that V-(z) is a stable matrix series, the resulting closed-loop system will be u.a.s.
In particular, if we choose V(z)- ZIp, the closed-loop system response resulting from
any nonzero initial state will become zero after a finite number of steps (assuming
there is no external input); in other words, we have a "dead-beat" control system.

We shall sketch the key steps for a constructive proof of Theorem 5.3. Here we
assume that Q(z) is a monic polynomial matrix; for the nonmonic case, see Khar-
gonekar and Poolla [1984].

Step 1. First find polynomial matrices Q(z), R(z), Yl(Z), Y2(z) such that

Wx(z)--Q-l(z)R(z),
(5.5)

Q(z) Yl(Z) + R(z) Yz(z) I.

It can be shown that W.(z) admits a polynomial matrix-fraction representation
Q-l(z)R(z) which satisfies the Bezout-type identity (5.5) if and only if Wx(z) has a
canonical realization (i.e., a realization which is both reachable and observable in N
steps for some positive integer N). For a proof of this fact, see Khargonekar and
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Poolla [1984]. It can also be shown that the polynomial matrices Yl(Z) and Y2(z) can
be computed by solving a system of linear equations with coefficients in 1(7), or one
could follow the procedure given in Khargonekar and Poolla [1984]. From here on,
we assume that Q(z) is monic.

Step 2. Choose any p p monic polynomial matrix V(z) such that deg V(z)>=
2 deg Q(z)+deg Y2(z) and such that v-l(z) is stable. Divide V(z) by Q(z) to obtain

V(z) M(z)Q(z) + N(z),

with deg N(z) < deg Q(z).
Step 3. Take the compensator transfer function We(z) to be

Wc(z) Y(z)(M(z) + N(z) Yl(z))-’ N(z).
With W(z) as defined above, it follows that II-l(z) can be expressed in the form (5.4)
for some unimodular matrices Tl(Z), TE(Z).

Step 4. Realize the compensator by a state model ,- (F, Gc, H) as follows.
First, we can write

M(z)/ N(z) Yl(Z)= L z’Q,, Qr I,
i=0

zr(M(z)+ N(z) YI(Z))-l= .
i=0

r-I

-N(z)= Y z’R,,
i=0

r-I

Ydz)= E P,z’,
i=O

where the Qi, Ai, R, P are matrices over l(Z). Then (F, Go, Hc) is a realization
of W(z) where

I 0 .0 .0 [lr_ lQ.r-2 0 I

]IR!_2I(5.6) F G
-Ql 0 0 I L/o -J
-Qo 0 0 0 0

(5.7) Hc [Po P1 Pr-,]

I 0 0 0

trr(Al) I 0 0

tr’(A2) o’r-l(al) 0 0

trr(A,_2) trr-’(Ar_3) I 0

o-r(er_l) o’r-l(er_2) o-(/l) I

Example 5.8. Again consider the armature-controlled dc motor whose transfer
function W(z)= Q-l(z)R(z) was derived in Example 3.16. By inspection, we have

Q(z) Yl(Z) + R(z) Y2(z)= 1,

where
T2

Yl z o’fl 2-- Y2(zl -z +3-, c (trfl) T-(2+ Ta).
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Carrying out Step 2 in the above procedure, if we choose V(z)= Z4, we have

z4=M(z)Q(z)+N(z),

where

M(z) z2- z(o’-’(aT-2))+ A,

N(z) (r-2(ar- 2)r-’(1 aT)- (aT- 2)A )z-(1 aT)A,

A o’-2(otT 2)r-(aT 2) r-2(1 aT).

The compensator (dead-beat controller) is then given by

We(z) Y(z)(M(z) + N(z) Y,(z))-’ N(z).
A state model for this compensator can be computed directly from (5.6), (5.7). We
leave the details to the interested reader.

6. State feedback. In this section we show that by using dynamic state feedback
it is possible to assign the coefficients of a characteristic polynomial which determines
the closed-loop system dynamics. This result is a time-varying analogue of the famous
result that reachability implies coefficient assignability in linear time-invariant systems.

Let E (F, G, H, J) be reachable in N steps over B, an arbitrary difference subring
of A. Then, there exist matrices Po, P," , PN- over B such that

N-I

Z M,P,=I
i=0

where the matrices Mi are defined recursively in 2. Let Si r-(P). Consider the
linear time-varying system El (A, B, C) defined as follows:

0 I 0 0 0

0 I
(6.1) z(k+ 1)= z(k)+ v(k),

0 0
0 0

(6.2) u(k)=[So S, SN_,](k)z(k).

Here, z(k) is in R"N, each block submatrix is n x n, u(k) is the input to , and v(k)
is (yet) unspecified input to . Combining the state equations for E with those of,
and using the control law (6.2), we have

z(k+l 0 (k)[z(k)]+[OB] v(k)"

Let us consider the (N + 1) step reachability matrix UN+ of the pair (/3, ). By direct
calculation, it is easily seen that

I
0 !

I 0

I 0 0
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It follows that the pair (6, () is index-invariant. (Recall that a pair (F, G) is called
index-invariant by Morse and Silverman [1972] if and only if rank Uk(j)= nk for all
j in 7/.) We can now apply the discrete-time versions of the results of Wolovich 1968],
Brunovsky [1970], and Morse and Silverman [1972] on state-feedback control of
index-invariant systems to the system (6.3). In particular, given any real numbers
ao, al," ", a,(N+)_l, there exist a feedback matrix Lover B andan (N+ 1)n x(N+ 1)n
matrix T over B with T- also over B, such that

F* := (o"-1 T-)(/+ /)T

is time-invariant and the characteristic polynomial of F is

(N+l)n-I

(6.4) det (XI- F*) X (+)" + E
i=0

Let us partition the matrix

where L is an n x n matrix and Lc is an n x Nn matrix. Then, the corresponding
state-feedback control law for (6.3) can be written as

(6.5) v(k) L(k)x(k)+ Lc(k)z(k).

Now the overall system equations may be written as follows"

x(k + 1) F(k)x(k)+ G(k)C(k)z(k),

z(k+ 1) (A+ BLc)(k)z(k)+ BL(k)x(k),

u(k)=[So S, SN_,](k)z(k).

Thus, (6.5) represents a dynamic state-feedback scheme for E. Further, the "characteris-
tic polynomial" (in the sense of (6.4)) of (6.5) has arbitrarily assignable coefficients
ao, a,. , a,N+_. We can summarize the above discussion in the following"

THEOREM 6.6. Let E F, G, H, J) be reachable in N steps over B at all times. Let
ao, a, a(N+)n_ be. a.given set ofreal numbers. Then, there exist a dynamicfeedback
compensator E (A, B, C) and an (N+ 1)n x (N + 1)n matrix T over B, with inverse
T- over B such that with

F:= ,
F* := (o’- T)-T is time-invariant and

(N+l)n-I

det (hi-F*)= h (N+l)" + Y aihi.
i=0

By letting B- ioo(7/), and using Lyapunov transformations, Theorem 6.5 gives us
a stabilization result with arbitrarily assignable dynamics.

7. Discussion. In this paper we have developed a transfer-function approach to
linear time-varying discrete-time systems. In this framework, we considered representa-
tion, stability and feedback control of linear time-varying systems. In the application
to feedback control, we derived results on the assignability of closed-loop system
dynamics by using a dynamic output feedback or state feedback compensator.

There are a number of topics that one can pursue using the transfer-function
framework. One of these is an in-depth study of matrix-fraction descriptions of linear
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time-varying systems. (There has already been a good deal of progress on thismsee
Khargonekar and Poolla [1984].) Another topic is the application of the transfer-
function construct to the study oftracking and disturbance rejection (see Poolla 1984]).
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Abstract. Recent work by the authors and others has demonstrated the connections between the dynamic
programming approach to optimal control theory and to two-person, zero-sum differential games problems
and the new notion of "viscosity" solutions of Hamilton-Jacobi PDE’s introduced by M. G. Crandall and
P.-L. Lions. In particular, it has been proved that the dynamic programming principle implies that the value
function is the viscosity solution of the associated Hamilton-Jacobi-Bellman and Isaacs equations. In the
present work, it is shown that viscosity super- and subsolutions of these equations must satisfy some
inequalities called super- and subdynamic programming principle respectively. This is then used to prove
the equivalence between the notion of viscosity solutions and the conditions, introduced by A. Subbotin,
concerning the sign of certain generalized directional derivatives.
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Introduction. Recent work by the authors and others has demonstrated the
connections between the dynamic programming approach to optimal control theory
problems and to two-person, zero-sum differential games and the new notion of
"viscosity" solutions of Hamilton-Jacobi partial differential equations introduced by
M. G. Crandall and P.-L. Lions [6].

The formal relationships here are (cf. W. H. Fleming and R. Rishel [ 15], R. Isaacs
[18]): if the values of various optimal control problems and differential games are
regular, then they solve certain first order partial differential equations with "min",
"max", "max-min" or "min-max" type nonlinearity. The problem is that usually the
value functions are not smooth enough to make sense of the above in any obvious
way. Many papers in the subject have worked around this difficulty" see Fleming 12],
[13], [14], Friedman [15], [16], Elliott-Kalton [8], [9], Krassovski-Subbotin [20],
Subbotin [28], etc.

Recently, however, the new notion of "viscosity" solution for first order partial
differential equations was introduced by M. G. Crandall and P.-L. Lions [6]. (Also see
M. G. Crandall, L. C. Evans and P.-L. Lions [5].) This solution was proved to be
unique under some very general assumptions. Moreover, it was observed by P.-L. Lions
[21 ] that the dynamic programming condition for the value in control theory problems
implies that this value is the viscosity solution of the associated Hamilton-Jacobi-
Bellman partial differential equation. These considerations extend to the theory of
differential games. It follows, in particular, that the dynamic programming conditions
imply that the values, are viscosity solutions of the associated Hamilton-Jacobi-Isaacs
partial differential equations. See P. Souganidis [26], [27] for a proof of this based on
both the Fleming and the Friedman definitions of upper and lower values for a
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differential game, N. Barron, L. C. Evans and R. Jensen 1] for a different proof for
the Friedman definition, L. C. Evans and P. Souganidis [11] for the Elliott-Kalton
values in , L. C. Evans and H. Ishii [10] for the Elliott-Kalton values in bounded
domains. Some related papers are: P.-L. Lions [23], P.-L. Lions and M. Nisio [25], I.
Capuzzo Dolcetta and L. C. Evans [3], I. Capuzzo Dolcetta [2], I. Capuzzo Dolcetta
and H. Ishii [4], H. Ishii [19], etc.

The present paper is concerned with the relation between the notion of viscosity
sub- and super-solutions of first-order, dynamic programming PDE and the optimality
principle of dynamic programming, as well as the directional derivatives of viscosity
solution of the above equations at an arbitrary point. In particular, we show that
continuous sub- and super-solutions of the Hamilton-Jacobi-Bellman and Isaacs
equations satisfy certain inequalities related to the optimality principle of dynamic
programming. Under some assumptions this implies a particular sign for certain
generalized directional derivatives. Finally, this sign suffices to characterize functions
as viscosity sub- and super-solutions of the appropriate equations. For purely technical
reasons this is interesting, since it shows how the definition of the viscosity solution,
which restricts the behavior of the solution only at points of upper- or lower-differentia-
bility, forces conditions on the (Dini) directional derivatives at an arbitrary point.
Moreover, it provides one with an easy way to check whether a smooth function
satisfies the equations at every point. From the point of view of the applications these
questions relate to dynamic programming for control or game problems without
smoothness of the value function and presumably have some bearing on the synthesis
of (generalized) optimal controls, but we have not attempted to work out the details.
Finally, they may be useful for the investigation of the structure of singularities of
solutions of Hamilton-Jacobi type equations (e.g., the eiconal equation in optics).

The work is motivated by a paper of A. Subbotin [28]. In [28], Subbotin gives a
necessary and sufficient condition for a function to be the value of a differential game.
This condition, which is not within the context of the viscosity solution, roughly says
that at every point certain generalized derivatives must have a particular sign. L. C.
Evans and H. Ishii [10], using a "blow-up" argument, showed that the value of an
infinite horizon control problem satisfies Subbotin’s condition, as it applies to control
problems. The techniques used here are different than the ones in [10]. One direction
of the equivalence claimed above is straightforward. The other is closely related to the
principle of dynamic programming and requires some arguments of P.-L. Lions [22],
[24], which treat optimal control problems of diffusion processes.

The paper is organized as follows: The rest ofthe introduction recalls the definition
of the viscosity solution. Section is devoted to optimal control problems. Section 2
deals with differential games. In the Appendix we make some observations concerning
the existence of directional derivatives of the value function. All the definitions and
results from other papers are recalled when necessary.

We conclude the introduction with the definition of viscosity solutions.
DEFINITION 0.1 [5], [6]. Let H :f xI xvI and z :0I be continuous

functions, where f is an open subset of N. A continuous function u: is a
viscosity subsolution of

(0.1)
H(x, u, Du) 0 in f,
u(x)=z(x) on cl

if u(x)<-z(x) on Of and, moreover, for every b C(f), if Xo f is a local max of

C)(7) denotes the set of real valued infinitely many times continuously ditterentiable functions (of
compact support) defined on 7.
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u o, then

(0.2) H(xo, U(Xo), Oq(Xo)) <= O.

A continuous function u" f->R is a viscosity supersolution of (1.1), if u(x)>= z(x) on
OI and, moreover, for every $ C(12), if Xo fl is a local rain of u- o, then

(0.3) H(xo, U(Xo), Dqb(Xo)) >= O.

A continuous function u" f- R is a viscosity solution of (1.1), if it is both sub- and
supersolution of (1.1).

DEFINITION 0.2 [5], [6]. Let H’f x[0, T]xg xR->, z’O x[0, T]-->R and
Uo’f->i be continuous functions, where fZ is an open subset of t. A viscosity
subsolution (respectively supersolution) of

Ou+ H(t, x, u, Du) =0 in f x(0, T],
Ot

(0.4) u(x, t) z(x, t) on 0fl x (0, T],

u(x, O)= Uo(X) on f

is a function u C(OT) such that:

(0.5) u <= z on 0f [0, T], u(x, O) <= Uo(X) in f

(respectively

(0.6) u >- z on f x[0, T], u(x, O) >= Uo(X) in f ),

and, for every b C(QT),

if (Xo, to) QT is a local max of u- o, then
(0.7)

O__ (Xo, to) + H to, Xo, u (Xo, to), D6 (Xo, to) -< 0
Ot

(respectively

if (Xo, to) QT is a local min of u- o, then

(0.8) O,o
(Xo, to) + H( to, Xo, U(Xo, to), Dck(Xo, to)) >= 0 ).

Ot

A function u C(QT) is a viscosity solution of (0.4), if it is both sub- and supersolution
or (0.4).

For a detailed account of the recent developments in the theory of viscosity
solutions as well as references, we refer to the book by P.-L. Lions [21] and the article
by M. G. Crandall and P. Souganidis [7].

1. In this section we consider Hamilton-Jacobi-Bellman equations associated
with optimal control problems. In particular, we look at problems of the form

u+sup{-f(x,y).Du-l(x,y)}=O inf,,
yeY(1.1) u=g ono

where f is an open subset of , g C(O), Y is some separable metric space and

C(7) is the set of continuous real valued functions defined on . Qr=f x(O, T], (r= x[O, T].
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f’(l X Y-->R l(x, y)’(l x Y-->R are continuous functions such that

there exists a constant C > 0 such that

If(x, y)[, It(x, Y)I <-- C for every (x, y) x Y

(1.2) and

If(x,y)-f(,y)l, ll(x,y)-l(,y)l<-cix-l forevery(x,,y)xfix Y.

Problem (1.1) corresponds to an infinite horizon control problem (for the details
we refer to [21] and W. Fleming and R. Rishel 15]) with dynamics given by

dx
(1.3)

d-
-f(x() y(r)) for 0 < r, x(0) x fl

where y "[0, )--> Y is measurable. For notational simplicity in what follows let

(1.4) M {y" [0, c)-> Y, y(. measurable}.

Let u be the unique viscosity solution of (1.1) if it exists. It is known (P.-L. Lions
[21], I. Capuzzo Dolcetta and L. C. Evans [3], L. C. Evans and H. Ishii [10]) that u

satisfies the optimality principle of dynamic programming, that is

I IO!A tx

u(x)=if e-(t^t)u(x(t ^ tx))+ e-Sl(x(s), y(s)) ds}
for every > 0 and x fl

where, for x II and y M, tx tx (y) is the exit time from fl of the solution of (1.3)
for the particular x, y, i.e.,

t,=inf{t>O" x(t) u -fl}.

The first result of this section concerns viscosity superolutions of (1.1). In
particular, we show that every viscosity supersolution of (1.1) satisfies some inequality,
which, in view of (1.5), may be called superoptimalityprinciple ofdynamic programming.
This was first proved by P.-L. Lions in [22], [24], in the general context of optimal
stochastic control. Here we give two proofs related to those given in [22], [24], but
slightly more adapted to the special situation at hand. The first proof uses the fact that
a viscosity supersolution of (1.1) is a viscosity supersolution of an appropriately defined
time-dependent problem. The second proof is based on the fact that a viscosity
supersolution of (1.1) is a viscosity solution of an obstacle problem, which can be
solved easily using differential games. The first step in both proofs is a localization
argument introduced in [24]. It consists of multiplying by suitable cut-off function.
This allows us to reduce to the case fl =rq.

We have
PROPOSITION 1.1. Let v C(I)) be a viscosity supersolution of (1.1). Then, for every

> 0 and x fl, we have

(1.6) v(x)eif e-(tt)v(x(t t))+ e-l(x(x), y(s)) ds

r^ =min {r, s}.
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Proof 1. The first step in the proof is to modify the problem so that it is defined
in R. To this end, for 8 > 0 let 128 be defined by

f {x f’[x < 1/8 and dist (x, Of) > 8}.

Moreover, choose :,pC(RN) such that :-=1 on , 0<=-<1, :=0 on
RN\/2, q on a neighborhood of supp :, 0 -< rp <- and q =-0 on Rv\/4. Then
the function 5"R which is defined by

(x)=
0

is a viscosity supersolution of the problem

(1.7) (x)a+sup{-sr(x)f(x, y) Da-(x)l(x, y)}=O inl.
yeY

Next for > 0 fixed consider the initial value problem

Ow/Os+sup{-(x)f(x,y).Dw-(x)l(x,y)}+(x)w=O in Qt,

(1.8)
YY

w(x, O)= 5(x) in.
In view of the results of [6] and [21], (1.8) has a unique viscosity solution
C(v [0, t]) given by

(x, s)=inff v((s)) exp (()) dr

(1.9)

Io (Io+ exp ((A)) dA l((z),y(r)) d

where ;(. is the solution of

dz
-((r))f((r),y(r)) for0< -< t,

(0)=x.

v’, however, is a viscosity supersolution of (1.8). The uniqueness estimates of [6]
imply

(x) >= w(x, s) for every (x, s) N x[0, t].

Next observe that for x l and y M, if < tx, then ;(s) x(s) for 0 =< s =< t, where
x(.) is the solution of (1.3), provided that 8 is sufficiently small. Moreover, x(.)
{x f: :(x) 1}. These observations together with (1.9) imply (1.6) for < tx. If -> t,
choose t, ’ &. Then

v(x) >= inf v(x(tn)) e-t" + e-Sl(x(s), y(s)) ds
yeM

As n c we obtain (1.6), since v C(f).
Proof 2 (obstacle problem method). Here, in order to exhibit the main ideas, for

simplicity, we are going to assume l =N. The general case follows by appropriate
use of the localization technique explained in Proof 1.

It is easy to see that v is the unique viscosity solution of the problem

v+min{sup{-f(x,y).Dv-l(x,y)},-v}=O inR
yeY
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which can be rewritten as

(1.10) v+ min sup {-f(x, y, z). Dr-/(x, y, z)}=0
zZ y Y

with Z { l, 2} and

in N

f(x,y,z)={O, ifz=l,
f(x,y), if z- 2,

/(x, y, z) { v(x), if z l,
-l(x, y), if z 2.

Equation (1.10) corresponds to an infinite horizon differential game, thus v must satisfy
the dynamic programming principle, as it is shown in the first part of L. C. Evans and
H. Ishii 10].

We need some more notation. In particular, let

N {z’[0, c) Z, z(" measurable}.

Moreover, denote by F the set of mappings a’N M, which, for every > 0,
satisfy the following condition"

If z(x)=(s) fora.e. O<=s<=t, then a[z](s)=a[](s) for a.e. O<=s<=t.
In view of 10, Thm. 3.1 ], for every > 0, we obtain

(1.11) v(x) inf sup e-(:(s),a[z](s),z(s))ds+e-tv((t))
aF N

where for x N, Z N and a F, (. is the unique solution of

d
"s =-f((s), a[z](s), z(s)) forO< s,

(0) x.

Choose N such that -= 2. Then (1.11) implies

v(x) >- inf v(x(t)) e-+ e-’l(x(z) a[](’)) dr

since, in this case, (. is the solution of (1.3). But

{a[Z]" a F}c M;
thus the result.

The next proposition deals with viscosity subsolutions of (1.1). In particular, we
show that a viscosity subsolution of (1.1) satisfies an inequality, which we call the
suboptimality principle of dynamic programming. The proof relies on the fact that
viscosity subsolutions of (1.1) are viscosity subsolutions of an appropriately defined
time-dependent problem.

We have
PROPOSITION 1.2. Let w C(1,) be a viscosity subsolution of (1.1). Then, for every

xRN and t>-O,

(1.12) w(x)-<-inf e-(t^tx)w(x(t ^ tx))+ e-l(x(s), y(s)) ds
dO

Proof. Here we give the proof in the case f =R. For the general case, one has
to use first a localization argument as in Proof of Proposition 1.1.
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For > 0 consider the problem

c3z--+ max {-f(x, y) Dz + l(x, y)} + z O in
OS YeY

z(x, O)= w(x) in RN.
w is a viscosity subsolution of this problem; therefore, for every x Rv,

w(x)<-z(x, t)=inf w(x(t)) e-’+ e-Sl(x(s),y(s)) ds

The above are justified as in Proof of Proposition 1.1.
Next we want to use Propositions 1.1 and 1.2 to obtain a kind of infinitesimal

version ofthe super- and suboptimality principle ofthe dynamic programming, satisfied
by viscosity super- and subsolutions of (1.1). To do this, we have to assume that we
work with sub- and supersolutions which are locally Lipschitz. Moreover, we need to
introduce the following notation.

(1.13) (FL)(x) =-C-6 {(f(x, y), l(x, y)): y Y}.

We have:
Ol 4THEOREM 1.3. Let v Cl;c(fl) be a viscosity supersolution of (1.1). Then, for every

x,

(1.14) v(x) + lim sup
f "1{v(x)-v(x+6f)_l}.>O

go (f, I)(FL)(x) (. J6
and the inequality is achieved as 6 0 uniformly on compact sets.

Proof. For x fl fixed let K be the Lipschitz constant of v in a ball of radius C
centered at x, where C is given by (1.2). Moreover, assume that 0< 8 < is small
enough so that 8 < tx. In view of Proposition 1.1, we have:

{v(x)-e-gv(x+:f(x(s) Y(s))ds) llosup e-Sl(x(s) y(s)) ds >0.
M

Therefore

v(x)+e-g supw {v(x)-v(x+6(1/$)$ f(x, y(s)) as) -- l(x, y(s)) ds

>=-(K + l)C2t- C (1+
But

(-Io llo )f(x, y(x)) ds,-d l(x, y(s)) ds e (FLI(x).

The above inequality implies

1-e-g

{v(x)-v(x+6f) I} >_(K+I)C26_C(1 + )v(x)+ e
-g

sup
e-g-

(f,l)e (FL)(x)

Letting 60 we obtain the result. The uniformity claimed in the statement is an

4 01Cl;c(ff) denotes the set of real valued (locally) Lipschitz continuous functions defined on ft.
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immediate consequence of the fact that the above also holds for every y N in a
neighborhood of x of radius C/2.

As a consequence of Theorem 1.3 we have
COROLLARY 1.4. Let v Clcl() be a viscosity supersolution of (1.1). Then, for

every x f,

(1.15) v(x)+ sup
f "1F__v(x)-v(x+Sf)_l> 0

(f,l)e(FL)(x) {. 8,[,0 8 J

and the inequality is achieved as 8 , 0 uniformly on compact sets.
Remark 1.5. In the second part of [10] L. C. Evans and H. Ishii proved that if

{f(x, y)" y Y} is convex and l(x, y) O, then a locally Lipschitz viscosity supersolution
of (1.1) satisfies

e-av(x+Sf)-v(x)
inf lim -< 0
yY 60 8

which, under their assumptions, is equivalent to (1.15). As mentioned in the Introduc-
tion, they used a "blow-up" argument. The proof we give here is based completely on
Proposition 1.1 and Theorem 1.3.

Proof of Corollary 1.4. Relation (1.14) implies that there is a subsequence k $ 0
as k + such that

v(x)+lim sup { V(X) V(X + Skf) l} >=
k-,oo (f, I)(FL)(x) (k

Then for e > 0 fixed but arbitrary there is a ko ko(e) > 0 such that for k => ko

v(x) + sup { V(X) V(X + Skf) I} >-- e.
(f,/)e (FL)(x) tk

Next for each k >_-ko choose (fk, lk) (FL)(x) such that

V(X) V(X + Skfk)
lk sup { V(X)-- V(X + Bkf) l}.k (f,l)e (FL)(x) (k

The compactness of (FL)(x) implies that along some subsequence of 8k$0 (which
again for simplicity is denoted by 8k) we have

(fk, lk) -+ (f, 1) (FL)(x).

This, together with the Lipschitz property of v, implies

V(X) + Iim { V(X) V(x + Skf) I} >=
8k

and, therefore, the .result.
Remark 1.6. It is of some interest to know whether, in the case at hand, (1.15)

holds with lim replaced by lirn.
For the case of a viscosity subsolution of (1.1) we have:

OlTHEOREM 1.7. Let w C,(I) be a viscosity subsolution of (1.1). Then, for every
x,

w(x) +lim sup Iw(x)-w(x+Sf)-l<O(1.16)
8,1,0 (f,l)(FL)(x) I, Jt
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and

(1.17) w(x)+ sup li---(w(x)-w(x+f)-l}<-O(f, I)(FL)(x) 0

and the inequality is achieved as 0 uniformly on compact sets.

Proof Relation (1.17) follows immediately from (1.16). To prove (1.16) observe
that, in view of Proposition 1.2, we have

w(x)-e-w(x+ Jf(x(s), y(s)) ds
e-l(x(s), y(s)) ds<-O

and, therefore

-e- Iow(x)+e_
w(x)-w(x+6(1/6)f(x,y(s)) ds)

6 - l(x, y(s)) as
(1.18)

( e__l)<-(K+I)C26+C +---
for every y M, where K is the Lipschitz constant of w in the ball of radius C centered
at x.

In view of the general geometrical fact

{( fo 1;o )f(x, y(s)) as, - l(x, y(s)) as y M E-6 {(f(x, y), l(x, y)). y Y},

relation (1.18) implies

1- e- { w(x) w(x + 6f) l} < O(1w(x)+e- sup
( (f,/)(FL)(X)

where O(1)-0 as 60 and thus (1.16). The uniformity follows from the fact that all
the above hold with the same constants for all points in an appropriate neighborhood
of x.

Combining Corollary 1.4 and Theorem 1.6 we obtain
COROLLARY 1.8. Let u Ctc(f) be a viscosity solution of (1.1). Then

sup
(f,I)(FL)(x) [. 8,0

We continue with a result which is the inverse of Corollary 1.5 and Theorem 1.7.
In particular, it says that (1.15) and (1.17) together with appropriate boundary condi-
tions characterize continuous functions as viscosity super-(respectively sub-)solutions
of (1.1). We have

PROPOSITION 1.9. (a) Let v C(fl) satisfy (1.15) for every xfl. Then v satisfies
(0.3) with H as in (1.1).

(b) Let w C(f) satisfy (1.17) for every x f. Then w satisfies (0.2) with H as in

Proof. (a) For be C(/) let Xoe be a local minimum of" -b. We want to
show that

V(Xo) + sup {-f(xo, y)" Dck(Xo, y)+ l(xo, y)}-> 0.
yeY

But for 6 sufficiently small we have

th(Xo) 6(Xo+ By) V(Xo) V(Xo+ f)
l>= for all (f, l) (FL)(xo).
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This inequality and (1.15) imply

V(Xo) + sup
(f,/)e (FL)(xo)

Finally, since

{-f. Db(Xo) l} -> 0.

sup A sup A,
AA A E’6 A

we have the result.
(b) The proof is similar to the one of part (a), therefore we omit it.
Remark 1.10. All the results of this section extend to several other cases including

time-dependent problems. The type of statements that one obtains are similar to the
ones of 2.

We conclude this section with an observation concerning smooth functions which
satisfy (1.15) and (1.17). Since the proof is similar to the proof of Proposition 1.9, we
omit it. We have"

PROPOSITION 1.11. Let v C(fl) satisfy (1.15) and (1.17) for every xII. If v is

differentiable at Xo fl, then

(1.20) V(Xo) + sup {-f(xo, y)" Dv(xo)- l(xo, y)} 0.
yeY

Remark 1.12. Using the properties of viscosity solutions one can obtain Proposi-
tion 1.11 directly from Proposition 1.12. The point here is that (1.20) follows immedi-
ately from the conditions on the directional derivatives of v.

2. In this section we consider Hamilton-Jacobi equations which are related to
the theory of two-player, zero-sum differential games. Since in we looked at
stationary problems, here to show the generality of the arguments involved, w’e work
with time-dependent ones. In particular, we consider the following problems:

(2.1)

and

OU
Ot-- inf sup {-f( t, x, y, z) DU l( t, x, y, z)} 0

y Y zZ
in fl x (0, T],

U(x, t)= g(x, t) on Of x[0, T],

U(x, O) Uo(X) in

OV
+sup inf {-f( t, x, y, z) DV- l( t, x, y, z)} O infix(O, T],
Ot zZ y Y

(2.2) V(x, t) g(x, t) onO [0, T],

V(x, O) Uo(X) in

where Y, Z are compact sets and f" [0, T] x 1) x Y x Z -> R, l" [0, T] x1 x Y x Z ->

R,g’0fl[0, T]->, Uo’ll--> are bounded continuous functions. Moreover, they
satisfy

There exists a constant C > 0 such that

If(t,x,y,z)l, ll(t,x,y,z)l<-_C forevery(t,x,y,z)[O, T]xl)x YxZ

(2.3) and

If(t, x, y, z)-f(t, , y, z)l [l(t,x, y, z)-l(t, , y, z)l -< C(It- tl+lx- l)
for every (t,x,y,z),(,x,y,z)[O, T] xl) x YxZ.
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Problems (2.1) and (2.2) correspond to a finite horizon two-player, zero-sum
differential game (for details we refer to W. Fleming [12], [13], [14], Elliott and Kalton
[8], A. Friedman 16], 17]) with dynamics given by

dx
d.-f(-, x(z), y(-) z(-)) for T- < "r< T,

(2.4)r-t
x(T-t)=x6fl

where y [ t, T] Y, z :[ t, T] Z are measurable functions. Before we continue we need
to introduce some notation. In particular, for 0-< <- T define

M(t)= {y :[t, T] Y measurable},

N(t) {z :It, T] Z measurable}.

Moreover, denote by F(t), A(t) the sets of mappings a N(t) M(t),/3 M(t) - N(t)
respectively with the following property

and

For each s such that <= s <= T

if z(z) (z) for a.e. =< z =< s, then a[z](-) a[](-) for a.e. <- z <- s

if 33(’) 33(z) for a.e. -< z -<_ s, then/3[y](z) =/3[y](-) for a.e. -< - -< s.

Let U, V be the unique viscosity solutions of (2.1), (2.2) respectively if they exist.
It is known (L. C. Evans and P. Souganidis 11] for f/= R, L. C. Evans and H. Ishii
[ 10] for stationary problems) and it follows from the results of this section for other
cases that U, V satisfy the optimality principle of dynamic programming, that is

For (x, t) f/ (0, T) and 8 > 0 such that 8 _-<

U(x,t)= inf sup
/3cA(T-t) yeM(T-t) ,I T-t

(2.5) and

l(s, x(s), y(s), fl[y](s)) ds

+ U(x(( T- + t$) ^ t,), T-(( T- + t) ^ tx))}

V(x,t)= sup inf {I (r-t+)^tx

I"(T- t) z_N(T-t) T--t
l(s, x(s), a[z](s), z(s)) ds

+ V(x((T-t+8)^tx), T-((T-t+8)^tx))}
where, for xl,x(.) is the solution of (2.3)7-_, with the appropriate y(.),z(-)
functions and tx is the exit time from f/ (0, T) of x(. ).

The first result of this section concerns viscosity supersolutions and subsolutions
of (2.1) and (2.2). In particular, we show that they satisfy some inequalities, which,
in view of (2.5), may be called the super- and suboptimality principle of dynamic
programming. All the results are going to be stated as they apply to the general problems
(2.1) and (2.2); the proofs, however, for simplicity are going to be given only for the
special case f/= R. To obtain the most general results, one has to use the localization
argument, which was described in the course of the proof of Proposition 1.1.



VISCOSITY SOLUTIONS OF BELLMAN’S AND ISAACS’ EQUATIONS 577

We have
PROPOSITION 2.1. Let v, we C(QT) be viscosity super-(respectively sub-)solutions

of (2.1) (respectively (2.2)). For every (x, t) f (0, T) and 6 > 0 such that 6 <- t, we have

(2.6) v(x,t)>= inf sup
[3A(T--t) yM(T--t) T-t

and

l(s, x(s), y(s), /3[y](s)) ds

+v(x((T-t+6)^tx), T-((T+6)^tx))}

(2.7) w(x, t)<= sup inf l(s, x(s), a[z](s), z(s)) ds
I-’(T- t) zN(T-t) dT-t

+w(x((T-t+6)^t), T-((T-t+6)^tx))}
Proof. Here we prove only (2.6), since (2.7) is proved in exactly the same way.

As mentioned above we are going to assume II N.
For e > 0 choose , 4 e C(N) such that 0-<_ : <_- 1, 0-<_ 4 --< 1, =- on e, T- e],

:--0 on (-oo, e/2]t.J(r-e/2,o), b-- on [e/4, T-e 49-=0 on (-o, e/8]U
[T-e oe). Moreover, let t3:RN xl-->R be defined by

(x, s)=
0

if T- s >- 0,
if s<0 or s> T.

It is easy to check that t3 is a viscosity supersolution of the problem

OU+ inf sup {-(s)f(s, x, y, z). D- (s)l(s, x, y, z)}=O in N+I() o-7
Next let T> > 6 > 0 be fixed. Then 5 is also a viscosity supersolution of

(2.8)

-t- inf sup -(s)f(s, x, y, z). DW+ (s) -s (s)l(s, x, y, z) =0
y Y zZ

in [N+I X (0, T- + 6),

W(x, s, O) (x, s) in u+.
If W C(N+I x[0, T- + 6]) is the unique viscosity solution of (2.8), the unique-

ness estimates of [6] imply

(x, t)>-- W(x, t, 6).

Moreover, the results of L. C. Evans and P. Souganidis [11] give

W(x,t,)

inf sup (T- + 6 t(o))l(T- + 6 t(0), )(0), fl[Y](O)) do
eA(T--t) yeM(T--t) dT-t

+ t3((T- + 6), t(T- + 6))}
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where for y M(T- t) and/3 A(T- t), ;(. ), t(. are the solution of

dp
(T- + 8 t(p))f( T- + 8 t(p), (p), y(p), fl[ y](p))

for T-t<p< T-t+8,

dt
=-(T-t+8-t(p)) forT-t<p<T-t+8,

(T-t)=x, t(T-t)=t.
As e 0 the above observations imply the result, since

(0) --> x(0) uniformly on T- t, T- + 8]

where x(. is the solution of (2.4)r_,
The next proposition considers subsolutions of (2.1) and supersolutions of (2.2).

Since the proof of the results is exactly the same as the proof of Proposition 2.1, we
omit it.

PROPOSITION 2.2. Let v, we C(Qr) be viscosity sub-(respectively super-)solutions
of (2.1) (respectively (2.2)). For every (x, t) f (0, T) and 8 > 0 such that 8 <- t, we have

(2.9)
v(x,t) <- inf sup {I (T-’+)^’x

/3A(T-t) yM(T-t) T-t
l(s, x(s), y(s), /3[y](s)) ds

+v(x((T-t+8)^tx), T-((T-t+8)^tx))}
and

f(T-t+8)^txw(x, t)>- sup inf l(s, x(s), c[z](s), z(s)) ds
I’(T-t) zN(T-t) ,IT-t

(2.10)
+ w(x(( T- + 8) ^ tx), T-(( T- + 8) ^ tx)) i.

Next we want to use Proposition 1.1 to obtain a kind of infinitesimal version of
the super- and suboptimality principle of dynamic programming. To do this we have
to assume, as in 1, that we deal with locally Lipschitz viscosity super- and subsolutions.
Before we state the results we need the following notation:

(2.11).
for t, x, y) (O, T) xfl x Y,

(FL)(t, x, y) -d{(f(t, x, y, z), l( t, x, y, z))" z Z}

and

(2.12)
for (t, x, z) (0, T) xf Z,

(FL)( t, x, z) {(f( t, x, y, z), 1( t, x, y, z))" y Y}.

The result is
OlPROPOSITION 2.3. Let 1),wCIc(’x(O,T))C(OT) be super-(respectively

sub-)solutions of (2.1) respectively (2.2)). For every x, t) 1" x (0, T) we have

(2.13) lim inf sup { w(x, t)- w(x + 8f t- 8) l}. >= 0
-" ye Y (f, I)e(FL)(T-t, x, y) 8
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and

(2.14) li-sup inf {w(x’t)-w(x+6f t-3) l]J,O zZ (f,l)(FL)(T-t, x, z) 6

with the inequalities being achieved as , 0 uniformly on compact sets.

Proof Here we show only (2.13), since (2.14) follows in a similar way. For a fixed
(x, t) l (0, T) let K be the Lipschitz constant of v in a neighborhood of (x, t). For
3 > 0 sufficiently small we have

T-t+3<t
for every y M( T- t),/3 A( T- t), and this uniformly for every in a neighborhood
of x. (2.6) then implies

inf
v(x, t) v(x( T- + ), t- 3)

sup
/A(T--t) yM(T-t) ( 3

l(s, x(s), y(s), fl[y](s)) ds >-_ O.
3 JT-t

But

sup inf =< inf sup _<- inf sup
IA(T--t) yM(T-t) yM(T-t) /3A(T-t) y Y leA(T--t)

Therefore, in view of (2.3), (2.4), we have

inf sup [v(x’t)-v(x+f’t-)-l}>O(1)y Y (f,l) (FL)( T-t, x, y) 3

where O(1) 0 as 6 0 uniformly for (x, t), in a compact set. Here we used the fact
that for y Y

l(T-t,x,y, fl[y](s))ds
aT-t

f( T t, x, y, fl[y](s)) ds, -(FL)( T- t, x, y)

for every/3 A( T- t).
Letting 3 $ 0, we obtain the result.
As a consequence of Proposition 2.2 we have

0,1COROLLARY 2.4. Let v,wCoc(flx(O,T))f3C(OT) be super-(respectively
sub-) solutions of (2.1) respectively (2.2)). For every (x, t) ll x (0, T) we have

inf sup lim (v(x’ t)- v(x + 3f t- 3) l](2.15) 0
y Y (f,i)(FL)(T-t, x, y) 6,0 ( 3

and

inf lim (w(x, t)- w(x + 3f t- 3) l(2.16) sup __--<0
zZ (f,I)(z(FL)(T-t, x, z) S,l,O ( 3

with the inequalities being achieved as 3 , 0 uniformly on compact sets.
Since Corollary 2.3 follows from Proposition 2.2 in the same way that Corollary

1.4 follows from Theorem 1.3 we omit its proof.
We continue with a proposition and a corollary concerning viscosity sub- and

supersolutions of (2.1) and (2.2) respectively. Since these results follow from Proposi-
tion 2.2 the same way as Proposition 2.3 and Corollary 2.4 follow from Proposition
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2.1 we omit their proof. We should also remark, however, that one can obtain these
results directly from Proposition 2.3 and Corollary 2.4, by observing that a viscosity
subsolution (supersolution) of (2.1) ((2.2)) is a viscosity subsolution (supersolution)
of (2.2) ((2.1)). We have:

0,1PROPOSITION 2.5. Let v, w Cloc( x (0, T)) (q C( QT) be sub-(respectively super-)
solutions of (2.1) respectively (2.2)). For every (x, t) f (0, T) we have

(2.17) li-- sup inf v(x, t)-v(x+6f, t-t3) l <-0
,S,[O zZ (f, I)(FL)(T-t, x, z) 1, t3

and

-w(x+t3f t-t3) 1],>0(2.18) lim inf sup
80 y Y (f,/)(FL)(T-t, x, y) t3

with the inequalities being achieved as t3 , 0 uniformly on compact sets.
0,1COROLLARY 2.6. Let v, w6 Clo(f (0, T))(’1C((7-) be sub-(respectively super-)

solutions of (2.1) (respectively (2.2)). For every (x, t) f (0, T) we have

(2.19) sup inf lim ! v(x’ t)- v(x + t3f t-t3) iI -<0
zZ (f,l)(FL)(T-t, x, z) "’ 1. t3

and

w x, / ,-
>- o(2.20) inf limsup

y Y (f,/)(FL)(T-t, x, y) 0 t3

with the inequalities being achieved as t3 , 0 uniformly on compact sets.

The next result is the inverse of Corollary 2.4 and Corollary 2.5. In particular, it
says that (2.15), (2.16), (2.19) and (2.20) together with appropriate boundary conditions
characterize continuous functions as viscosity super- and subsolutions of (2.1) and (2.2).

We have:
PROPOSITION 2.7. (a) Let v C(1 (0, T)) satisfy (2.15). Then v also satisfies

(0.9) with H as in (2.1).
(b) Let w C( (0, T)) satisfy (2.16). Then w also satisfies (0.7) with Has in (2.2).
(c) Let v C(fl (0, T)) satisfy (2.19). Then v also satisfies (0.8) with H as in (2.1).
(d) Let w C(1 (0, T)) satisfy (2.20). Then w also satisfies (0.9) with Has in (2.2).
Since the proof is similar to the proof of Proposition 1.9(a), we omit it.
We conclude this section which is an immediate consequence of Corollary 2.4

and Proposition 2.7. We have
COROLLARY 2.8. Suppose that for every (t, x, p) [0, T]x

(2.21)
sup inf {-f(t,x,y,z).p-l(t,x,y,z)}
zZ y Y

inf sup {-f(t, x, y, z) .p l(t, x, y, z)}.
y Y zZ

Then a function u C(QT) f’l C;,c(fl (0, T)) is a viscosity solution of

--+ sup inf {-f( t, x, y, z) Du l( t, x, y, z)} 0 in f x (0, T),
Ot zaZ y Y

u(x, t)= g(x, t) on O [0, T],

u(x, O)= Uo(X) in

if and only if u satisfies (2.15), (2.16) and the correct boundary conditions.
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Remark 2.9. A result analogous to Corollary 2.8 is proved by Subbotin [28] but
not in the context of viscosity solutions. In particular, in [28] (2.15) and (2.16) are
necessary and sufficient conditions for a locally Lipschitz continuous function to be
the value of a positional differential game, under the assumption that 0 and 12 RN.
Corollary 2.8 also implies in view of the results of [26], [27], [10], [11], [1], that the
notion of the value of a positional differential game is the same as the value of
differential game introduced by W. Fleming, A. Friedman and N. Elliott and J. Kalton.

Remark 2.10. A remark analogous to Remark 1.6 holds here too.
Remark 2.11. A result analogous to Proposition 1.11 holds here too.

Appendix. In view of Remark 1.6 and Remark 2.10, we want to make some
(classical) observations concerning the existence of directional derivatives of the value
function of optimal control and differential games problems. For simplicity here we
investigate the case of an infinite horizon optimal control problem in RN. In particular,
we deal with the existence of

v(x+hx)-v(x)
lim
hO h

for all x, X n, where v is the value function. Using the notation of 1, let us also
assume:

(1)

For every x n, y Y and h

If(x + h, y)-f(x, y)- D(x, y) hi <=
and

I(x + h, y)- l(x, y)- Dxl(x, y). hi <-

where (Ihl)- 0 as Ihl-, 0.

For every y(. )e M, let

(2) J(x, y)= e-Sl(x(s), y(s)) ds

where x(. is the solution of (1.3) with x(0)= x. Moreover, let

(3) v(x)= inf J(x, y).
yM

In view of the discussion in and the references given there, v is the value function
of the associated optimal control problem.

We have
PROPOSITION A. 1. Assume that (1.2) and (1) hold with

(4) > su.p, IDff(x, y)[.
(x, y)l Y

Let v be given by (3). Then

exists for every x, X R and

v(x+hx)-v(x)
lim
hO h

lim
v(x + hx) v(x) OJ(x,,, y,,)

()
hO h

inf
[
lim y. e M, J(x., y.).._., v(x)}.
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Proof. The proof is a consequence of the following lemma.
Lemma A.2. Let w(x)=infi wi(x) with w, w equibounded, equicontinuous and

satisfying:

vx Ixl- there exist Owi(x)/OX such that

(6) w’(x + hx)- w’(x) Ow
(x) <= 6(h) ; O.

h OX ho

Then limho (W(X+ hx)- w(x))/h exists for all X and is equal to

(7) lim
w(x + hX)- w(x) I Ow’" }hO h

=inf lim(x)’w(x) ;w(x)

In view of our hypotheses, v and J(., y) satisfy the assumptions of Lemma 2.
Therefore here we only prove the lemma. We have:

Proof ofLemma 2. Let i, be a sequence such that

w’"(x)- w(x) as n - o.

w’-(x+ hx) w’o(x)w(x + hx)- w(x)
<

h h

Then

Therefore

w’o(x)-w(x)

ow’. Iw’"(x)-w(x)l--< (x)+ 6(h)+
OX h

_-< lim --0w’ (x)+ 6(h).

li-’-- w(x
+ hx)- w(x)

h+O h

where a is the right-hand side of (7). For the other direction, let h. > 0 be such that
h. 0 as n o. Choose i. such that

v(x + hx) < v’.(x + h,,x) < v(x + h.x)+ h"
as n-*.

n

Then, in view of the assumptions,

v’"(x) v(x) as n .
We have

which implies

<
v’.(x + h.x) v’.(x) v(x + h.x) v(x) +-

h,, h,, n

a =< lim
h+O h

v(x+hx)-v(x)

and thus the result.
Remark 3. Results analogous to the above also hold for finite horizon control

problems and differential games. In the finite horizon case, one does not have to assume
(4).
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SOME EXAMPLES OF REACHABLE SETS AND OPTIMAL
COST FUNCTIONS THAT FAIL TO BE SUBANALYTIC*

S. LOJASIEWICZ, JR.t AND H. J. SUSSMANN

Abstract. We give examples of: a) a control system g --f(x)+ Bu, withf a vector field whose components
are quadratic polynomials, and with the controls taking values in the unit cube, such that the time T reachable
sets from the origin are not subanalytic; b) a system g= g(x)+Bu, with the components of g cubic
polynomials, such that the system is completely controllable but the optimal time function is not subanalytic;
c) a linear system with a compact, convex, semialgebraic control constraint for which the time T reachable
sets are not subanalytic.

Key words, time-optimal control, value function, subanalytic sets

1. Introduction. An important question in control theory is that of the smoothness,
or at least piecewise smoothness, of reachable sets. It is natural to conjecture that,
under fairly general conditions, reachable sets are finite or locally finite unions of
smooth embedded submanifolds. Another intimately related question is that of the
piecewise smoothness of optimal cost functions. So far, the only general theorems that
have been proved in this direction are those based on a method introduced by Brunovsky
in [1]: one applies the maximum principle or some other necessary conditions for
optimality to deduce that all points that can be reached at all can actually be reached
by means of a trajectory of a particularly simple kind (e.g. bang-bang, or a finite
concatenation of bang-bang and singular arcs), and one uses this to prove that the
reachable sets must be subanalytic. (For the definition and basic properties of sub-
analytic sets, cf. [7] or [9].) Once this is established, piecewise smoothness follows. A
similar approach has been used to prove piecewise regularity of optimal cost functions
and existence of regular synthesis (cf. [1], [2], [3], [4], [8], [9], [10] and especially [7]).

The purpose of this paper is to present some negative results that point to the
limitations of the above method. We will give examples of very simple systems for
which the reachable sets or the optimal cost function fail to be subanalytic.

This does not yet settle the question whether such sets and functions are piecewise
smooth under general conditions, but it establishes that, if the answer is going to be
positive, then new ideas will necessarily have to be involved, perhaps using classes of
sets more general than that of subanalytic sets, but for which reasonable stratification
theorems can still be proved.

We shall not attempt to give a general definition of what is meant by a "simple
system," but the systems to be exhibited here are clearly very simple in almost any
sense of the word, since they hre "almost" like linear systems with a polyhedral
constraint, except for the fact that, in two of our examples, the linear term Ax is
replaced by a polynomial, and in the third example the polyhedral constraint is replaced
by a set of inequalities involving quadratic polynomials.

The systems considered here will be of the general form

(1.1) =f(x)+ Z
i=1
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where
(a) the state x is in
(b) f, g,. , gm are real analytic vector fields on
(c) the control u (Ul, , u,,) takes values in a compact convex subset K
(d) the admissible controls are arbitrary measurable K-valued functions defined

on an arbitrary interval [a, b] c__ R,
(e) for any given admissible u(.):[a, b] K and any initial condition x(a), the

corresponding trajectory {x(t)} is defined for all [a, hi.
For a system (1.1) as above, we can define the attainable sets (or reachable sets)

Ap(T), Ap( <- T) as follows: Ap(T) is the set of all points q " that can be reached
from p in time T, and

(1.2) Ap (=<T)= U Ap(T).
Ot<=T

It is well known that, under the above hypotheses (especially condition (e)) the
sets Ap(T), Ap (<- T) are compact.

It is natural to ask whether the sets Ap(T), Ap( T) have a "nice" structure, and
it is known that the answer to this question is "yes" in some interesting cases. For
instance, if (1.1) is a linear system (i.e. f(x) Ax, gi(x) hi) and K is a polyhedron,
then it is known that the sets Ap(T), Ap(<= T) are subanalytic. This implies, in particular,
that Ap(T) and Ap(<- T) are finite unions of connected embedded analytic submanifolds
of [".

In 2 of this paper we present an example of a system of the form (1.1) for which
it is not true that the sets A,(T), Ap(<=T) are subanalytic. Moreover, the system will
still have a polyhedral control set K, and will not be too far from linear. Precisely,
our system will be of the form

(1.3) 2=f(x)+Bu

where B (bl,. "-, b,,) is a constant matrix and the components fi,. -., f, of the map
f:"" are polynomials of degree -<2. We will show that the sets Ao(2) and Ao(-<2)
are not subanalytic.

In the second part of the paper we use a slightly modified version of the system
(1.3) to exhibit an example of another unpleasant phenomenon. We construct a system

(1.4) . g(z) + Dv,

which is completely controllable (i.e. for every pair p, q of states there exists a trajectory
that goes from p to q) and for which the optimal time function V is not subanalytic.
(Recall that a function :k R is said to be subanalytic if its graph {(x, y): (x) y}
is a subanalytic subset of k X. For the precise definition of V, see 3.) In this
example, the components of the vector field g are polynomials of degree not greater
than three.

We do not know whether the reachable sets discussed in our first example are
finite unions of submanifolds. Nor do we know whether the function V of our second
example is piecewise smooth in some reasonable sense. It would be desirable to know
whether or not this is the case, or to construct other examples where V fails to be
"piecewise smooth" but the control system itself is real analytic. In particular, it seems
reasonable to expect that some modification of the well-known Fuller example might
be used for that purpose, but it is not clear to us how to do it. (For Fuller’s example,
cf. [6].)

When the control constraint set K is not a polyhedron, the reachable sets may
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fail to be subanalytic even for a linear system and a "very nice" K. In fact, we give
an example of a linear system in R, with two inputs, and a control constraint set
K {(ul, u2)" u- <_-2u2<_- -u}, for which the reachable sets are not subanalytic.
This example is described in 4.

The remainder of this section is devoted to outlining the idea that underlies the
construction of the example of 2. Although the example itself appears to be extremely
complicated (21 variables, l0 controls), the idea is quite simple, as we now explain.

Our point of departure is the initial value problem

(1.5) cS+x=0, x(0)=c, (0)=0, 0<c_--<l

whose solution is

(1.6) x( t) c cos (-).
We can rewrite the equation c5/+ x 0 as a system in three variables x, y, c:

(1.7) =y, c=-x, d=0.

The initial conditions of (1.5) single out the half-open segment

(1.8) Lo- {(c, 0, c): 0< c -< 1}

in (x, y, c) space. If we let each of the points of Lo evolve following trajectories of
(1.5), up to time l, we get the curve

(1.9) L c cos -x/ sin c 0 < c <_-

The set L is not subanalytic because, if we let P denote the plane y 0, then
L f’l P is the set of points ((- 1)k/7/.2k2, 0, / 7/"2k2), i.e. an infinite sequence that has a
finite limit point.

The preceding considerations do not yet provide an example of the kind we want,
for two reasons:

(a) the equations (1.7) are not a system of first-order ditterential equations of the
usual kind, because the equation c/9 =-x is not of the form/9 b(c, x, y) with b real
analytic in c, x, y,

(b) the initial condition (x, y, c) Lo does not specify a single initial point, but a
whole segment.

However, we can modify our construction so as to obtain an example of the
desired kind. We do this in two steps, by first taking care of (a), and then of (b).

To take care of (a) we must find a way of forcing cp to be equal to -x without
actually writing "c) =-x." We can do this by introducing two new variables p, q with
initial conditions

(1.10) p(0) q(0) 0,

and equations

(1.11a, b) p=cy+q, (t=x.

If we succeed in forcing p to equal 0, then we will get//-= 0, i.e. c))=-x (given
that d 0). To force p to equal 0, we introduce another variable s, and impose the
boundary conditions

(1.12) s(0) s(1) 0
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and the equation

(1.11c) :p2.

We now have a total of six variables (x, y, c, p, q and s), the three equations
(1.1 a, b, c), as well as the two equations

(1.11d, e) =y, t=0,

giving a total of five equations which express the time-derivatives of five of our fix
variables as functions of these variables. On the missing variable y, we impose no
explicit restriction. We allow y to vary freely, by writing

(1.1 If) 9 uy

where uy is a control. The terminal condition s(1) 0, together with the initial conditions
s(0) p(0)= q(0)= 0, will have the effect of forcing c) to equal -x.

The six equations (1.1 a, b, c, d, e, f) define a control system with a single scalar
input uy, in the space R6 of the six variables x, y, c, p, q and s. If we let o denote the
segment defined by

(1.13) y=p=q=s=O, x=c, 0<c-<_l,

and we let L denote the set of all points that are reachable in time by some trajectory
of (1.11) from some point of Lo, then the set Ll can be pro,ved not to be subanalytic.
Indeed, if we let H denote the hyperplane s 0, then Ll f)H is precisely the set

L x {(0, 0, 0)} because, if a trajectory -> x(t),. , s(t) of (1.11) satisfies s(0) s(1)
0, then p(t) must equal 0 for all [0, 1] and then, as explained before, the equation
cp(t) -x(t) will hold, so that --> (x(t), y(t), c(t)) is actually a trajectory of our first
system.

So we have succeeded in exhibiting a control system Z with the property that
the time reachable set from an initial segment/,o is not subanalytic. Our next task
is to take care of difficulty (b), i.e. to modify the system so that the initial condition
that gives rise to a nonsubanalytic reachable set is a point, rather than a segment. It
is quite easy to produce a system Z2 such that the time one reachable set from some
point is a segment. If we then follow the trajectories of system E from that segment,
during one unit of time, we will get our nonsubanalytic reachable set. Our problem is
to produce this "system switching" within one single system, i.e. to find one system
whose trajectories will be forced to be those of E2 for t-< 1, and then those of E for
t->_ 1. So we must find a way to write equations for x, y, c, p, q, s and other variables
as well, so that the equations of will have to hold for x, y, c, p, q, s for <_-t <-2,
while enough freedom is preserved so that, for instance, points with x 0, y c > 0
will be reachable from the origin in time 1.

Recall that the equations g p2,/ cy + q force cy + q to vanish identically along
trajectories that satisfy the terminal conditions s(0) s(1) 0. Our first task is to modify
these equations so as to force cy + q to vanish identically for <- t-<_ 2, without forcing
it to vanish identically for all t. We will do this while not modifying the equation
6 =cy + q. So we must force p to be constant on [1, 2]. To do this, we introduce new
variables s, a,/3, y and controls u, v, w, subject to the equations

(1.14a) & (1- t)s+ 1-u,

(1.14b) /e (2-t)+ 1-ve,

(1.14c) w,
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(1.14d) %= :,
and then we replace g- p2 by

(1.15) g (p ye)2 + a --.If the terminal conditions s(0)=s(2)=0 hold, then (1.15) forces ae and /3e to
vanish identically, and p to equal Ye. If the controls ue, ve are <= l, then (1.14a, b) force
(1- t): to be <_-0, and (2-t): to be <_-0 as well. Since 1- and 2-t have opposite
signs on [1, 2] this forces : to vanish on 1, 2], and so ’e is constant on [1, 2], and
therefore p is constant on [1, 2].

To get c to be constant on [1, 2] we could use a similar trick. We could introduce
variables r/, a, fl7, % and controls u7, v7, wT, subject to equations exactly like
(1 14a, b, c, d), with sc replaced by r/. We would then add the sum (c-,,)2+ a - + fl7

to the right side of (1.15), and then we will have forced c to be constant on [1,2].
There is, however, a slight drawback to using this approach to make c constant

on l, 2]. We want to force c, x and y to satisfy c(1) x(1) > 0, y(1) 0. The equation

&7 (1 t)r/+ u7 will force 7 to be -<_0 on [0, 1], and so 3’7 will be <-_0 on [0, 1] (if
3%(0)=0). So c will be <-0 on [0, 1] (because c--77) and this will contradict c(1)>0.
This can easily be taken care of, by forcing c to equal -% rather than %, i.e. by
inserting the term (c+ %)2, rather than (c- 3,7)2, in the right side of (1.15). However,
if we do this, we will get k--’7--7, and so k will be ->0 on [0, 1]. Therefore c_-> 0
on [0, 1]. As we will see below, the equality x(1)= c(1) will be enforced by making x
equal to c on [0, 1]. So, if c_->0 on [0, 1], then x_->0 on [0, 1]. Since q(0) =0, we find
that q(1) can only vanish if x 0 on [0, 1], in which case x(1) 0 and c(l) 0. On the
other hand, since we will be forcing cy 4- q to vanish on l, 2], and y(1) to be equal to
zero, q(1) will have to vanish. So, if we use the approach outlined above, we will not
be able to get the condition c(1)> 0 satisfied.

So we must use a slightly different approach to force c to be constant on [1, 2].
We introduce 7, a7,/37, %, uT, v7, w7 as above, subject to the four equations

(1.16a) &7 (1- t)7 + l-u7,

(1.16b) /7 (2- t)r/4- v7,

(1.16c)

(1.16d) ’7
but we do not attempt to force c to equal Y7 (or -3’7). Instead, we introduce new
variables A, b, subject to the equations

(1.17a) =b,

(1.17b*) (t)= bck(t),

(1.17c) IJ Ub,

where Ub is a new control, and b is a function that changes sign on [0, 1], but has
isolated zeros. We then force A to coincide with Y7 by inserting the term (A- yT)2 in
the right side of (1.15). In this way, we guarantee that b will vanish, and c will be
constant, on l, 2], without forcing c to have constant sign on [0, 1].

Since (1.17b*) is not autonomous, we render it autonomous by writing instead,
for instance,

(1.17b) =b/x,
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(1.17d) /2 2- 10t.

(Notice that can be considered as a state variable, with equation i- 1.)
The solution of (1.17d) with initial condition/x(0) 0 is the polynomial 2t-St2,

which satisfies the conditions that were required of th(t).
Finally, we must force x(1) to equal c(1), and y(1) to equal 0. We achieve this

by introducing yet another variable tr, together with variables a,/3, subject to the
equations

(1.18a) &, -tcr+ 1-u,

(1.18b) /, (1 t)r+ v,

where u, v are new controls with values in [-1, 1]. As before, we insert a +/32 in
the right side of (1.15). This forces r to vanish on [0, 1]. We then demand that r itself
satisfy the equation

(.8c) =(x-c).
This will force x to equal c on [0, 1]. Since we are already forcing b to vanish on

[1, 2], we have 6(1)=0, i.e. (1)=0, i.e. y(1) =0.
Summarizing, we have a set of 21 variables, namely, t, y, x, q, b, c, r, a,/3,,, p,

s, Ye, ae, fie, /z, A, r/, y,, an, /3, and s, which we will now relabel as Xo, Xl,"" ", X20,
and ten controls u,, Ub, Ue, Ve, We, U,, V,, W,, U and v, which we will relabel as
u, , Uo. The equations listed in 2 are precisely the ones we have derived, namely"

(i) the fifteen equations (1.14a, b, c, d), (1.16a, b, c, d), (1.17a, b, c, d),
(1.18a, b, c),

(ii) the equations l, - y, uy,/O =cy + q, 1 x, and
(iii) the final version of (1.15), obtained after all the squares of functions that

will be forced to vanish are added to the right side of (1.15), which gives

(1.19)

2. The main example. We let n 21, m 10. We use Xo, , X2o for the coordinates
in R2. The control set is the cube

(2.1) K ={(u,,..., ulo): [uil 1, i= 1,..’, 10}.

Equation (1.3) will now be written in full, as a system of 21 scalar equations. For
convenience, we divide the 21 equations into five groups.

(I) a) 9o=1, b) :/:l=u,,
c) 2=x, d) 3=x2, e)
f) :5

(II) a) 6--- (X2-- X5)2,
b) :7 XoX6 + u3,
c) :8 Xo)X6 + u4.

(III) a) 9-- xxs+x3,
b) "10 U5,

C) "11 Xlo,

d) .2 Xo)xlo+ u6,
e) -3 (2 Xo)Xo+ u7.
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(IV)

(v)

a) 14 2 10Xo,
b) 5 x4x14,

C) 16--- U8,

d) 17 x16,
e) lS (1 Xo)Xl6 + -//9,
f) 9 (2- Xo)X6+ Uo.

20 X72-- X "" (X9 Xl )2 ...X,2_.X213_I..(XI5__XI7)2..[_X8..X9.

The system E defined by the above equations satisfies all the hypotheses of 1.
(To verify the nonexplosion condition (e), observe that each of the 21 equations is of
the form gi Oi(Xo,""’, xi_, Ul,’’ ", ulo), and therefore the solution can be found
by successive integrations.)

From now on, we will only be dealing with this particular system, and with the
attainable sets from p =0, which we denote by A(T), A(<=T). Our goal is to prove
that A(2) and A(-<2) are not subanalytic.

First, we list some properties of subanalytic sets"
(i) Every finite set is subanalytic.
(ii) Every set of the form {x: b(x)A}, where b:Rn-->R" is a real analytic

function, and A is subanalytic in
(iii) The intersection of two subanalytic sets is subanalytic.
(iv) Every bounded subanalytic subset of " has a finite number of connected

components.
In view of (iv), every hyperplane is subanalytic. Clearly, A(2) is the intersection

of A(-<2) with the hyperplane Xo 2 (because of (Ia)). So, if A(-<_2) were subanalytic,
it would follow that A(2) is subanalytic. Therefore we will only study A(2). We let S
be the linear subspace of 21 defined by X "--X20--0o In view of (i) and (ii), S is
subanalytic. Let B A(2)fq S. If we prove that B is not subanalytic, then it clearly
follows that A(2) is not subanalytic. On the other hand, the nonexplosion condition
(e) implies that A(2) is compact. Therefore B is compact. We will prove that B has
infinitely many connected components. In view of (iv), this will imply that B is not
subanalytic.

To prove that B has infinitely many components, we construct an infinite sequence
Ho, H, H2, of pairwise disjoint hyperplanes, and we prove that

(2.2) B
_

t.J Hk,
k=0

and

(2.3) BHk for k> 10.

The desired conclusion clearly follows from (2.2) and (2.3).
The Hk are constructed as follows: Hk is the hyperplane given by x5 Ck, where

the constants Ck are defined by Co 0 and

(2.4) Ck-- rEkE for k= 1,2,....

First we prove (2.2). Let I=[0,1], I2=[1,2], I=[0,2]. Let yB, and let
u(. "[0, 2]--> K be an admissible control whose corresponding trajectory x(. "[0, 2]-->
R2, with initial condition x(0)=0, satisfies x(2)=y. Let Xo(’),’’" ,X2o(’) be the
components of the vector-valued function x(. ). We will now derive a series of condi-
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tions that these functions must satisfy. To simplify the formulas, we will often write

xi rather than xi(t).
Since y B, we have X2o(2)=0 and so (V) implies that the following equalities

hold identically on I"

(2.5) x7 -= x =- x_ -= x3 x8 x9 0,

(2.6) X9 X l, Xl5 XlT-

Then (IIb) gives XoX6 -= u3, and (IIc) implies (Xo- )x6-- u4. Since u3 ->- 0,
1- u4_-> 0, we get x6 -> 0 and x6 -< 0 on I1.

Therefore

(2.7) x6-- 0 on 11.
Then (IIa) gives

(2.8) x2-- x on I1.
From x2 -= x3 0 and (IIId), (IIIe), we get (1 Xo)Xo+ u6 0, which implies

that Xo)Xo <- O, and (2 Xo)Xo+ u7 0, which implies that (2 Xo)Xo <= O. Since

Xo < 0 and 2 Xo > 0 on ]1, 2[, we conclude that

(2.9) Xo 0 on I2.
Since x9 =- Xll, we get from (Ilia) that

(2.10) xlxs+x3-- Xo on L
Therefore

(2.11) XlXs"-x3O on I2.
Since x8-= Xl9 0, a reasoning similar to that used for xlo shows that

(2.12) x6 -= 0 on 12.
On the other hand, we know that x5-- xt7. So (IVb) and (IVd) yield

(2.13) x4x14 x16.

Therefore

(2.14) x4xt,=-O on 12.
The function x4(’) can be computed from (IVa). We get

(2.15) XI4(t) (2--

In particular, X14(/)# 0 for I2, and so

(2.16) x4=0 on I2.
By (If), x5 is constant on I2. Let c denote the value of xs(t) for 12. Then (2.11)

says that

(2.17) cx+x3=-O on I2.
Therefore

(2.18) c +:3 =- 0 onI2.
Using 3 X2, 2 Xl, we conclude that

(2.19) c5/2 + x2-- 0 on I2.
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Clearly, if we compute x2(1) and 2(1), the function x2(’) will be completely
determined on I2 by these data, together with c.

Since x2 -= x5 on Ii, we have

(2.20) x(1) xs(1) c.

Moreover, x2 =- x5 on I implies 2-- :5 on I, i.e. xt x4 on It. Since x4--0 on I2, we
get

(2.21) 2(1) Xl(1) 0.

If c < 0, let c- _it-2. Then x2(t) must be of the form

(2.22) x2( t) a et’(t-) + e-"(t-l)

on L_, for some a,/3 R. The initial conditions x2(1)=c, 2(1)=0, give a +/3 =c,
It(a-/3) 0. Since It # 0, we have a =/3 and so a =/3 c/2. Therefore

(e(t-l) e-,(,-))(2.23) x2(t) = +

for _--< _--< 2. Therefore

#(t-) e-(t-)](2.24) Xl(t) :2(t) [it e -It

for _--< _--< 2. In particular, we get

(2.25) x(2) =T(e"- e # 0.

But this is a contradiction, since x(2)= y, and y B, so that x(2)=0. Therefore
the possibility that c < 0 is excluded.

Now suppose that c > 0. Write c It-2, It > 0. We then have

(2.26) x2(t)--a sin[It(t-1)]+/3 cos[It(t-1)]

for <= t_-<2.

Since 2(1)- 0, we have cr- 0. So/3 =c, and

(2.27) x2(t) c cos[It(t- 1)] for <- t<_-2.

Therefore

(2.28) x(t) :2(t) -Itc sin It(t 1)]

for 1-<_ t-<2. Since Xl(2) =0 (because y B), we find that sin It =0. Therefore It 7rk
for some integer k # 0, and so c ck.

So we have shown that c ck for some k. Since xs--c on I2, we conclude that
x5(2) Ck. Therefore y Hk. The proof of (2.2) is complete.

We now prove (2.3). We fix a number c such that

(2.29) 0< c < 10-3.

For this c, we construct an admissible control u (.) and a corresponding trajectory
xc( with initial condition x(0)= 0. This trajectory will have the property that

(2.30) x(2)SfqHk if c=ck, k>10.

This will clearly imply that B 0 Hk for k > 10, as desired.



FUNCTIONS AND REACHABLE SETS THAT ARE NOT SUBANALYTIC 593

From now on, c is fixed, so we will write u(.), x(.) for uC(.), xC(.). We first
define u(.) on II.

For It, we let

(2.31) U 1,/2 =-12c(15t2- 14t + 2),

(2.32) u3 u4 1,

(2.33 u5 x2 +x+ ux,

(2.34) I,/6 + (1 t)Xo,

(2.35) u7 + (2- t)Xo,

(2.36) u8 t(2-5t)ut + (2- 10t)Xl,

(2.37) u9 + t)Xl6

(2.38) Uo + (2- t)Xt6.

Notice that formulas (2.31) and (2.32) define ut, u2,/’/3, and U4, and therefore make
it possible, using (Ia) and (Ib), to compute the functions xt and x2. Then u5 is well
defined by (2.33). Using Us, (IIIb) determines Xo, and so u7 is well defined by (2.35).
Then u8 is well defined by (2.36), since this equation only involves ut and x, and then
(IVc) determines Xl6. Therefore (2.37) and (2.38) can be used to determine u9 and Uto.

The proof that the control defined by (2.31), , (2.38) is admissible is quite easy.
Since 15 2 14/+ 21 =< 3 for 0 -< =< 1, we get lull-<- 36c < 1/2, Ixll -< t/2, Ix21 <-- t2/4, Ix2 -" XI2 -"
UlX21<=3t2/4<l, lusl_<-l, IXol-<t. On the other hand, we can compute x,x2, x3
explicitly, and get

(2.39)

(2.40)

(2.41)

So

(2.42)

Xl -12ct(1- t)(2- 5t),

x2 -ct2(15t2- 28t + 12),

x3=-ct3(1-t)(4-3t).

XtX2 + X --CI3(1 t)[4- 3t- 12c(2- 5t)(15t- 28t + 12)].

Since 4-3 => for [0, 1], it is clear that the expression in the square brackets
is positive for all [0, 1], if c is sufficiently small. An elementary calculation shows
that the expression is positive for 0 < c <, so in particular it is positive for c in the
range defined by (2.29). So xx2 + x3 < 0 for 0 < < 1. By construction

: 0 u5 x + x + u x x3"’3"3"3"3"3"x x
Therefore xlo= x3+xx on I, and so Xo<0 for 0< < 1. Since IXlol -< t, we have

=> u6 >= 0 and => u7 => -1 on It. This shows in particular, that u6 and u7 are admissible.
Also, we get

(2.43) us 12ct(2- 5 t)(25 2- 26t + 4)

which implies lusI--< 144c < 1. Therefore Ixt6] -< 1. Since u8 x4ut + t4xt, we get u8

xtxt"--". But t6=u8 and so xt6=xtxt4. Since xtxt4=-12ct2(1-t)(2-5t)2<=O, we get
Xl6 =< 0 on I. The admissibility of u9 and ulo now follows exactly as that of u6 and u7
followed from the bounds for Xo.
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We then define controls Ul,... ulO on I2, by letting

(2.44)

(2.45)

(2.46)

(2.47)

t-1

//2 //5 //8 O,

u3 tx6, u + t)x6,

/’/6 U7 U9 UI0 l.

The admissibility is immediate, with the possible exception of u3 and U4o But
6 (x2-xs)2, and x2 -= x5 on Ii, so that X6(1 -’0. Moreover /_= x and 5= x4, so
x(1) x4(1). And )4 Ul //2 SO that, for I2, we have Ix(t) x4(t)[ <- 1.
Therefore [x2(t)-xs(t)[<=(t 1)2/2 for t I2, andso ]x6(t)l-< for t I2. mlso, x6(t)>=O,
so u3[ <= and u41 <= 1, proving that the controls are admissible.

An elementary calculation (which we leave to the reader) now shows that

so that, in’particular,

x,(t) =-/ sin
t-1

for t I2,

Moreover, one sees easily that X2o(t)= 0 for /, and in particular X2o(2)= 0. If
C Ck, it follows that xt(2) X2o(2) 0, and so x(2) $. Finally, it is easily verified that
xs(t) c on I2. So, if c Ck, the point x(2) is in Hk. This shows that, if c Ck and (2.29)
holds, the set B f’l Hk is nonempty. If k > 10, then Ck < 10-3, and so the preceding result
applies. The proof of (2.3) is now complete.

3. A nonsubanalytic optimal time function. We now modify the example of 2
and construct a completely controllable system for which the optimal time function is
not subanalytic.

The state space for our new system is 22. The variables are Xo,"" ", X2o and y.
We write x for (Xl,’" ", X2o). The controls are u,..., Uo, and a new control v. For

1,. -, 20, the system of 2 gives an expression for which is of the form

(3.1) , b,(Xo, x) + O,(u),

where u stands for (u,. ., Uto), the function bi is a polynomial of degree <= 2, and
is linear homogeneous. (For instance, bT(xo, x)=-XoX6+ 1, q,7(u)=-u3.)

The equations for the new system are

(3.2a) o y2,

(3.2b) y + Ul,

(3.2c) , (1 y)b,(Xo, x) + yx,-I + ,(u) for 2,- , 20,

(3.2d) .=v,
and the control constraints are lull _-< l, Iv -<_ 1.

We show that the system (3.2) is completely controllable. Let p= (x, x, y), i-
l, 2, be points of R22. We will show that p can be steered to p2. It is clear that p can
be steered to some point (Xo, x, y) for which y- 1. (Just use v---1 if y> l, v-= if
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y < 1, during a suitably chosen time.) Similarly, p2 can be reached from some point
for which y 1. This means that we can assume, without loss of generality, that
y y2 1. Next we show that, for some x, the point q (x, x, 1) can be reached from
p 1. Suppose first that Xo > x. For T> 0, T =< 2, let vT-" [0, T] R be the control which
is equal to -1 on [0, T/2] and to on IT/2, T]. If T> 2, let v- equal -1 on [0, 1], 0
on ]1, T-1[, and on [T-1, T]. If we solve (3.2d) with v= vT and with initial
condition y(0) 1, then the solution yT is a function on [0, T] that satisfies y-(T)= 1.
Let

(3.3) T YT( t)2] dt.

Then it is clear that depends continuously on T, :o 0, and limr_/oo
So we can choose T> 0 such that : x- x. Choose u(. to be an arbitrary admissible
control for the system of 2, defined on [0, T], and let v(.)= vT-. Then (u(.), v(.))
steers p to a point q (X2o, x, 1). If x< x, then the proof that p can be steered to a
q of the desired form is similar. (Use v-= on [0, T/2], vT=-I on IT/2, T], for
arbitrary T-> 0.)

So the complete controllability of the system (3.2) will follow if we prove that p
can be steered to p2 whenever pi (Xo, x, 1), 1, 2. To go from p to p2, we use v =- 0,
so that y and Xo remains constant. Also, we set u2=-’"= Ulo= 0. The equations
for i, i= 1,..., 20, become

(3.4a) u, }Ull-< 1,

(3.4b) i Xi-l for 2, , 20.

Now, it is quite easy to see (cf. [5]) that the system (3.4) is completely controllable.
Therefore, we can choose a control u(.) that will steer x to x2. This completes the
proof of complete controllability.

The Bellman function V:R22 for the optimal time problem associated with
our system (3.2) is defined by letting V(p) be the infimum of the times T, taken over
all trajectories of (3.2) that go from 0 to p in time T. It is easy to see that the nonexplosion
condition (e) of holds for the system (3.2). This implies that, for each p, there exists
an optimal trajectory from 0 to p, i.e. a trajectory that goes from 0 to p in time V(p).
(This follows from the fact that the sets

Ap(T)= {(t, q)" 0<-_ t<= T, q Ap(t)}
are compact.)

We now prove that the level set

(3.5) V-(2) {p: V(p)= 2}

is not subanalytic. To see this, we let H denote the hyperplane {(Xo, x, y): Xo 2}, and
we study the intersection

(3.6) D v-l(2) f3 H.

We will show that D is not subanalytic. Let A(2) be the time 2 reachable set from
0 21 for the system of 2. Then A(2) x {0} is a subset of H, because every (Xo, x) A(2)
satisfies Xo 2. Since A(2) is not subanalytic in 21, the set A(2) {0} is not subanalytic
in 22 (by condition (i) of 2).

To establish that D is not subanalytic, we prove that

(3.7) D A(2) {0}.
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Let p (Xo*, x*, y*) D. Then p is reachable from 0 in time 2 by a trajectory of
(3.2), given by functions Xo(t), x(t), y(t), 0 -< _-< 2. Moreover, p H and so Xo* Xo(2)
2. Since o(t) y(t)2 on [0, 2-1, the only way that Xo(2) can be equal to 2 is if y(t) 0
for 0<= t<=2. So y* =0.

Moreover, if we plug in y -= 0 in the equations of (3.2), we find that --> (Xo(t), x(t))
is a trajectory of the system of 2, which goes from 0 to (Xo*, x*) in time 2. Therefore
(Xo*, x*) A(2). Since y* =0, we have shown that p A(2)x {0}. Conversely, suppose
that p A(2) x {0}. Let p (Xo*, x*, 0), with (Xo*, x*) A(2). If t-> (Xo(t), x(t)) is a
trajectory of the system of 2 that goes from 0 to (Xo*, x*) in time 2, then t-->

(Xo(t), x(t), 0) is a trajectory of (3.2) that goes from 0 to p in time 2. On the other
hand, we have Xo(t)= and so Xo* 2.

If t--> (Yo( t), ( t), y( t)), O<=t<= T, is any trajectory of (3.2) that goes from 0 to p
in time T, then (3.2a) implies that :(t) <= 1. Since Y(0) 0, Y(T) 2, we see that T=>2.

Hence 2 is the optimal time for steering 0 to p. So V(p) 2. Since Xo* 2, we have
p H. Therefore p D. This completes the proof of (3.7). As explained before, it follows
that V- (2) is not subanalytic.

Finally, if we let G R22 XR denote the graph of V, the set V-(2) is the inverse
image of G under the map z--> (z, 2) from R22 to 22 x. If G were subanalytic, it
would follow from (i) of 2 that V-(2) is subanalytic. Therefore G is not subanalytic,
i.e. V is not a subanalytic function.

4. A simple example for linear systems with nonpolyhedral control constraints. We
consider the ystem

(4.1) =u, :P=v, =-y

with control constraint

(4.2) (u, v) K

where K is the set defined by

(4.3) /,/2__ --<_ 2v <= 1-/,/2.

We pick an arbitrary T> 0, and we show that the attainable set Ao(T) is not

subanalytic.
Let X be a column vector with components x, y, z. Then we can write (4.1) as

(4.4) " AX + w, w fl,

where A is the matrix

0 0

0 -1

and [l K x {0}. If w(. ):[0, T]--> II is measurable, then the corresponding solution of
(4.4), with initial condition X(0)=0, is given by

(4.5) X(t)=e’Ay(t)

where

(4.6) Y( t) e-sAw(s) ds.
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In particular,

(4.7) Ao(T) eTAAo(T),
where Ao(T) is the set of all Y(T) given by (4.6), as w(. varies over all measurable
functions from [0, T] to

So Ao(T) is subanalytic if[ Ao(T) is subanalytic.
For s , let h (s)" 3._.> be the linear functional given by

(h (s), (x, y, z))= sx + sy+ z.

Then h(. is a real analytic function from R to (the dual of) R3. For s e ]0, 1[, let p(s)
be the point of o(T) on which h(s) has its maximum value. (The existence of a
maximum follows from the compactness of Ao(T). The uniqueness would follow from
general considerations about strict convexity, but in our case, it will follow directly
from the explicit calculation of p(s) carried out below.)

We compute p(s). Clearly,

(4.8) p(s) e-tAw(t) dt

where, for each [0, T], w(t) is the value of w f that maximizes

(4.9) (h(s), e-’Aw).

Now, it is easy to see that

(4.10)
e-tA-" 0

0

If we write w (u, v, 0), then (4.9) becomes su + (s / t)v. The value of (u, v) that
maximizes this quantity, subject to (u, v) K, is

$

(4.11) u(t)- s+t’

(4.12) v(t) 1/2(1 u(t)2).
If we write

we see that

p(s) (p,(s), p2(s), p3(s)),

r s
dt,(4.13) pl(s)

s+---
so that

(4.14) pl(s) s[log (T+ s) -log s],

where "log" denotes natural logarithm.
We now use some well-known properties of subanalytic sets. First, if a real valued

function b ofone variable, on some interval ]0, a[, is bounded, analytic and subanalytic,
then it is actually semianalytic (i.e. the graph of b is a semianalytic subset of RE), and
then b has a Puiseaux series near s 0. This implies that, as s- 0, b(s) is asymptotic
to cs for some rational a >_-0, and some constant c 0. The function p(. given by
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(4.14) clearly does not have this type of asymptotic behavior. Therefore p(.) is not
subanalytic. So p(.) is not subanalytic.

On the other hand, p(s)=q iff q Ao(T) and

(A(s), q) max {(A(s), r): rAo(T)}.

If o(T) were subanalytic, then it would follow from general properties of
subanalytic sets that {,(s, q)" p(s) q} is subanalytic in 4, i.e. that p(. is a subanalytic
function. Therefore Ao(T) is not subanalytic, and then Ao(T) is not subanalytic either.

Remark. The system (4.1) is completely controllable and, moreover, for arbitrarily
small e > 0 the reachable set Ao(e) contains 0 as an interior point. This implies that
the optimal time function for (4.1) (with initial point 0) is continuous, and, for each
T> 0, the level set V-I(T) is precisely the boundary of Ao(T). Clearly, the fact that
Ao(T) is not subanalytic implies that its boundary is not subanalytic (using the fact
that Ao(T) is compact and convex). So V-I(T) is not subanalytic, and V is not a
subanalytic function.
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OPTIMAL CONTROL OF PARTIALLY OBSERVABLE
STOCHASTIC SYSTEMS WITH AN

EXPONENTIAL-OF-INTEGRAL PERFORMANCE INDEX*

A. BENSOUSSANf AND J. H. VAN SCHUPPENt

Abstract. The stochastic control problem with linear stochastic differential equations driven by Brownian
motion processes and as cost functional the exponential of a quadratic form is considered. The solution

consists of a linear control law and of a linear stochastic differential equation. The latter has the same

structure as the Kalman filter but depends explicitly on the cost functional. The separation property does
not hold in general for the solution to this problem.

Key words, stochastic control, linear systems, exponential-of-integral cost functional, linear-exponential-
Gaussian problem

1. Introduction. The class of so-called Linear-Exponential-Gaussian (LEG)
stochastic control problems has been introduced by Jacobson [4] and Speyer et al. [7]
Since then several papers have presented solutions to special cases of this problem.
The general case of the discrete-time problem has been solved by Whittle [ 11]. Below
the solution to the general case of a continuous-time partially observed stochastic
system is presented.

The simplest special case of the LEG stochastic control problem is that of the
completely observable system

1.1 dx Fx + By) dt + Gdw, Xo Io,

with the cost functional

(1.2) J(v(’))=E /xexp Mx2t,+ (Ox2+Nv2) dt
0

Under certain definite conditions there exists a linear optimal control which is
implementable by a finite dimensional system, see [4].

Subsequently Speyer et al. [7], [8] have considered the case of a partially observed
system

dx Fx + By) dt + G dw, Xo
(1.3)

dy=Hxdt+Rl/2.db, Yo =0,

with the cost functional (1.2) with Q=0. Again there exists a finite dimensional
implementable optimal control.

Yet another case of a partially observed stochastic control problem is considered
by Kumar, van Schuppen [6]. There the general cost functional (1.2) is combined with
the stochastic system (1.3), but with G =0. It is proven that the optimal control is
given by

(1.4) u, -N-l(t)B*(t)[L(t)t + M( t)rl( t)]

where t is produced by the Kalman filter and

r/(t) g(t,s)usds.

* Received by the editors December 29, 1983, and in revised form June 25, 1984.
f I.N.R.I.A., Domaine de Voluceau, Rocquencourt, 78150 Le Chesnay, France.
Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands.
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The control is thus implementable by a finite dimensional system. It has long been
thought that the general case does not have a finite dimensional implementable optimal
controller.

In this paper the solution to the general stochastic control problem will be
presented, consisting of the stochastic system (1.3) and the cost functional (1.2). It
will be proven that the optimal control is given by

(1.5) u, -N-(t)B*( t)S( t)r,

where

(1.6) dr=[F-PH*R-H+PQ]rtdt+Budt+PH*R- dy, ro =/Xo,
P is the solution of a filter type Riccati differential equation

(1.7) -FP-PF*+P(H*R-IH-/xQ)P-GG*=O, P(O) Po
and S is the solution of a control type Riccati differential equation, see (4.1), that
however depends explicitly on the function P. The recursions for the sufficient statistics
reduce to the Kalman filter if Q 0. The presentation of the solution (1.5) and (1.6)
is much more convenient than that given by (1.4).

The motivation for considering LEG stochastic control problems is that for certain
applications the exponential-of-integral cost functional may be better suitable than the
usual quadratic cost functional. The reason for this is that the exponential form
introduces a nonlinear relation between small and large deviations from the equilibrium
state. The economic interpretation of the solution of the LEG problem is discussed
by van der Ploeg [10]. One may interpret the solution as an attitude of either risk-
preference, for/x < 0, or of risk-aversion, for/z > 0, see 10], 11 ], 12].

There is also a system theoretic motivation to consider LEG stochastic control
problems. A major question in stochastic control theory is to classify those stochastic
control systems and cost functionals that lead to finite dimensional control algorithms.
An attempt to define a finite dimensional control algorithm will not be given here, but
the solution presented by (1.5) and (1.6) illustrates what the authors have in mind. It
is expected that the availability of the solution to the LEG problem may provide insight
into the above stated question. Apparently the fact that the conditional cost function
has for all T the same analytic form, plays a key role. In addition the solution
provides an example of a sufficient statistic for a stochastic control problem which
does not have the separation property.

A brief summary of the paper follows. In the following section a problem formula-
tion is given. In 3 an equivalent expression for the cost functional is derived. The
solution is presented in 4.

2. The problem formulation.
Notation. Let (fl, M, P) be a complete probability space and T [0, tt], on which

are defined

(2.1)

(2.2)

w: ’ T- Rk

’I) T- Ra

R: T Rdxd

y’xT-Rd

a standard Wiener process;

a standard Wiener process;

a symmetric positive definite matrix for which there
exists a r0 (0, ) such that for all t TR(t)>=roI;

dy, R/2(t) dt, yo=0;
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(2.3) Xo" -* R a Gaussian random variable with mean/o and variance
Po, with Po nonsingular.

Assume that Xo, y, w are independent objects. The process y will be termed the
observation process.

Consider processes v: x T- R" which belong to Ly(0, t; Rm), meaning that
they are adapted to the g-algebra family yt tr({ys, ’qs -<_ t}) generated by the observa-
tion process. For uninitiated readers of stochastic control the well-known fact is pointed
out that v in Ly(O, t; R") is equivalent to specifying a nonanticipating function
f:(RU)T- R" such that v, =f(y(.)). Here nonanticipating means that for any t T
vt =f(y(" )) depends only on the path of y before time t. One may consider f to be a
control law.

For v Ly(O, tl; Rm) define the state process as the solution of the stochastic
differential equation

(2.4) dx,=[F(t)x,+B(t)v,]dt+G(t) dw,, Xo,

where

F: T Rnn

Define the process b’l) T-> Ra

(2.5) b, b’t- R-/2(s)H(s)xs ds

for H: T-> Ra". Define the change of probability

(2.6)

B- T R"’’ G" T R

dP
exp R- 2Hx d-- " R-Hx x ds

-exp- (fo R-’Hx. dy-- fot’ H*R-’Hx.
Since the integrand entering into the stochastic integral at the right-hand side of (2.6)
is unbounded, an assumption is necessary to ensure that P is indeed a probability
measure. The following criterion will be used, see 1], [3, p. 83]: there exist/, c
such that

(2.7) E[exp (txH*R-Hx, x,)]_-< c

for all T. Define x" 12 T R", x2 T- R"

(2.8) lt Fxt + Bvt, Xo 0,

(2.9) dxz, Fx2t dt + G dw,, X20 X0.

Then

(2.10) xt =Xlt+X2,

and Xl, x2 are independent with respect to the probability measure P. Therefore (2.7)
can be majorized as follows

E[exp (/xH*R-IH(xl + x2)2)] <- E[exp (2/zH*R-H(x+ x22))]
-< E[exp (2tzH*R-Hx,)]E[exp (2tzH*R-IHx2,)].

Since x, is a Gaussian random variable, it is possible to find a/z (0, o) such that
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the second expectation is finite Because

rl
ds,IIx,,ll _-< c II  ll

(2.7) will be satisfied if there exists a , (0, c) such that

The parameter u may depend on the control, but not on f. The preliminary set of
admissible controls is therefore defined as

U ={v Ly(0, t; R")l=lv (0, ) such that (2.11) holds}.

Other restrictions will be stated later.
With respect to the probability measure P the process b is a standard Wiener

process, Xo, b, w are independent objects, and

(2.12) dyt=H(t)xtdt+R/2(t) db,, yo=O.

Furthermore the measures P and /5 are identical when restricted to the tr-algebra’s
generated by Xo and w.

In the rest of the paper the time parameter will often be suppr.essed.
The stochastic control problem. Because of the dependence of P on the control v

the notation pv will be used. Consider the cost function

(2.13) J(v)(" ))= gv /x exp Mx2,, + (Qx2+ Nv2) ds

where/x R,/x # 0, is given,

(2.14)

M R"" is symmetric and nonnegative definite,

Q: T- R"" is also symmetric and nonnegative definite, and

N" T R is symmetric positive definite for which there
exists a no (0, oo) such that for all T N(t) >- noL

Note that for both/z > 0 and/x < 0, J(v(. )) should be minimized.
In order that J(v(. )) is finite for at least some v U, an assumption is necessary.

Let

(2.15) {u u,IJ(u(.)) <

be called the class of admissible controls. It will be assumed that U2 is nonempty. A
condition guaranteeing that U2 is nonempty is the following. Let v- 0. Then x x2,

and in this case the probability laws of x2 with respect to P and /3 are the same.
Therefore

(2.16) tx
tz 2+ " ds])J(O( )) E[ exp(-[Mx,, Io Qxs

If J(0(. )) < o, then U2 is nonempty, and it is likely that it will contain more than one
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element. One can also reformulate (2.13) as

(2.17)
J(v(" )) E /x exp Mx,,+ Nv2 ds

o

+ IQ H*R-H
x2 ds + R-

2

DEFINITION 2.1. a) An admissible control u* will be called optimal for the cost
functional (2.13) if

(2.18) J(u*(. ))<= J(v(. ))

for all v U2. Here the state process and the observation process are given respectively
by (2.4) and (2.12).

b) An admissible control u* will be called conditionally optimal for the cost
functional (2.13) if for all T

(2.19) /"*[c"*
for all v U2 such that for all s-<_ t, u* vs. Here

(2.20) c =/x exp Mx2t, + Qx + Nv2) ds

Note that because of the condition that for s <_-t, u* vs and causality, /3-* and
agree on Y’. Hence (2.19) holds almost surely with respect to

The definition of conditional optimality is due to C. Striebel [9, Ch. 4]. If u* e U2
is conditionally optimal, then it is also optimal; take t=0 in (2.19) and use yo=0.
However the converse is not true, see [6, p. 315] for a counterexample.

Problem 2.2. The Linear-Exponential-Gaussian stochastic control problem is to
determine an admissible control u* that is optimal, and an admissible control u2*,
possibly different from u*, that is conditionally optimal. The state process and the
observation process are given respectively by (2.4) and (2.12).

3. Calculation of the cost function. The solution to the stochastic control problem
2.2 that will be given in 4 is based on an alternate expression for the cost functional.
This result will be derived below.

Definitions. The following variables are introduced:
P: T--> R""

(3.1) -FP-PF*+P(H*R-’H-IzQ)P-GG*=O, P(O)= Po;

r:f x T R"

(3.2) dr=[F-PH*R-H+txPQ]rdt+Bvdt+PH*R-dy, ro=/Zo;

for any v e U2 qT"v X R" x T--> R

"trY(x, t)=exp --P(t)-’(x- r) (x-r)

(3.3) Hr. dy -- H*R-t Hr. r ds

+/z (Qr2+ Nv2) ds+- tr (PQ) ds (2,rr)-"/2lp(t)1-1/2"
2
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E: T- R

(3.5) -EGG*E+ F,+EF*-txQ+ H*R-1 =0, E(ti) -/xM.

Assumptions 3.1.

(3.6) H*R-IH-tzQ>-O (then a solution to (3.1) exists);

(3.7) P(t)>-Cl I for some cl (0, oo) andforall t T;

(3.8) p-l(t) + E(t) > 0 for all T.

THEOREM 3.2. Assume that (3.6), (3.7) and (3.8) hold. Assume further that the
Riccati equation (3.5) has a symmetric bounded solution. For any control v in the class
of admissible controls U2 one has the equality

(3.9) J(v(.))=K(v(.))

where J(v(.)) is defined by (2.13) and K(v(. )) by (3.4).
The proof of Theorem 3.2 is based on several lemmas.
Preliminary calculations. It will be convenient to introduce the processes

(3.10)

Thus

(3.11)

Define

(3.12)

Then

(3.13)

z, =exp R-IHx dy-- H*R-IHx xds

( Io’ );t, exp Qx: + Nv) ds

2 -1 H*st p-l(t)rt_2 R Hr. dy+ R- Hr. rds

-/z (Qr2+ Nv2) ds-lx tr (PQ) ds+ln ((27r)"lP(t)l).

7r(x, t) exp (_[p-l(t)x. x 2p-l(t)rt. x + st]).

The following result is then obtained.
LEMMA 3.3. The process s is a solution of the differential equation

(3 14) dstdt-tr(G*P-1G+2F)-IG*p-Irl2+2p-IBv" r-lxNv2"

Proofi One uses

dP-lr2=(p-l)’r, rdt+2p-lr dr+tr(PH*R-1H) dt,

t) _p-lp-i -p-IF- F*P-I q- H’R-ill zQ p-1GG.P-l
dt
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hence,

dp-lr2=[-2Fr" p-lr+ R-IHr Hr-tzQr2-1G*P-lrl2] dt

+ 2P-lr [F- PH*R-IH + izpQ]r dt

(3.15) +2P-It Bvdt+2r. H*R-l dy+tr(PH*R-IH) dt

=[-R-IHr Hr+ txQr2-lG*P-lrl2+2P-lr Bv+tr (PH*R-IH)] dt

+ 2r. H*R-t dy.

Moreover writing

P=[F+ PF*P-l- PH*R-IH + GG*p-I + tzPQ]P,

one deduces

(3.16)
d In IP(t)l/dt=tr(F+ PF*p-I-pH*R-IH+ GG*P-l +txPQ)

tr (2F- PH*R-H+ GG*P-l +/zPQ).

From (3.12), (3.15), and (3.16), one easily deduces (3.14).
Assumption (3.8) for tl implies that

P-l( t) tzM > O

is positive definite. Hence one can calculate the integral

I( 1p_ +Mx2) dxexp - (tl)(x-rt,)2

2

exp (r,, .[I-txMP(tt)]-lMr,,)
(2 *r)"/2l P( tl)l’l-I[I txMP( ti)]1-1/2.

Therefore one can write

(3.17)

assuming that the expectation is finite.
Equation for zr and its adjoint. To show that K (v(.)) is an alternative expression

for the cost, an equation for r and its adjoint are needed.
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LEMMA 3.4. The process 7r’(x, t) has the Ito differential

dr= -tr (GG*D-)-(Fx+ Bv) Dr

Nv2) "rr tr (F)] dt+ 7rR-IHx dy+/zTr(Qx2+
2

r P-’Fx" x x

(3.18)
+x. (p-IBv-F*p-Ir-P-GG*p-Ir)

G,p_-tr( G+2F)+IG*P-’rl
+ tx2 Nv2- p-IBv" r)dt+ R-’Hx. dy]

Proof. This follows by simple calculations from (3.13).
At this stage it is convenient to use the pathwise form of (3.18) [2]. In order to

derive it, it is however necessary to assume that

(3.19) R-l(t)H(t) is ditterentiable.

Let us consider q V. R f T- R

qV(x, t)= r(x, t) exp (-Yt" g-l(t)H(t)x).

LEMMA 3.5. The process q(.,.) satisfies the equation

Oq(x,t)
Ot =- tr(GG*D2xq)+Dq" (GG*H*R-Iy-Fx-Bv)

(3.20) +- q[IG*H*R-Iyl2 + Ix( Qx2 + Nv2) H*R-Hx2

-2(Fx+ By). H*R-y-2(R-IH)’x y-2 tr (F)].

Proof. One has

dq(x, t) dTr exp (-y,. R-l Hx)

+ 7r exp(-yt R-1Hx)[-dy. R-1Hx Yt" (R-H)’x dt]

-w exp (-Yt R-Hx)H*R-1Hx" xdt

from which one easily derives (3.20).
Next one derives the adjoint equation of (3.20) with respect to (3.4), which reads

Op(x, t)
c---;---- tr GG*D2xp) Dp. GG*H*R-’y Fx )

+p[IG*H*R-yl2 + /z( Qx2+ Nv) H,R- Hx2

(3.21)
-2(Fx/ By). H*R-y-2(R-H)’x y],

In fact it is possible to solve (3.21) exactly.
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LEMMA 3.6. Assume that the Riccati equation (3.5) has a symmetric bounded
solution. Define

tr x T- R"

t+ F* EGG*)(tr H*R-y) EBv H*R-)’y O,
(3.22)

tr( t) H*( h)g-( t)yt,
p:II x T- R

-tr (GG*E) +IG* trl2 2tr. GG*H*R-’y By)
(3.23)

+[IG*H*R-yl2+tzNv--2Bv H*R-y], p(h) 0.

Then

p(x, t) =/x exp (- 21[E(t)x. x 2tr(t). x + p(t)])

is a solution of (3.21).
Proofi One has

Op(x,t) [ 1. ]O----- p(x, t) --,x" x + (r. x--
Dxp p[-Ex + cr],

D2xp p[-gx + cr](R)[-gx + cr]-pg.

Substitution in (3.21) yields

1/2x. x c. x +1/2ti -1/2 tr (GG*2) +.1/2IG*(-Ex + cr)l2

-(-gx +cr) (GG*H*R-y- Fx- Bv)

+1/2[IG*H*R-yI+ tz( QxZ+ Nv) H*R-Hx2

-2(Fx+ By). H*R-Iy-2(R-H)’x y]

and the result follows with (3.5), (3.22), and (3.23). l-]

LEMMA 3.7. The functional K(v(. )) defined by (3.4) can be calculated by

(3.24) K(v(. ))= Elf p(x, O)zt(x, O)dx].
Proof. By the expression for p(x, t) in (3.21) one has

/x f exp (Mx2)r(x, tl)dx= f p(x, tl)q(x, tl)dx.

This integral makes sense by assumption (3.8). An integration by parts yields

Ifexp(Mx2)r(x, tl) dX=Ip(x,O)q(x,O)dx=Ip(x,O)r(x,O)dx.
Taking the expectation, one deduces (3.24). l-]

Equality of the two costs.
3.8. Proof of Theorem 3.2. From (3.11) and (3.21) follows that

J(v(" ))= E[p(x,,, t,)A,,z,, exp (-y,, R-’(t,)H(t,)xt,)].
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But

" Hx. dy+ y [(R-IH)’x-I R IH(FxW B/))] dty,,. R-l(t,)H(t,)xt, R-’
tl

ti
+ y. R-HG dw;

o

hence

J(v(. )) E p(x,,, t), exp y. ((R-’H)’x + R-H(Fx + By)) dt

i’ R-’Hx xdt ily R-’HGdw)]H*
2

Attention will be concentrated on

X p(X,l t), exp y. ((R-lg)’x+ R-IH(Fx+ By)) dt

+2-’1 H,R_Hx.xdt+ol, _lHGdw]),y,].
Recall that y, w, xo are independent objects. Since v is adapted to Y, one can calulate
X by freezing the values of y and v, and taking the expectation with respect to the
remaining source of noise, namely w.

Note that for y and v frozen, p(.,.) is a C’1 deterministic function. Therefore

dp(x,,t) [Op(x,t)+Dp. (Fx,+Bv,)+tr(DpGG*) dr+ Dp. Gw

[Dp. GG*H*R-y _y )
(3.5

+.(x+v *-’
-2(Fx + Bvt) H*R-y-2(R-H)’x. y)] dr+ Dp. Gdw.

Next

(3.26)

d(p(x,, t)A,)= Z,[Dxp. GG*H*R-’y-1/2p(IG*H*R-’yl

H*R-’Hx,-2(Fx, + By,). H*R-’y,-2(R-’H)’x,. y,)] dt

+ Z,Dxp" G dw,.

Let us denote

hence

(3.27)

O, =exp [-f y. ((R-’H)’x, + R-IH(Fx-I-By)) dt

+
2

R-l H*Hx. x dt + y R- HG dw,

dot O,[-y" ((R-IH)’x+(R-IH)(Fx+ By)) dt

+1/2H*R-IHx2 dr-yr. R-’HG dw,+1/21G*H*R-’yl2 dt].
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Combining (3.26) and (3.27), one obtain

dp(xt, t)htOt =[htOtDp+ Atotn*R-ly] G dwt.
Recalling that y is frozen, one can take expectation with respect to w; hence

E[p(xo, 0)1Y"] I p(x, O)Tr(x, O) dxX

by Xo independent of y with a Gaussian distribution and by definition of r(x, 0). Thus

by (3.24).
Remark 3.9. Assumption (3.19) is not necessary to prove Theorem 3.2. because

of the following argument. One first approximates R-IH by a ditterentiable function.
In this case the preceding proof shows that Theorem 3.2 holds. Secondly one observes
that the final result does not depend on the derivative and that hence one can pass to
the limit. Condition (3.19) is thus only an intermediary technical assumption.

4. Solution of the stochastic control problem. The result of Theorem 3.2 implies
that minimization of the cost functional J(v(. )) is equivalent to the minimization of
the cost functional K (v(.)). The importance of this lies in the fact that the minimization
of K (v(.)) appears as a stochastic control problem with full information specified by
the state equation (3.2) and cost functional (3.4). This problem is now easily solved.

It should however be pointed out that the function 7r defined in (3.3) is in general
not theconditional density of x given y because it depends on the parameters Q and
N of the cost functional. A key point in the proof of Theorem 3.2 is that one can push
the cost functional into the expression for the conditional density. The fact that this
is possible is based on the exponential form of the Gaussian density and the cost
functional.

Consider the Riccati equation for $: T Rnn

+ S(F + txPQ) + (F* + txQP)S + Q S(BN-B* tzPH*R-HP)S O,
(4.1)

S(t) 1/2[(I txMP( t))-lM + M(I -/xP(tl)M)-].

It will be assumed that (4.1) has a symmetric solution. Consider the equation

(4.2) d=[F- PH*R-H+ tzPQ- BN-B*S]dt + PH*R

which corresponds to the state equation (3.2) with the control

(4.3) u*, -N-(t)B*( t)S( t),.
For some r given by (3.2) define

ht R- Hr. dy -- H*R-l Hr. r ds

(4.4) +/z2 (Qr2+ Nt2) ds+-S(t)r,, rt--- tr SPH*R- HP ds.
2
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Attention is now restricted from the class of admissible controls U2 to

U u E U2 E exp (2hs)lR-H(I + txPS)rl2 ds < oo

THEOREM 4.1. Assume the conditions of Theorem 3.2, and that a symmetric solution
to (4.1) exists. Assume that u*, defined by (4.3), belongs to the class ofadmissible controls,
and moreover to U3.

a. Then u* is optimal and

min J(v(. ))= J(u*(. ))
uEU

=/x exp So/zo /Xo+ tr (PQ + SPH*R-HP) ds

][I MP( tl)]1-1/2.
b. Then also u* is conditionally optimal in U3.

Remarks 4.2. 1. In the representation of the solution as given by (3.1), (4.2), and
(4.3), the separation property does not hold in general. Note that in the sufficient
statistic 7r for the cost functional both r and P depend on the state cost matrix Q,
while the control Riccati differential equation for S depends on the matrix function P.

2. Observe that the function zrV(x, t) is in general not the conditional density of
xt given Yt since its parameters r and P depend on the cost functional through Q.

3. The concept of a sufficient statistic for a stochastic control problem has been
defined by C. Striebel [9, 3.2]. For the stochastic control problem under consideration
it follows from the proof of Theorem 4.1 that , as defined by (4.2), is a sufficient
statistic. Note that because P is a deterministic function, it is therefore considered not
to be a sufficient statistic.

4. An attempt to define minimality of a sufficient statistic for a Stochastic control
problem will not be made here. Because takes values in R", the state space of the
given stochastic system, it seems likely that this sufficient statistic is minimal in any
reasonable sense. In the special case of G-0 a sufficient statistic of much higher
dimension has been found in Speyer et al. [7] for discrete-time systems, and in Kumar,
van Schuppen [6] for continuous-time systems.

5. Theorem 4.1 contains the special cases discussed by Speyer et al. [7], with
Q- 0, and by Kumar, van Schuppen [6], with G- 0. The discrete-time version of the
problem considered here has been solved by Whittle [1 l, Thm. 5], see also [12, Part
l, Chap. 19, Thin. 0.1].

6. When/x is small, one has that

2

Hence for/z small the LEG stochastic control problem becomes close to the standard
linear-quadratic-Gaussian stochastic control problem for which the separation principle
holds. This can also be seen from the explicit expressions for the optimal control. For
/x small, S becomes close to the solution of the Riccati differential equation of the
deterministic linear quadratic control problem

fl +HF+ F*II + Q HBN-B*H 0, H(t) M.

Moreover, then (3.1) reduces to the Riccati equation of the Kalman filter, and (3.2)
reduces to the Kalman filter itself.
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A sufficient condition for conditional optimality that will be used in the proof of
Theorem 4.1, will be stated.

THEOREM 4.3 (C. Striebel). If there exists a u* U3, andfor any admissible control
v U3 an yt adapted process h 1) x T R such that

1. for any v U2/V[cl Y"] h,%, and h is a submartingale on Y’ with respect to v
2. h* is a Y martingale with respect to/3*;

then v* is conditionally optimal One calls h the conditional cost functional associated
with v.

Proof of Theorem 4.1. a) By Theorem 3.2 J(v(. )) K(v(. )). Recall that

fo’h, R-Hr. dy -- H*R-Hr. r ds

s( t)+ tz2 Qr2 + No2) ds + -tz r,. r,

tr $PH*R- HP d.

Then, from (3.17) and (4.1), one obtains

(4.5)

K v( ))=/z exp tr PQ+ SPH*R-’HP) ds

I[I- tMP(tt)]l-’/2E[exp

Calculations show that

,R_dh, R-Hr. dy --H Hr. r dt + Qr2 + Nv2) dt+r r dt
2

+ tzSr" [(F- PH*R-IH +/zPQ)r+ Bv] dt + ISr" PH*R- dy,

d exp (h,) exp (h,)[R-H(I+IzPS)r dy

I I,r r dH*R-Hr. r dt +- Qr2 + Nv2) dt +-2

+ tzSr" [(F- Ph*R-H + IPQ)r+ By] dt

]+-IR-’/2H(I + IPS)rl2 at

(4.6) =exp(h,) R-’H(I+PS)r. dy+(+$(F+PQ)+(F*+QP)$

-S(BN-IB*-tzPH*R-HP)S+ Q)r. rdt

N(v+ N-B*Sr)2 dt].
2

If $ satisfies (4.1), then

(4.7) exp(h,,)-->exp Sororo" ro + exp(h,)R-H(I+lPS)r dy
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and from (4.5) and the definition of U then follows that

(4.8)
K(v(.))>-lz exp So/zo’/Zo+ tr(PQ+SPH*R-HP) ds

I[I txMP( t,)][ -’/2.

For the control u* defined by (4.3) one gets equality in (4.7) and (4.8); hence it is
optimal and

min J(v(.)) min K (v(.))
uEU uEU

=/. exp So/o /o+ tr (PQ+ SPH*R-IHP) ds

I[I tzMP( t)]1-1/2.
b) Let

c exp Mx,, + (Qx + Nv) ds
o

(Io’ llo’ )O exp R- Hx. dy -- H*R-Hx. x ds

(fo’ lfot )fit exp R-Hr. dy- H*R-Hr. r ds

h a exp S,r r, + Qr + Nv) ds

at =exp

kt
By the proof of Theorem 3.2

[c,[ r’]= x p(x, 0)(x, 0) dx,

which by the proof of Lemma 3.7 equals

=Iexp(Mx)(x,t,) dx.

With the calculations above (3.17) one obtains

Setting in this expression M 0, Q 0, N 0, it materializes that

(PH*R-’ HPS) ds])l[I- txMP( t,)]] -’/,

It is claimed that if k is a submartingale with respect to P, that then h is a
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submartingale with respect to/3o. For if s, T, s < t, then

if.O[ h,I ys] E[ htp,,[ ys]/ E[p,[ Ys]

E[h,E[,,[ Y"]I Y]/E[E[,,[ Y’,][ Y]

E[htE[t,[ yt][ y]/E[,,I y]

E[h,,l Y]/s >= hss/ h.
It is then clear that if k is martingale with respect to P, that then also h is a martingale
with respect to

Using the fact that S satisfies (4.1) and that u* is given by (4.3), a lengthy
calculation shows that

(f) I0’ ])dk d(h) a, exp S,r,. r, + (Qr2 + Nv2) ds

[N(v,-u*,)- dt+2(R-nr/l + R-’I-tPSr). dy].

Thus for any v U3, k h is a submartingale with respect to P, and for v u* a
martingale. By the above claim h is then for any v U2 a po submartingale and for
v= u* a martingale. From Theorem 4.3 it then follows that u* is conditionally
optimal, l-1

Note that in the proof of Theorem 4.1 a key element is the invariance of the
conditional cost function h.
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ASYMPTOTIC EVOLUTION OF A STOCHASTIC CONTROL PROBLEM*

R. TARRESf

Abstract. Here we study the minimization problem of an integral discounted functional, on a set of
nonexplosive and nonconstrained diffusions. The integrand is "weakly coercive," which leads us, using the
dynamic programming method, to characterize the optimal cost among the solutions of the solving equation,
with radiative conditions expressing the centripetal aspect of the optimal control. The evolution of the
problem when the discount vanishes is then considered: the integrand being "strongly coercive" (i.e. its
gradient being outward), a limit problem is defined and similarly solved; an inward optimal control exists,
which is the limit of the ones of the initial problems. The existence properties are obtained by means of a

priori estimates concerning suitable solutions of the solving equations in the whole space.

Key words, ergodic stochastic control, dynamic programming, a priori asymptotic estimates

1. Statement of the problems. Let us consider the stochastic differential equation
of Ito type:

(.) (O)=x, d(t)=p((t)) dt+pdw(t),

where w is a normalized Brownian motion on R (m >_- 1), p > 0 is a constant, p A.
A is the control set of our problem and is defined as follows: A is the set of

polynomially growing and locally Lipschitzian functions p. Rm _>m such that

there exists a positive constant c. such that
(1.2)

sOp(sO) _-< %(1 + Is[:) for each

It is well known (see, for instance [3], [10], [11]) that for each initial state xeR
and for each control p e A, the equation (1.1) has a solution SCx., defined on [0, +o[,
unique in the sense of pathwise uniqueness on each interval [0, T]; x., is a nonexplosive
diffusion process whose diffusion matrix is p:I and whose drift is the closed-loop
deterministic control p.

For each constant s (s >0), x em and pc A, the relation

(1.3) Js,x(p) E e-St(g(x,p(t))+f(p(x,p(t)))) dt

defines a discounted cost; the functionsf C2(R 1+) and g C2(" +) are given.
We are interested in the following two problems:

the stationary discounted problem (Px,): minimize J,x (P), P A;
what is the behaviour of (Px.) when the discount s vanishes?
Constraint is imposed neither to the trajectories nor to the controls p of the

diffusion: the processes :x,, evolve on the whole space [m and the only restriction (1.2)
above on admissible controls is that they have to be nonexplosive (x,p is well defined
for all > 0).

On the other hand, we shall impose some coercivity and growth hypotheses about
the functions g and f in the running cost; particularly, the solution of the asymptotic

* Received by the editors April 5, 1983, and in revised form January 10, 1984.

" D6partement de Math6matiques, Facult6 des Sciences et Techniques, 29283 Brest Cedex, France.
Present address, Ecole Normale Sup6rieure d’Enseignement Polytechnique, B.P. 1523, Oran St. Charles,
Alg6rie.

p:R -->R’ is a polynomially growing function if and only if there exist positive constants bp and mp
such that for all sre", Ip(:)[-<_ bp(1 /11,). (1"1 will denote the Euclidean norm.)

614
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problem (i.e. the behaviour of (Px,s) when s vanishes) will be interpreted as a minimiz-
ation problem of the cost

Io/Zx(p) lim inf E (g(,,p(t))+f(p(,,,p(t)))) dt

mainly by means of the hypothesis that the gradient of g is outward (or centrifugal)
enough: in these conditions, the moments of x,p(t) are bounded for any inward (or
centripetal) controls, and paicularly for the optimal one, which will be proved to be
inward; this phenomenon (namely that the coercivity of g implies the centripetal aspect
of the optimal control), which explains that the asymptotic problem can be solved,
seems to us the main feature of our paper.

ese problems have been studied in the case of a periodical running cost g and
in the case of a reflected diffusion evolving in a bounded domain, and analogous
results have been obtained (see the works of J. M. Lasry and P. L. Lions: [19], [20],
[21], [22]). Other authors (see for example [6], [13], [25]) have studied the asymptotic
evolution of some Markovian control problems depending on a parameter, and have
obtained the existence of a limit problem with suitable convergence propeies of the
optimal policies.

For other works concerning discounted control problems having some connection
with our paper (asymptotic problem, infinite horizon, processes evolving on the whole
space, coercivity hypotheses), see for example [1], [2], [4], [5], [7], [14], [16], [23].

First we shall solve the problem (Px,) with a weak coercivity hypothesis about
g; secondly the asymptotic problem will be considered by means of a stronger coercivity
hypothesis (the gradient of g will be "outward"). For similar and other results about
the one-dimensional case, see [27], [28].

2. The problem (Px,). It will be solved on the control set Al defined by

> 0 and ap I1 2[ such thatp Al if and only if p A and there exist cp
(2.1)

p()c(1 +[[%) for each.
The method of solution is the dynamic programming one (see for instance [3], [4],

[5], [8], [9], 15]). The solving equation of (Px,) is

(2.2) -pAu(x) + su(x) + h(-Vu(x)) g(x) for each x

where h= is the conjugate function off (according to convex analysis), defined on
R by

(2.3) h (z) sup (zy -f(y)) for each z e R
ym

we assume that

for some constants Co and c such that 0 < Co <- c,

(2.4) Cot/2 <- 02f (y)r/,r/j <= cr/2
l_i,j_m c3y Oyj

for each y R" and 7 (r/l, , ’/’Ira) m.

Therefore h C2(lm;[-f(O), +cx3[), f and h are strictly convex functions, Vf and V h
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are inverse C l-diffeomorphisms of

f(y) sup (yz- h(z)),
(2.5)

h (z) /f(y) yz if and only if z (Vf) (y),

and

O2h sr2+/--< X (z),-<_-C li,jm OZi OZj CO

for each z e g" and (,..., )e, and hence
(2.6)

h Oh Oh( h
---(z)- z’)-c-ov Co

for each A 0, z e, z’ e and V e satisfying z z’= Av and 2 1.

Let us make the additional following assumption:

For some positive constant o,

(2.7)
oh Oh(

for each e N with and for each and ’ e N satisfying ( ’) 0.

This last hypothesis does not exist if m it restricts the lateral variation of (Oh/O)().
For example, iff(y)=coy, h()=/4co and (2.7) is satisfied with o=0.

In the classical stochastic control problem (P,) with reflection on the boundary
of a bounded set, we have a limit condition of Neumann type on the boundary of this
set to characterize the optimal cost among all the solutions of the solving equation
(2.2); in our problem, we do not have such conditions, and this characterization is
obtained by means of a radiative condition. This question is naturally connected with
those of the coercivity and growth hypotheses concerning the function g. The first one,
which we call the weak coercivity hypothesis, is sucient to the solution of (P,); it
consists in a limitation of the centripetal aspect of the gradient of g: the radial
component of this gradient is more than a negative constant; on the other hand, the
gradient of g may be centrifugal (but with a polynomial growth). Precisely, we shall
assume that

For some positive constants K and K and for some integer q 3,

(2.8) 0() e -g gl(ll- )qll

for each e N and e N with 1.

Let us note that this assumption implies the polynomial growth of Vg, and that,
in radial restriction, it can be written as follows"

(g())e-Kll for each eN,
or equivalently,

(.9

0(I)_K for each10and eNwith e=l.

If m 1, (2.8) is obviously equivalent to (2.9) with the polynomial growth of g’.
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As a consequence of (2.8), we shall see that a suitable radiative condition serving
to characterize the optimal cost us among all the solutions of the solving equation
(2.2) expresses the suitable centripetal aspect of the corresponding optimal control:
(Vh)(-Vus(.)) c A.

The solution of (Px:) on A is summarized in Theorem l:
THEOREM 1. We make all the above assumptions. Then, for each fixed s > O, there

exists one and only one solution u c C3(Rm; ) of the solving equation (2.2) satisfying
the "weak radiative condition"

(2.10) (Vh)(-Vu(.))c A,.

Let us denote this solution, and Ps denote the control defined by

ps() (Vh)(-Vu()) for each

psCAl

(2.12) and for each p c A and x c m,
0 <<- us(x)= J,,(Ps)<=Js,x(P);

in other words, for each x c ", us(x) is the optimal cost for (Px:) on A and Ps is an
optimal control (independent of the initial state x) for this problem.

Remark. Let us denote by A2 the subset of A defined by

p c A2 if and only if p c A and there exists c c + such that
(2.13)

:p() <= Cp’(1 +l:l) for each see $m.
Then we have Ps c A2 c A.

For the proof, see 4.

3. Asymptotic behaviour of (Px,s) when s vanishes. This study leads us to introduce
the asymptotic stationary problem

(Q ): minimize/xx p ), p c A3,

where/z(p) is defined by

(3.1)
/x’ (P) lim inf

1
E

+o
(g(,v( t)) +f(P(,p( t)))) dt

for each x c R and p c A3,

and where the control set A3 is the subset of A2 defined by

(3.2) pc A3 if and only if pc A and there exist two constants c>-0 and d>0
such that :p(:) <-- c,’ dgl[= for each

We shall solve this problem by means of a coercivity hypothesis concerning g
stronger than (2.8): the gradient of g is quite centrifugal; its radial component has at
least a linear growth. Precisely, our strong coercivity hypothesis is the following"

For some constants K -> 0, Kt => 0, K2 > 0 and for some integer q ->_ 3,

(3.3)
Og
() >_ -K gl(l:l-

Ov

for each :c Rm and v cm with v 1.
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It is clear that (3.3) implies (2.8) and therefore the polynomial growth of Vg; its radial
restriction can be written as follows"

Og
(hv)>_--K + K2A

Ov
(3.4)

for each A >-_0 and v’, with v2= l, or equivalently, for some positive
constants K’ and K>0, :Vg(:)->_-K’+ KI:I2 for each

If m- l, (3.3) is obviously equivalent to (3.4) with the polynomial growth of g’.
With such a coercivity hypothesis, the optimal control Ps of (Px,s) is naturally

quite centripetal (we shall see that Ps A3, i.e. Ps(:) is at least linearly centripetal for

I:1 large enough; it tends to bring back the evolution of the process in the region where
g takes small values; so that the situation is similar to the one corresponding to the
case where the diffusion is reflecting at the boundary of a bounded set, the centripetal
aspect ofthe optimal control and of reasonable controls (p A3) replacing the reflection
phenomenon. Therefore, it is not surprising that the solution of (Qx) described in the
Theorem 2 given below is analogous to the one obtained by J. M. Lasry (see [20]) in
the case of a diffusion :x,p evolving on a bounded set of ", with. reflection at the
boundary. In fact, this analogy is a conjecture of J. M. Lasry and is the starting point
of the present work.

The solution of (Qx) and the convergence properties are summarized in Theorem
2:

THEOREM 2. We make all the above hypotheses (the assumption (2.8) of Theorem
is replaced by (3.3)). The conclusions of Theorem are still valid; moreover, ps A3

for each s > O.
Let us consider the solving equation of (Q,):

(3.5) -1/2p2Av(x)+ A + h(-Vv(x))= g(x) for each

(the unknown of (3.5) is the pair (A, v) C2("; )).
There exist a pair (Ao, Vo)+xC3(";) and a sequence (s,)nN on ]0, +c[

converging to 0 and such that:
1. (Ao, Vo) is a solution of (3.5) satisfying the "strong radiative condition"

(3.6) Po (V h)(-V Vo(" )) A3.

ho lim s.us.],oo ! C convergence on all compact subsets of ’Po lim Ps.n’

Vo lim (us -us (0)) C2 convergence on all compact subsets of m.
i1,

3. For each p A3 and x ",

(3.7) Ao =/z,(po) --</xx(p);

in other words, for each x ", the constant Ao is the optimal cost (independent of x)
for (Qx) and Po is an optimal control (independent of x) for this problem.

Finally, the "strong radiative condition" (3.6), connected with (3.5), implies the
uniqueness of Ao, first term of the pair (Ao, Vo) C2(";); if m the same
conditions, with Vo(0)=0, implies the uniqueness of (Ao, Vo) C2(’ ).
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Ao lim E (g(x.p(t)) +f(P(x,p(t)))) dt

For thee proof, see {} 5.

4. Proof of Theorem 1. (For details, see [29]. If m 1, see [27], [28].)
This proof, which is given in 4d, is a consequence of the following three lemmas;

Lemma 3 contains the a priori estimates leading to the optimality of Ps by means of
the stochastic calculus Lemmas and 2.

4a.
LEMMA 1. Let us C2(Rm;R) be a solution of (2.2); and suppose that Vus is a

polynomially growing function. Then

for each p A, r >- 0 and x

(4.1) fous(x)<=E e-S’(g(,,p(t))+f(p(,,p(t)))) dt+e-S*E(us(,,p(r)))

and this relation becomes an equality if
(4.2) P Ps (Vh)(-Vus(.)) A.

Proof. This property is a consequence of the Ito formula applied to the process
as,,,p defined by as,,, (t) e-’us (x,p (t)); then it is sufficient to write the mathematical
expectations using (2.2) and the definition of h.

41.
LEMMA 2. If tp - is a polynomially growing and measurable function, and if

p A, then E(o(,,(.))) is a polynomially growing function for all x ’.
Proof. It is sufficient to verify the result when (:)= (:2), n t*. Let Lp be the

differential operator associated with (2.2):

(4.3) Lpu =1/2p2Au+pVu.

">0, d">O andSince p s Al, there exist cp p lp ]0, 1[ such that,

(4.4) (Lw)() <- G(q(:)) for each m,
"’ for all u+where G(u) cpu p+ dp

It is well known that, if m(t)= E(o(,,p(t))), then the right derivative m_ of m
exists on +, and, for each +
(4.5) m’+( t) E(Lpq(se,,,p( t)))

(see [9], [ 10]). Therefore

(4.6) m’+(t)<=E(G(q,(,,p(t))))<-G(m(t)) for each

because of Jensen’s inequality and concavity of the function G; consequently, m(t)<-
’(t), where " is the maximal solution, defined on R+, of the differential equation
du/dt G(u), with initial condition u(O) (x2)" (for such results concerning differen-
tial inequalities, see [17]); the verification that " is a polynomially growing function
is easy and completes the proof.

4c.
LEMMA 3. Under the hypotheses of Theorem 1, (2.2) has at least one solution
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U C3( ) such that

(4.7) Ps (Vh)(-Vus(.)) A2.

Proof. m->2 (if m 1, see [28]). First we shall prove a priori estimates about
solutions us, of the solving equation (2.2) in the ball of radius r; secondly, the
asymptotic evolution of u,r when r + leads to the announced existence property.

A. A priori estimates in the balls. For each s > 0 and r > 0, let u,r C2(/) (where
B (0; r)) be the solution of the solving equation (2.2) satisfying the Neumann
condition on the boundary S of B

(4.8) Ou’r(r,)- qr2q for each u SIo
0,

This existence and uniqueness property is classical; more precisely, for some a ]0, l[,
u, C3’(B) fq C2’(/) see 6 for a suitable proof, or [18, Chap. 10, Thm. 2.2] for
a more general analysis of the problem.

We have for us, and Ou,/oz, the following estimates: for some to>0, D>0 and
q > 2q + (independent of r and s) and % > 0 (independent of r),

(4.9) inf g- h(O) <= SU.r() <= Sl[ql
"3L D,

(4.10)
0

_%

for each r-> to, s > 0, Br and u S.
Proofof (4.9). The function Ul,s defined by U,(:) (1/s)(inf g-h(O)) (respec-

tively the function U2, defined by U2,(sc) ]:1 q, + D/s, for sufficiently large D > 0 and
ql > 2q + 1) for each : , is a subsolution (respectively a supersolution) of (2.2) in. The application of extremality conditions to u,- U, (respectively to u,- U2,)
at a point where the minimum (respectively the maximum) of this function is reached
implies (4.9)" the minimum of u,-UI, cannot be reached on S since vVu,(rv)> 0
(respectively the maximum of u,- U2, cannot be reached on S since vV((u,- U2,)
(rv)) qr2q-qrq- <0 for suciently large r (r to) because of ql- > 2q).

oofof (4.10). 1) Let V,, be the C2 functions defined by

(4.11) for each and v.
We have, for % large enough, for each u , v2= 1"

(4.12)
0g+qo(]]-)-’]]-(2]]-)]]() for each 6,

where is the vector of defined by -(v). Therefore the functions V,
are, in a ceain sense, subsolutions of the derived equations of (2.2) in the direction

The proof of (4.12) is quite technical; neveheless we give it hereafter, but the
reader may directly go to step 2.

The gradient and the Laplacian of V, are respectively

(4.13)

(4.14) aV,()=-qll-(ll-)-((2m+Sq-5)ll-(m+3q-2)).
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Because of the hypotheses concerning h, we have

Oh

and, if sc’ 0, denoting : (1/[:’l):’

(4.16)
oh q q-1

where

, sup (0) Ivh(0)l.
eS

Therefore the following relation implies (4.12):

p=q[l-=(ll- )q-I((2m + 5q s)ll- (m + 3q 2))

(4.17)
-1+ qllo-=(ll )q-l(2[[ )lLl((o+ ’)-c(ll-) IIoILI)

+ g +/l([]- )ql[q 0 for each e N and e S.
If > c(o+ 1), and because of

it is sucient to have

[2q-2([1 )2q+l
(4.8)

+ 6q(2.o+.,)[-’/(1[- )o-l/

c Il=q-l(ll- )=o-l(ll +)+ 1,(11- )11 o.

When e0, I1-111+= therefore we can replace (4.18) by

pq(3m + 8q -7)([( v))q-1 s + K
(4.19) +6q(2o+

c (11(11- ))=q-’/= +/l(([l- )11) o,

which is satisfied if s K + CI, CI being the supremum of the function

q
t --C t2q-l/2 + K q + 6q(2o+) q-l+pq(3m + 8q 7)tq-I
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When sev-<_0, 11-<_11--<_211; in this case we can replace (4.18) by

-p2q(3m+8q-7)2q-’l#l=q-z- l:14q-l

(4.20)
+ 6q(2/Xo +/z,)2-’/=llq-’ + K,2I#I= % g

which is satisfied if s% K + Cz, C being the supremum ofthe left-hand side of (4.20).
In sho, (4.12) is a consequence of

(4.21) %>c(o+,), s%K+C, s>K+C.
2) Now we shall prove (4.10), which can be written as follows"

(4.10) V,,,,r() vVu,r() V,,() for each Br and v S.
Let us consider the application (v, )w()=(v,,-V,)() which is continuous
on the compact S xB (s and r are fixed); let (Vo, o) be a point where the infimum
of this function is reached. If Wo(O)0 then w()0 for each (v, )S1XBr. We
shall see that the contrary (Wo(O)<0) is impossible: Let us suppose that Wo(O)<0.

Let us write the extremality condition of first order concerning the variations of
v S, for v w(o); the gradient of this application, at point volS,, is

(4.22) V Us,r(O) q(lo]- ovo)-lol%o
e gradient of v v2-1 is 2Vo. Therefore, we have

(4.23) o=VU,(o)-q(lol-oo)-llol% for some A e,
(4.24) A A Vo,,(o)- q(lol- oVo)-llol%oVo,

q(4.25) VUs,r(O) Vo,s,r(O) VO+ q(l#ol- #oo)-’l#ol oo.
a) If o B, we have, from the derived equation of (2.2) satisfied by Vo,,,r, from

(4.12), (4.25) and from the next extremality conditions (since o Br)

(4.26) VVo.,r(O)=VV,o.(#O) and AW,o(O)0,
after calculation and denoting (v, ) in place of (Vo, o):

+

(4.27)
qllo-:(ll-ev)q-l(2lel-

)
Therefore, because of --V.o,,r(O) > Vo.(o) and (2.7), SWo(O e 0, which is
impossible.

b) If oe S, it follows from (4.25) and (4.8) that (denoting (u, g) (go, o))"
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a) If :oVo # O, we have, denoting Iso[- :oVo ry,

(4.29) Wo(So)sot,o ssoUo+ r2q+gq(y),
where

(4.30) gq(y)=(q-1)yq+l-(Eq-1)yq+q.
It is easy to prove that go(Y) >- 0 if 0 <_-- y <_-- and that go(Y) <- 0 if <_- y <_- 2; hence
Wo(So) >_- 0, which is impossible.

/3) If s%Vo 0: we draw one’s inspiration from methods used by J. M. Lasry ([20]).
Let t-- /t be a curve of class C in S such that

(4.31)

We have successively

(4.32)

(4.33)

rr/o o and

rltV Us,,(rrh) qr2q,

VoV Us,r( rrlo) + rrloU s",r( ro) Vo O.

Moreover, :o being a minimum of Wo(:) for : B,, and r/o being an outward normal
to Sr at point :o,

(4.34)

On the other hand,

O__(Vo,s.r(S0) <=(V s(so) _2qr2q_ <= O.
0/o 070

(4.35)
--(V,o,s,r(O)) VoUs,r(6)IO ’r/o s,r,6)Vo

VoV Us,r( rTqo) ----l)vo,s,r( O).

Hence 1)Vo,s,r(O) 0, which contradicts l)Vo,s,r(O) < Vvo,s(O) < O.
B. A priori estimates in the whole space. Now we shall study the asymptotic

evolution of tls, when r +:
The above estimates (4.9) and (4.10) are uniform with respect to r; for each

/3 ]0, 1[ it is then possible to construct by recurrence u. C2’("; ), solution of
(2.2) on m and a sequence (r.). in [ro, +oo[ such that

(4.36) lim r. +oo,
n’+oo

(4.37)

(4.38)

lim Us,r./Bg us/B--- in C2’ (--R) for each R -> ro,

inf g- h(O) <- sus() <- s[l ql + D for each

19U
(4.39) for each (v, s) S, xRm.

Indeed, for each R >= ro, there exists a positive constant C, independent of r >= 2R
(depending on/3, p, s, R, Iglo,z,

sup sup [Us,r()]) and sup sup
r--2R /j B2R r>--2R B2R

these last two numbers are < +o because of (4.9) and (4.10)) such that

(4.40) [us,r/-ff-12,,nR <= C for each r->_ 2R.
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This estimate is a consequence of (4.9), (4.10) and of the H/51der interior estimates of
the gradient and the second derivatives concerning quasilinear elliptic equations of
divergence form (see [18, Chap. 4, 6]).

Therefore, the above existence property follows from the Ascoli-Arzela theorem.
For the regularity property us C3(R" R), see [11].

C. The radiative condition. We have

(4.41) vVh(-Vus,r(hv)) vVh(-v,s,r(hv)v+ V(A, v, s, r))

for each v S and h _->0, V(A, v, s, r) being orthogonal to v. Hence, applying (4.10)
and (2.7) gives

(4.42) vVh(-Vus,r(hV)) <-- o+ tz, --oand

(4.43) vVh(-Vus(Av)) <- IZo+ tx +-
Co

for each v S and A _-> 0, which completes the proof of Lemma 3.

4d. We are now in a position to deduce Theorem from Lemmas 1, 2, 3. Let
be a solution of (2.2) satisfying (4.7). V us has polynomial growth, and hence so does
us therefore

(4.44) lim e-SE(us(,,p(t)))=O for each peAl and
+o

Lemma completes the proof.

5. Proof of Theorem 2. For details, see [29]. If m 1, see [28]. This proof follows
the same methods as those of Theorem 1.

LEMMA 4. Let (ho,/.)0)[xC2(Im;[) be a solution of (3.5) such that Vvo has
polynomial growth. Then

For each p A, z > 0 and x

(5.) fho<=-E (g(,,,p(t))+f(p(s,,,p(t)))) d-lvo(x)+-N(vo(,p(r))),
T Jo T 7’

and this relation becomes an equality if
(5.2) p=po=(Vh)(-Vvo( )) A.

Proof We apply the Ito formula to the process a,p defined by OSx,p(t)--
-Aot+Vo(x,p(t)). Then it is sufficient to write the mathematical expectations using
(3.5) and the definition of h.

5b.
LEMMA 5. If tp v-- is a polynomially growing and measurable function, and if

pc A3, then for each x m, E(q(:x,p(" ))) is a bounded function.
Proof The proof is similar to that of Lemma 2; using the same notation, since

"> 0 and d" > 0 such thatp A3, there exist Cp p

(Lpq)()<-G(o()) for each xm(q(:)=l:l2")
(5.3)

"-- du for all u R+"where G(u) cp
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hence, re(t)= E(o(x,p(t)))<= (t), where " is the maximal solution, defined on R+, of
the differential equation du/dt G(u) with initial condition u(0)= (x2) ". The verifica-
tion that " is bounded is easy and completes the proof.

go.
LEMMA 6. Under the hypotheses of Theorem 2, (2.2) has at least one solution

Us C3(R R+) such that

(5.4) Ps (Vh)(-Vus(.)) As.
Furthermore, there exist a pair (Ao, Vo)+ C3(";) and a sequence (s,),N on

]0, +[ converging to 0 and such that:
1. (Ao, Vo) is a solution of (3.5) satisfying the "strong radiative condition"

(3.6)

2.

(5.5)

po (V h)(-V Vo(" )) e A3;

Ao lim s,u. C convergence on all compact subsets of Rm)

Vo lim (Us.-U (0)) (C2 convergence on all compact subsets of Rm).
+

Proof. m _>-2 (if m 1, see [28]). The proof is similar to that of Lemma 3; the
main difference between Lemmas 3 and 5 lies in the a priori estimates of SU,r and
V u,,, which are now independent of s < So (and of r, as in Lemma 3). Let So be a
positive constant.

A. A priori estimates in the balls. For each s ]0, So[ and r > 0, let u,, C2(ffr) be
the solution of (2.2) satisfying the Neumann condition on Sr

(5.6) (r) qr2q + C’r for each , S,

where c, is a constant such that

(2
(5.7) So’d-<K2 and c’>0.

Co

We have for us,, and aus,,/ov the following estimates:
For some ro>0, D>0, ql>2q+l, c>0 and ’>0, we have

(5.8) inf g h(0) _<- sus,r() <- sol l + o

and

(5.9) +

for each r -> ro, s ]0, So], : B and , S1.
Proof of (5.8). This proof is analogous to that of (4.9); the limit conditions are

modified, but this fact has no consequences on the reasoning.
Proof of (5.9). 1) The functions V defined for some constants > 0 and c,> 0

by

for each s and
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are subsolutions, in the following sense, of the derived equation of (2.2) in the direction
,:

for each v e S, s ]0, So],

-1/2pav()+sv()

(5.11) -Vh(- V()- (q(ll )-*ll
g

The proof of (5.11) is quite technical; we give it below, but the reader may directly
go to step 2. See Lemma 3 for the definition of, and l. Because of the hypotheses
concerning h we have:

o(_ v()-(q(ll- )-’l[ + ’))
(5.12)

_l-o+

where cg Co if 0 and cg c if v N 0, and, if 0,

Oh

(5.3)

Therefore the following relation implies (5.11 ):

--(ll-)’lel+’

(5.14) + qlel-=(ll- e)-’(21el-

(,.O+.l)-c(q(]

If > c(o+), it is sueient to have

lp2 (q(3m +Sq-7)il-’(ii-

_q
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When ,=>0, I1-1111+; therefore we can replace (5.15) by

1/32 7)(11(11 ))-’/ --/g, (ll(ll-q(3m+8q- qco
q2

(5.16) + 6q(2o+ l)(ll(ll- ))-’/=--(ll(li-c;

+ so’+-K -’ -o- +KN0,
co

which is satisfied if (5.7) and

(5.17) C, + ’(o+ ,)+ K c;
C being the supremum of the function

t-c tq-l/+ q+K tq+6q(2O+l)tq-/+oq(3m+8q-7)tq-.

This condition (5.17) implies >c(o+) prescribed above. When
1-211; in this case, we can replace (5.15) by

q 2q-I lq- ’(3m+8q-7) I + o’+c-g

which is satisfied if

(5.19) C2+ c’(/Xo +/x)+ K -<--

C2 being the supremum of the left-hand side of (5.18).
In short, (5.11) is a consequence of (5.7), (5.17) and (5.19).
2) Now we shall prove (5.9), which can be written as follows:

(5.9) v,s,r(:) vus,r(:) -> V(:) for each sc B and v St.
Let us consider, as in the proof of Lemma 3, the application (9, :)->w(:)=
v.,(:)- V,(:), which is continuous on the compact S xB (s and r are fixed); let
(’o, :o) be a point where the infimum of this function is reached. If Wo(:o)>= 0, then
w(:) =>0 for each (,, c)eS xB. If not, Vo.,.r(:o) < Vo(SCo) but we shall see that it is
impossible:

The extremality condition of first order concerning the variations of , e St can be
written

(5.20) v u,(:o)- Vo,s,(o) o+ (q(lol- +
a) If :o B, we obtain, as in Lemma 3, from the derived equation of (2.2) satisfied

by V,,o.s.,., from (5.11), (5.20), and from the next extremality conditions (since :oe Br)

(5.21) VV,,o..r(o)=VV,,o(O) and AWo(:o)=>0,
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after calculation and denoting (u, sc) in place of (Vo, :o):

Therefore, because of Vo,s,r(SC0) >= Vo(So) and (2.7), SWo(O) >= O, which is impossible.
b) If :oe St, it follows from (5.6) and (5.20) that the expression of Wo(So)sCoUo is

the same as that of Lemma 3, given by the formula (4.28) (replacing cos by c, and
(u, s) by (Uo, o)). Therefore,

a) If :oUo 0, we obtain, as in Lemma 3, that Wo(:o)-> 0, which is impossible.
/3) The hypothesis oUo 0 leads as in Lemma 3 (it suffices to replace the right-hand

side of (4.32) by qr2q + CO’r) to V,,o(SCo)>-0, which is impossible.
B. A priori estimates in the whole space. As in part B of the proof of Lemma 3,

for each /3 e ]0, 1[ and s e ]0, So], there exists a solution of (2.2) in C2’ (N" N+)
satisfying the same inequalities as us,, It is clear, because of the uniqueness property
of Theorem 1, that this solution is the optimal cost us of (Px,s) in A. Let us write the
estimates of us and VU:

(5.23) inf g- h(O) <= SUs() <- Soll q, / D,

(5.24)

for each s e ]0, So], sc e N" and u S.
C. Asymptotic estimates. These last estimates are independent of s ]0, So]. We

will now show that, for each R > O, there exists a positive constant C, independent of
s ]0, So], such that

(5.25) [(us- us(O))/B12,t,, <= C.

Because of (5.24), we have

sup sup Ivu)l) M,
sE]0,S0] eB2R

for some positive constant Mr; hence, we have, successively

sup sup ]us(s) us(O) l) <= M
e]O,so] eBn

for some positive constant M, and Ig+us-us(O)-su]o,, <--M2 for some positive
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constant M2. Therefore, rewriting (2.2) in the form

(5.26)
-1/2pa(u()- u(o))+ (u()- u(O))

+ h(-V(u(sc) u(0))= g(sc) + (u(sc) u(0))- su()

and using the H61der interior estimates of the gradient and the second derivatives
concerning quasilinear elliptic equations of divergence form (see [18, Chap. 4, 6]),
we obtain (5.25), the constant C depending on/3, p, So, R, g, but being independent
of s. It is then possible, using the Arzela-Ascoli theorem, to construct by recurrence
a sequence (r,), in ]0, So], converging to 0, and a function Vo C2’/3(m) such that

(5.27) Vo/BR lim (u.-u.(O))/BR in C"t(BR)

for each R > 0. The sequence (tr,u.(0)), being bounded, there exist a subsequence
(s,), of (tr,), and Zo + such that

(5.28) Ao lim s.us.(O).
’-Fcx3

Since lim,+ (s,V us.) BR 0 in C(ffR), (S,Us.)/--R converges to Ao in C (RR). Finally,
(Ao, Vo) is a solution of (3.5). For the regularity property Vo C3( ;), see [12].

D. The radiative condition. From (5.24), we have (with the method used in Lemma
3)

(5.29) vVh(-Vus(Av))
0

(3.6) follows immediately.

5d. We are now in position to deduce Theorem 2 from Lemmas 4, 5, 6: let (o, Vo)
be a solution of (3.5) satisfying (3.6); Vvo has polynomial growth, and hence Vo too;
therefore

(5.30) lim 1E(vo(,,.p(t)))=O;
’+

Lemma 4 completes the proof.

6. Appendix: the Neumann problem in B,.
LEMMA 7. For some a ]0, 1[, the Neumann problem (2.2) in B, and

aU
(rv) C(6.1)

Ov
C being a constant)

has a unique C2’(/r) solution.
Proof The uniqueness proceeds directly from the maximum principle. The

existence property is reduced to the establishment of certain a priori estimates for
possible solutions. This reduction is achieved through the application of a topological
fixed point theorem in an appropriate function space:

a) The fixed point theorem" Let T be a compact mapping of a Banach space Yd
into itself, and suppose there exists a constant M such that

(6.2) IlxllM for all x and cr[0, 1] satisfying x=crT(x).

Then T has a fixed point (see [26] or [12, Thm. 10.3]).
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b) For all v cl’(/r), the operator T is defined by letting u T(v) be the unique
solution in C2’(/r) of the linear Neumann problem (6.1),

(6.3) -1/2p2Au(x)+ su(x) g(x)- h(-Vv(x)) for each x B.

The unique solvability of this problem is guaranteed by the linear existence and
uniqueness result (see [18, Chap. 3, Thm. 3.2] or [12, Thm. 6.31 and remarks on p.
124]) using the Fredholm alternative.

The solvability of (6.1), (2.2) in C2’(/) is thus equivalent to the solvability of
the equation u T(u) in the Banach space 3 Cl’(/).

c) We will now show that the operator T is continuous and compact: By virtue
ofthe global Schauder estimate about the Neumann problem for linear elliptic equations
(see [18, Chap. 3, Thm. 3.1], or [12, Thm. 6.30]), T maps bounded sets in C’(/)
into bounded sets in C2’(/r) which (by the Arzela-Ascoli theorem) are relatively
compact in C2(/r) and C’(/). In order to show the continuity of T, we let (vn),=>l,
converge to v in Cl’(/); {T(vn)} is relatively compact in C2(/r); let (T(v,p))p>= be
a convergent subsequence of (T(v))n>_l with limit u C2(/); let wp T(vnp). Then
since

-Au(x) + su(x)+ h(-Vv(x))-g(x)

lim (-Awp(X)+ swp(x)+ h(-Vv,,(x))-g(x))=0,

we must have u T(v), and hence the sequence (T(v,)),>_l itself converges to u.
d) It only remains to show that, for some a ]0, l[, there exists a constant M

such that

(6.4) for all u Cl’’(r) and tre[0, 1] satisfying

(6.5) -Au(x) + su(x) + trh(-V u(x)) trg(x) and (6.1):

We establish first that (6.1) and (6.5) implies

(6.6) 0_--< u(:)<_--(sup g-h(O)) for each : B
S

(the constants 0 and (1/s)(sup g-h(0)) are respectively a subsolution and a supersol-
ution of (6.5); then the application of the comparison principle gives (6.6)). By virtue
of the global estimate about the solutions of the Neumann problem for quasilinear
elliptic equations of divergence form (see [18, Chap. 10, Thm. 2.1]), it follows from
(6.6) that lul,,Br_-< M for some constants a s ]0, 1[ and M >-0 independent of

Remarks. a) Because of g s C2(Rm; +), we have

uC’’(,)C’(r)

(see for example [12, Thm. 6.17]).
b) Lemma 7 can be proved by the regularity of weak solutions; moreover, the

solution of the Neumann problem admits a stochastic interpretation similar to that of
Theorem l, for a reflected diffusion. The same remark applies to the Neumann problem
associated to (3.5): see the works of J. M. Lasry and P. L. Lions.

Acknowledgments. The author is grateful to Professor J. M. Lasry for useful
discussions.
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NONDIFFERENTIABLE OPTIMIZATION PROBLEMS FOR ELLIPTIC
SYSTEMS*

ANDRZEJ MYLI/qSKI? AND JAN SOKOLOWSKI"

Abstract. The paper is devoted to analysis of optimization problems in coefficients of fourth order
elliptic boundary value problems. Similar problems were investigated in the framework of shape optimal
design of thin plates. Since in general such problems have no optimal solution, G-convergence theory of
elliptic operators is exploited in order to define and to characterize generalized optimal solutions. Necessary
optimality conditions for nonsmooth optimization problems are derived. Results of computations for two

examples are presented.

Key words, distributed parameter system, control in coefficients, nonditterentiable optimization, general-
ized optimal solution, G-convergence, optimum design problem

1. Introduction. The paper is devoted to the analysis of some nondifferentiable
optimization problems in coefficients of fourth order elliptic systems. Since optimization
problems in coefficients of partial differential equations in general have no optimal
solutions [15], [23], a family of auxiliary regularized nondifferentiable optimization
problems depending on a parameter e (0, 8], 8>0 is introduced. For every fixed
e (0, 8] existence of an optimal solution to the regularized problem is assured and
necessary optimality conditions for this problem are obtained.

In order to pass to the limit with e$0 the notion of so-called G-convergence [17]
is introduced. G-convergence allows us to define and characterize a generalized optimal
solution of the initial optimization problem. In the paper the method described above
is applied to two optimal design problems of a clamped plate of variable thickness
u(x) => Cl > 0, x 12 c R2 shown in Fig. 1.

In the first problem (P!), formulated in 2, we are looking for a plate with fixed
volume, variable thickness bounded from below and above and with required static
properties. Maximal deflection of a loaded plate is minimized over a set Uaa of
admissible elements u(. ). In the second problem (P2), formulated in 3, the smallest
eigenvalue of an appropriate eigenvalue problem is maximized over the set Uaa.
Problems (P1) and (P2) have already been studied by many authors in the framework
of optimal design [2], [6], [7], [10], [16], [18], [19], [20], [22], [28], [29], [30]. In [19]
an anisotropic model of axisymmetric plate is proposed. Using this model numerical
results for an optimization problem similar to our problem (P2) were obtained in [20].
However this approach in general does not assure the existence of an optimal solution.
Problems (P1) and (P2) involve nonsmooth cost functionals. Differentiability properties
of some nonsmooth functionals were investigated in an abstract setting by J. P. Zolesio
[26]. In particular he obtained [27] the form of directional derivative of the multiple
eigenvalue of a fourth order elliptic eigenvalue problem with respect to the variations
of coefficients of an elliptic operator. The method of J. P. Zolesio is applied in our
paper in order to obtain directional differentiability of nonsmooth cost functionals.
Lemarechal’s method 11 ] of nonsmooth optimization combined with the finite element
method was used for computations. It is confirmed by our numerical results that from
the numerical viewpoint problem (P2) is more complex than problem (P1).

* Received by the editors January 26, 1983, and in revised form July 30, 1984.

" Systems Research Institute of the Polish Academy of Sciences, ul. Newelska 6, 01-447 Warszawa,
Poland.

See, however, Rousselet [29] for a result on directional derivatives of eigenvalues for shape sensitivity,
and Haug-Rousselet [28] for coefficient sensitivity.
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XI

FIG. 1. Clamped plate of variable thickness.

The outline of the paper is the following. In the second part of this section notation
is introduced, a linear isotropic model of the clamped plate is described and ditferentia-
bility properties of some nonsmooth functionals are given. In 2 a method of regulariz-
ation for problem (P1) is introduced, necessary optimality conditions for a family of
regularized problems (P1), e (0, 6], 6 > 0, are presented and the notion of a general-
ized solution to problem (P1) is proposed. Section 3 describes similar results obtained
for problem (P2). In 4 numerical results are presented.

Let us introduce the following notation. Let lI be an open, bounded and connected
set in R2 which satisfies the cone condition [1] with boundary 01) C manifold of
dimension 1. L() is the Hilbe space of (equivalence classes of) Lebesgue square-
summable real-valued functions with the scalar product

(y, z)(a , y(x)z(x) dx.

L(fl) is the Banach space of (equivalence classes of) essentially bounded functions
with the norm:

llyll (-)= ess sup {ly(x)llx c }.

H() is the Sobolev space [1] with the norm

i= Oil L2()

H(O) is the Sobolev space, the closure of the space C in the norm

[[y[Hg(a
id= OXi OXj

We denote by H-(O) the dual space to Hg() and by (.,.) duality pairing between
H-(O) and Hg(O).

Let us describe briefly a linear model of the clamped plate [4]. We assume that
tensor {a0} aokt Lm(O), i,j, k, l= 1, 2 which characterizes the rigidity of the plate
[4] has the form

(1.1) aijkl(X)=U3(x)bijkl, X, i,k, 1=1,2

where bok, i, j, k, 1, 2 are given constants which depend on the material of the plate.
Denote b,o bk, a { i, j}, fl { k, l}, i, L k, 1, 2 and assume that 4 x 4 matrix b,e
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possesses inverse [bo]-. Furthermore assume that the following symmetry conditions
are satisfied:

bijk! "-bjikl--bklij, i, j, k, 1, 2

and that there exists a constant o > 0 such that:

(1.2)
2 2 2

2bokleijekl>=O ’. e
i,j=l k,l=l

for every symmetric 2 x 2 matrix eij]. Assume that the plate can be of variable bounded
thickness u(x), x but of a constant volume i.e.: it can be treated as an element of
the set

(1.3) U,o={uL(f),O<Cl<-U(X)<-c2fora.e.xf, Inu(x) dx=c}
where Cl, c2, c are given constants such that Uad # .

Suppose that the plate is loaded by a given perpendicular force f--f(x), x f
and assumef H-E(f).

Denote by y= y(u; x), u Uad, X f the deflection of the plate which can be
described by the elliptic boundary value problem of the form:

(1.4)

where

y y(u,. H(f),
a,(y, z)= (f, z) Vz H(f)

(1.5) a,,(y,z)= i,j=l k,l=lIflU3(x)bijk’0]yXj (X)OXko2ZOxt(X) dx Vy, z H(I).

It is well known [4] that under our assumptions for any fixed u e Ud andf H-2()
there exists a unique weak solution to the equation (1.4) such that y(u; .) C().

Let us recall two theorems due to J. P. Zolesio [27] concerning directional
differentiability of nonsmooth functionals which we shall need in the sequel. Let
E L() be an open set, W be a compact topological space and let there be given
the mapping:

F(’,’)" WxER.

THEOREM 1. Assume
(i) F(’," is upper semicontinuous on E x W;
(ii) F(w,.) is continuous on E for every element w W;
(iii) F(w, is differentiable on Efor every element w W, i.e., there exists the limit

dF(w, u" v) lim (F(w, u+ tv)-F(w, u))/t
tO

such that the mapping:

L(O)vdF(w, u; v)R

is linear and continuous for every pair w, u) W E
(iv) dF(., is upper semicontinuous on W E L(O).
en the functional

f(u)=sup{F(w, u)lw W}
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is differentiable in every direction v L(f) and

df(u; v)=sup{dF(w, u; v)lw W,f(u)= F(w, u)}.

THEOREM 2. Assume that the conditions (ii), (iii) of Theorem 1 are satisfied and
suppose

(v) F( ., is lower semicontinuous on W E.
Define the functional

g(u)=inf {F(w, u)lw W}

and assume that dF(., .;. has the following property:
(vi) for every sequence {wn}c W, {u,}c E, {v,}c L(f) such that

w, M(u) {w Wig(u.) F(w,

It follows that

wnw inW,

u, u in L(f),

vn v in L(f).

lim dF(w,, u,; v,)>=dF(w, u; v).

Then the functional g(. is differentiable in every direction v L() and

dg(u; v)=inf {dF(w, u; v)lw M(u)}.

2. Minimization of maximal deflection of the clamped plate. Consider the following
optimal design problem"

(P1) inf
tx
Isup [y(u; x)]lu Uad}

where y(u;. ) H2o(f)c C((), u Uad, is a unique solution to (1.4). Problem (P1) has
no optimal solution i.e.: in general there is no element u Uad at which functional

(2.1) J(u) sup ]y(u;
xl’

attains minimal value.
In order to assure existence of an optimal solution we define a regularized problem

in the following way. Let e > 0 be a parameter, e (0, 8], 8 > 0. Consider the following
family of regularized problems"

We prove existence of an optimal solution u e U, ’1H() to the problem (P1) for
every e e (0, 8]. We obtain the form of necessary conditions of optimality which are
satisfied by u. Furthermore we investigate existence of a limit of the sequence {u}
for e0.

THEOREM 3. For e (0, t] there exists an optimal solution u Uadf’l H() to

(P1) such that the following necessary condition of optimality is satisfied:

(2.2) max f g(s,x)(u(x)-u(x)) dx+e(u, u-u)H,(>-O Vu UadfqH(f)
sf*(u) d t
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where

l)*(u) {x [J(u): y(u; x)}

and the element g(s,. ) Ll(l)) is defined by
2 2 02ye O2p

(2.3) g(s, x)= 3u(x) Y’. Y’. bijklox ’(X)
i,j= k,l= OXj OXk

and elements y, p(s,. )=p(s) H(fl) satisfy the equations

(2.4) a,,(y, O) (f, O) VO H()),

(2.5) a,,(p(s), 0)=(sign y(u; s)6(s) O) VO H([)
where 6(s) is the Dirac functional evaluated at the point s

For the proof of Theorem 3 we need the following lemmas.

(S X)

LEMMA 1. Let there be given a sequence {u,} c Uad and an element u L(I)) such
that

(2.6) u,(x) - u(x) a.e. in 1), for n 00.

Then

(2.7) lim J(u,)= J(u).

The proof of Lemma is omitted as a standard one.
Define a set E = L(I)) of the form

E {u L(I)) [0 <
where Yl, t2 are given constants such that 0 < l < el < c2 < t2.

LEMMA 2. The directional differential of the function J(u) at u E has the form

(2.8) dJ(u; h) max
sl’l*(u)

where for fixed s ( the element g(s,. Ll() has the form

(2.9) g(s, x)= 3u2(x) O2Y x)
i,j=l k,l=l

Proof We shall apply Theorem 1. To do that we have to verify all assumptions
of this theorem.

Denote

F(x, u) y(u x), u e E c L(), x e W--- l c R2

where y(u,.)e Hg(a)c C(fi), u e E is a unique solution to (1.4). It can be shown
that there exists a constant: L < o0 such that

(2.10) [[y(ul;’)--y(uv_;’)[lc(n)<--gllul--u2l[o(a)

hence assumptions (i), (ii) of Theorem are satisfied. In order to verify assumption
(iii) let us note that by application of implicit function theorem it follows that for fixed
s e fi, y(. s) is diilerentiable on the set E c L(I)). Directional differential dy(u, s; v),
u e E, s (, v L(t) has the form"

(2.11) dy(u,s; v)=(6(s),z)
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where the element z Ho(l)) is a unique solution to the elliptic equation"

I OY (u;x)
OXj OXk

(2.12) a,(z, O) 3U2(X))(x)bijklox OxI(X) dx
i,j=l k,l=l

It can be verified that dy(., is continuous on E x 1) x L(I)) hence the assumption
(iv) of Theorem is satisfied. From Theorem it follows that

(2.13) dJ(u" v)= max (sign y(u; s)6(s) z).
sl*(u)

Define the adjoint state p(s)e H(I)), s e 1) which satisfies the equation:

a(p(s), 4) =(sign y(u; s)(s), 4} V4 e H(I’).
Simple calculations show that (2.8), (2.9) follow from (2.13).

Proofof Theorem 3. The proof of existence of an optimal solution to the problem
(P1), e e (0, ] is classical and is omitted. The form (2.2) of necessary conditions of
optimality follows from Lemma 2.

Denote by L e 5f(H(f); H-(I))), u e E the elliptic operator which is associated
with the form a(., .), i.e."

(2.14) (L,y, z)= a,(y, z) Vy, z e g(l)).

We define a generalized optimal solution to the problem (P1) in the form of the
bso-called G-limit for e$0 of matrices {u[ so]} of coefficients of elliptic operators {L, }.

We recall the notion of G-convergence in the case of 4th order elliptic operators.
DEFINITION [17], [31]. Let {u,} c Uad, n 1, 2,... be a given sequence. Denote

by {u3,[bt]} the sequence of 4 x4 matrices of coefficients of elliptic operators {L,.}.
The sequence {u3,[b,]} G-converges to the matrix [%,], q, qOke L(1"1), i,.L k,
1, 2, what we denote;

(2.15) u3,,[b,t] -----> [%t] in Ft,

if for any sequence {y.}c H(I)) such that

(2.16)
weakly in Ho(),
2 2 02

L,.y,, -+
O2y

strongly in H-2(’),
ia= k,l=t OXi oxj qijkloxk OXt

the following convergences take place"

(2.17)
2 OZy,, :z 02y

bijkl
OX

Un qijkl weakly in L2(,), k, 1, 2.
i= Oxj o= Ox Ox

THEOREM 4. There exist a subsequence {u} UadfqH(l)) and a matrix of
coefficients [%], q q0k L(I)), i,j, k, 1, 2 such that

G
(2.18) u3[bt] [%1 in 1),

(2.19)

(2.20)

y(u, ;" -> fi(" weakly in H(I-I),

lim J(u)+ Ilull, =inf{J(u)lu UaI--sup{.f(x)lxa}
o -



638 ANDRZEJ MYLII’ISKI AND JAN SOKOLOWSKI

where fi(. ) Hg(I) is a unique weak solution to the equation

02 02k (x) dx (f, b)(2.21)
id=1 k,/=l qiJkl(X)o:XjtX)OXkOXl v6 /-/o(n).

For the proof of Theorem 4 we need the following lemma:
LEMMA 3. Let {u,}c Uad be a given sequence. There exist a subsequence, still

denoted {u,} and a matrix ofcoefficients[qt], qo qijkt L(O), i, j, k, 1, 2 such that:

(3

u3,[ b,,t ] ===:> q,t3 ] in

and for every fe H-2(I))
(2.22) L-2f L-’f weakly in

where the operator Le (Hg(a); H-2(a)) is defined in the following way:

02
(2.23) (Ly, z)= qjt(x) (x) (x) dx

i,j k,l= 19X Xj t9Xk 19X

Furthermore the following estimation holds, for a.e. x

(2.24)

Vy, z, H(f).

2 2 2 2

I(X) E , bijkleijekl <= E , qOkl(X)eijekl
i,j=l k,l=l i,j=l k,/=l

2 2

--< 42(x) Z Z bijk,eoe,
i,j=l k,/=l

for every symmetric 2 x2 matrix [eli], where elements 1/I/1(" ), 12(" are cluster points,
in the L. (fl) weak-(. topology of sequences {l/u3,( )} and {u3,( )}, respectively.

The proof of Lemma 3 is given in the Appendix.
Remark. Lemma 3 is a direct extension to the higher order elliptic boundary value

problems of the method of variational estimations proposed by Tartar [24] in case of
second order elliptic problems.

ProofofTheorem 4. Let the elementfe H-2() be fixed. For given element u e Uad
denote y(u)-y(u; .)e Ho(f) a unique solution to (1.4). Define functional

(2.25) I(y)=sup{ly(x)llxelI}, ye Hg(a)

and denote by Z, the following subsets of the space Ho2(fl)
Z {y e H(lI)lu e Uaa, Y Y(u)},

2 {y e Ho2(fl) {yk} c Z, k 1, 2,’", Yk + Y weakly in Ho(lI)}.

There exist sequences {Vk}C Uadfq H(O) and {ek}c R+, k 1, 2,’" such that

def
lim J(vk) inf {J(u)l u e U.} J*,

lim Ek 0,
k-o

Ht(f) 0.
k-oo

Since Ily(u)ll,om) cIIfll-<m, for every u e Uad, there exists an element )3eZ such
that for a subsequence

(2.26) y(Vk) - fi weakly in Ho2(lI);
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furthermore

J*=

On the other hand u is the optimal solution (P1)k and hence

(2.27)

whence

Denote

r lim sup 1/2ek 2/-/1(") C
koo

and observe that

J* >- I(:) + r= inf {I(y) ly Z}+ r;

hence r 0.
Define fi= and note that by Lemma 3 it follows that (2.20), (2.21) hold for a

subsequence of the sequence {ek}, which completes the proof.
Remark. In case of a linear model (1.4) of an isotropic plate, rigidity of the plate

is characterized by the tensor {u3( )bokt}, i,j, k, l= 1, 2 Uad.
The elliptic boundary value problem (2.21) can be formally interpreted as a model

of an anisotropic plate. Rigidity of this anisotropic plate model is characterized by the
tensor {qijkl(" )}, i,j, k, l= 1, 2.

A generalized optimal solution to the problem (P1) can be defined in the form of
the tensor {qijkt(" )}, i,j, k, 1, 2. Several results concerning the existence of optimal
solutions to optimization problems in coefficients of partial differential equations are
given in [9], [13], [15], [21], [23], [25], [30].

3. Maximization of the smallest eigenvalue. Let us consider an optimal design
problem [ 18], [7] of maximization of the smallest eigenvalue of an elliptic boundary
value problem. Let h(u), u Uad denote the smallest eigenvalue of the following
eigenvalue problem"

(3.1) au(r/, tk) h(u) Ic u(x)rl(x)(x) dx Vck H2o(n)

where r/ H(12), r/# 0 is the eigenfunction corresponding to the eigenvalue h(u).
Consider the following optimization problem:

(P2) sup {,(u) lg Uad}.

Define for u E c L(Iq), r/ H(Iq), r/# 0 the functional F(u, r/) of the form

(3.2) F(u, n)=a,(n, n)/(In u(x)n(x) dx).
It is well known [8] that

(3.3) A(u)=inf{F(u, n)lnHg(n), n0}.
Denote by M(u)c H(fl) the set of all normalized eigenfunctions, corresponding to
the eigenvalue A (u):

(3.4) M(u) {n Hg(n)I X(u)= F(u, rl), n
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In a similar way as in 2 for e > 0 we define the following family of regularized
problems:

(P2) sup Uadn n’()}.
Note that problem (P2)o, for e 0 does not coincide with (P2); however, it is true that

sup {A(u)[u Uaa}=sup{A(u)[uE Uafq H’(fl)}.
We prove existence of an optimal solution v Ua f3 H(I) to the problem (P2) and
we obtain necessary conditions of optimality for this problem.

THEOREM 5. There exists an optimal solution v Ua f3 H(f) to the problem (P2)
for e > O. Necessary conditions of optimality take on the form:

(3.5) inf f g(n,x)(u(x)-v(x)) dx-e(v, u-v),m)<-O Vu UdfqH(f)
rteM(v)

where

n n o.

For the proof of Theorem 5 we need the following lemmas:
LEMMA 4. Let there be given a sequence {u,} Uad and an element u L(f) such

that for n oo

u,(x) u(x) a.e. in f.

Then

(3.6) lim A(u,)= A(u).

The proof of Lemma 4 is omitted.
LEMMA 5. There exists a weakly compact set Wc H(II) such thatfor every element

u Uad the smallest eigenvalue of (3.1) can be defined as:

(3.7) A(u)=inf {F(u, rt)lq W}.

Proof It is sufficient to prove that there exists a constant R < c such that:

(3.8) Vu G Uad Vn M(u): Ilnll(.) R.

If (3.8) holds, we can define the set W as

(3.9) W= {w Hg(a)l linll x .  R, Ilnll   . 1}.
It can be verified that the set (3.9) is a weakly compact subset of H(O). In order to
prove (3.8) let us recall [4], that there exist constants 0< Ml NM< such that:

(3.9)’ Mlll611ga)a.(6,6)Mzll61l. VUeUad V6 e n(o);
fuhermore the following estimation holds:

M M(3.10) ll[lg(a)f(u, 4)llll%g(. Uad vn(a),
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Let r/o H(f) be any element such that [Ir/OllL2(a) 1. From (3.10) it follows that if
we put

(3.11) R= - r/oil Ho(a),

then (3.8) holds.
LEMMA 6. Let there be given sequences {Uk} Uao, {r/k} c H(f), r/go M(ug),

k 1, 2,. , and an element u L(f) such that for k o:

(3.12) Uk(X) U(X) a.e. in (f).

Then there exist an element r M(u) and a subsequence of { r/g}, still denoted { r/g} such
that for k o

(3.13) r/k r strongly in HEo(f).

Proof. By (3.8) it follows that IIr/kllH,(m<--_R. Hence there exists an element r/e
Ho2(f) such that for a subsequence, still denoted {r/k} we have

(3.14) r/k r/ weakly in Ho2(F)
and by compact imbedding HEo(f)C() [12] it implies that:

(3.15) r/k(X) r/(X) uniformly on ft.
We have to prove that r/e M(u).

Let there be given an element M(u). By (3.12) it follows that:

(3.16) Vcb H(f)" Lukb Luc strongly in H-2(12)
and

(3.17) lim auk(0, )= au(, ),
k-cx3

(3.18) lim inf au r/k, r/k) >---- au r/, r/)"

hence

(3.19) lim F(Uk, )= F(u, "rl),
koo

(3.20) lim inf F(Uk, r/k)
k-o

On the other hand by definition of

(3.21) F(Uk,

Hence (3.19) and (3.20) imply that

k=l,2,....

(3.22) F(u, "FI) >- F(u,

which shows that r/ M(u).
In order to prove (3.13) let us recall that by (3.16) it follows [17] that

(3.23) Vf H-(I-) L-2f- Lf strongly in Ho(12);
hence

(3.24) Lfk- L-f strongly in
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whenever

(3.25) fk-->f strongly in H-2(II).
To conclude the proof let us note that

(3.26) 9k L-lfk
where fk A(Uk)Ukrlk. By Lemma 4 and by (3.12), (3.15) it follows that fk -f= A(u)ur/
strongly in L2(II), thus strongly in H-2(I).

ProofofTheorem 5. The proof of existence ofan optimal solution v Uad 0 Hl()
is standard and it is omitted.

In order to obtain the form (3.5) of necessary conditions of optimality we can
apply Theorem 2, where

g(u)=inf{F(u, rt)] r/ Wc H(I))}, uE;

the set W has the form (3.9) and the set E c L(II) is defined as in Lemma 1.
THEOREM 6. There exist a subsequence, still denoted by {v}, an element Vo L(II),

a matrix Q [q,,]44 of coefficients q,, qijk L(lI), i, j, k, 1, 2, and a number
A* > 0 such that for

(3.27) va[b,] ---> [q,, ] in 11,

(3.28) X (v)- ,X*,

(3.29) lim {A(v) -e },o llvll,’m -sup{A(u)lu Uad}--X*

where A* is the smallest eigenvalue of the problem

f 02(
(x)=A f Vo(x)rl(x)b(x dx Mrh Hg(l))(3.30) i,j,k,l=l da

qiJki(X) oxC31c3xj(X)c3Xk OXl ,In.

and rl Hg(II) is the eigenfunction corresponding to the eigenvalue h*.
Proof. Sequences {r/e}, {v}, {h(v)} are uniformly bounded in spaces

LC(lI), R respectively; hence there exist elements:

e Hg(ll), voe L(ll), X R

such that for subsequences"

(3.31)

(3.32)

(3.33)

r/ --> weakly in H2(I)),

v v weakly-(.) in L(I)),

h(v)--> , in R.

Furthermore by Lemma 3 it follows that there exists a matrix of coefficients Q =[q,o]
such that

G
(3.34) v3[b,,z q,,o ] in ft.

By (3.31) and by compact imbedding [12] H(II)C() it follows that

(3.35) r/(x) (x) uniformly on
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On the other hand (3.35), (3.32), (3.33) implies that

(3.36) A(v)vr/-Vo weakly in L2(f).
Denote f A(v)v’q, f= VoCl, f,f L2(fl). By compact imbedding L2(f)H-2(I))
it follows that:

(3.37) f -f strongly in H-2().
For given matrix Q [q0] denote"

(3.38) ao(y, z)= fn Ozy
(X)

02Z
,= ,= ox ox ox, ox (x) dx ty, Z H2o(),

(3.39) F(y)=a(y,y)/InVo(x)y2(x)dx, yHEo(fl),y#O,

(3.40) 3,* inf {Fo(y)lY H(12), Ilyll .n 1},

(3.41) M*(Q) {y H(I))IFo(y A*, Ilyll ,.:. 1).

Since bilinear form a(.,.) is uniformly continuous and coercive [4] on the space
H(12) for u Uad, then (2.24) and (3.9)’ imply that

MllYllg. <- ao(Y, Y)<- M_llYllg. Vy ng(f);

hence the set M*(0) is not empty and A* is the smallest eigenvalue of the eigenvalue
problem (3.30).

Note that Lo,rt =f in f i.e.:

(3.42) ao(r/b)=(f, 6) VbEnoZ(lq)

By (3.31), (3.34) and by the definition of G-convergence it follows that:

(3.43) lira ao (’0, b)= ao(, b).

Thus by (3.37), (3.42)"

(3.44) aQ(l, d,b)=(f, dp)=. InVo(X)Cl(x)dp(x) dx

On the other hand by (3.32), (3.35), (3.43) we have

(3.45) lim F(v, rt)= F,(’O)
e0

and by definition of the smallest eigenvalue

A(v)<=F(v,rt) VrIM*(Q), e>0;

hence for e$0 we obtain:

.=Fo(Cl)<-Fo(rI)=A * Vrt M*(Q);

thus E M*(Q) and A*.

4. Numerical results. Problems (P1),, (P2),, for e >0, are nonsmooth infinite
dimensional optimization problems. The finite element method was used for discretiz-
ation of the elliptic boundary value problem (1.4). In order to solve the resulting finite
dimensional, nonconvex and nonsmooth optimization problem, the method of
Lemarechal Ill] combined with the shifted penalty function method [5] was applied.
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The QZ algorithm [14] was used for computation of the smallest eigenvalue to the
eigenvalue problem (3.1). The domain 12 had the form:

n-{(x,,x)RZlx,(O, 1), i= 1,2}.

The computations were carried out for a model rectangular clamped plate divided
into 64 rectangular finite elements of the Bogner-Fox-Schmidt type [3]. The constants
c, c2 in (1.3) were equal to 0.8 and 1.2 respectively. Constant c was equal to 1.0 and
e 0.0001 was used in the computations.

The optimal values of the cost functionals were referred to the value of the cost
functionals computed for the plate with constant thickness a(x)= 1, x fl and the
following ratios were computed:

where

r, IL(a)- L(u)llL(a) for (P1),

for (P2)

J(u) sup y(u; x)+1/2ellulll(., ,t v ,t v) -1/2e v 2,_,,r,.

The following numerical results were obtained:
(i) For problem (P1) the results are shown in Fig. 2 and in Table for one

quarter of the plate loaded by distributed force f(x) 1, x 12. Note that it is sufficient
to present results for one quarter of the. plate since the optimal solution is symmetric
in this case. In this case r 0.63. The thickness of the plate is maximal in the middle
of the rectangular II and in the middle of its boundaries.

(ii) For problem (P2) the results are shown in Table 2 and in Fig. 3. In this case
r2 1.01. The smallest eigenvalue is double for the optimum thickness plate. The
material concentrates in the middle of the boundaries and around the middle of the
plate.

FG. 2. Problem (P1), one quarter of optimal shape plate.
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TABLE
Numerical results for problem (P1). Thickness of one quarter of optimal shape plate.

x -coordinate

x2 coord. 0.000 0.125 0.250 0.375 0.500

0.500 1.04 1.04 1.00 1.00 0.98
0.375 1.11 0.99 1.03 0.99 0.99
0.250 0.99 0.89 0.99 0.99 0.99
0.125 0.89 0.97 0.99 1.02 1.01
0.000 0.99 0.98 1.00 1.08 1.02

FIG. 3. Problem (P2), one quarter of optimal shape plate.

TABLE 2
Numerical results for problem (P2). Thickness of one quarter of optimal shape plate.

-coordinate

x2-coord. 0.000 0.125 0.250 0.375 0.500

0.500 1.18 1.10 1.00 0.88 0.84
0.375 1.20 1.02 1.12 0.94 0.86
0.250 1.04 0.80 1.11 1.06 0.99
0.125 0.91 0.83 1.19 0.81 1.20
0.000 0.98 0.96 1.18 0.80 0.95

Appendix.
ProofofLemma 3. By [17, Thms. 9, 13] it follows that there exist a 4 4 symmetric

matrix of coefficients [q], q,t=qOkL(f), i, j, k, l, 2 and a subsequence
{u3,[b]}, n 1, 2,... such that (2.15) and (2.22) hold. In order to obtain the estimate
(2.24) consider an auxiliary elliptic boundary value problem of the form"
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(2)

Given an element w e C(R2), determine an element y, e H2(I-) such that:

y, w e H(l’l),

Iou3.(x) OZY"
,,_-, ,,=, b’%x, ox (x) ox ox, (x)

dx

02w oEz
qo ,(X)ox, (x) ,(x)

i,j k,i= OXk OX

It can be shown in a way similar to [17, Lemma 5, p. 86; Thm. 12, p. 91] that the
following convergences take place for n

(3) y.--> w weakly in H2(12),
2 02y, 2 02w3 bijk(4) Z U Z qijkl0, dx , x dx

(5)

weakly in L2(-) for every k, 1, 2,

02y"-(x) oZY" (x)u,,(x)dx
i,j=l k,/=l

O(x)qokt(x
w 02w
Oxj

(x)
OXk OX,

(X) dx VO D(Ft).
i,j=

Given A, ’2, / ( R, define

2w(x)=1/2A,x+A2x2+A3xx2, xR.
Note that the following inequality holds:

V0 e O(n), O(x) >-_ 0:

II’- bijkiox
2

(6) O(x)u (x) (y,,(x) w(x)) 0--2
,.j: k,t=, OX OXk OXt

(y’(x)- dx>-O.

Since 0< c3 <-u3,(x)<-_ c a.e. in 1), then there exist elements qt, qt2e L(II) such that

(7) u3.(.) q2(.)

(8) 1/u3,(. )1//,(.
weakly-(.) in L(f/),
weakly-(,) in L(I));

furthermore (2(x),l/l(X))econvX for a.e. xel) where X={(a,b)eR21
ab 1, c3 <- a <- c32}.

Taking into account (3), (4), (5), (7), we can pass to the limit in (6) and we obtain
the right-hand side inequality in (2.24), with

A3[e]=
,3 2

In order to obtain the left-hand side inequality in (2.24), denote

(9) [dt] [b,,t]-1

where d,,t dit, i, j, k, l= 1, 2, and define

2 02W(10) tzo(x)- I(X) E bijkloxk Oxt(X),k,l=
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2 a2y.
(11) a.,,(x)=u3.(x) Y’. b,tax, .(x), xe, i,j= 1,2.

,1= OXl

Note that for n 1, 2,... the following inequality is satisfied: /0 D(12), O(x)>=0

(12/ O(X)u3.(x a,.,,(x)-ixo(x))(a,t,,,(x)-ix,t(x)) ax>-O.
i,j=l k,/=l

Taking into account (3), (4), (5), (8), we can pass to the limit in (12) and we obtain
the left inequality in (2.24).
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A CHARACTERIZATION OF PROPERLY MINIMAL
ELEMENTS OF A SET*

JOHANNES JAHNf

Abstract. In this paper properly minimal elements of a set are characterized as minimal solutions of
appropriate approximation problems without any convexity assumptions.

Key words, vector optimization, scalarization, approximation

1. Introduction and problem formulation. Properly minimal elements play an
important role in vector optimization (in connection with duality investigations see,
for instance [11], [12] and [5]). This notion was first introduced by Kuhn-Tucker [15]
and modified by Geoffrion [7], and later it was formulated in a more general framework
(e.g., see [3] but also [2], [18], [19], [8], [1], [4], [16] and [9]).

Borwein [3, Thm. 2] gave an interesting characterization of properly minimal
elements as minimal solutions of appropriate scalar optimization problems. For this
characterization the convexity of the vector optimization problem is assumed. In [13]
suitable characterizations of minimal and weakly minimal elements are presented
without assuming any convexity. It is the aim of this paper to extend this theory to
the notion of properly minimal elements and to formulate a similar characterization
without any convexity assumption. Since we are concerned with approximation
problems, the following theory is developed in a normed linear space.

Throughout this paper let (Y, I1" v) be a real normed space, and let Cv be a
convex cone in Y. Obviously Cv induces a partial ordering in Y. Further, let a nonempty
subset V of Y be given. Then we ask for properly minimal elements of the set V.

Before we present the definition of these minima we list some useful notations.
The algebraic sum of two nonempty subsets S and T of the real linear space Y is
denoted by

S+ T:={s+tlsS and tT}.

A nonempty set S c y is called starshaped at g S, if

As+(1-A)gS for all sS and all A [0, 1].

The core of a set S c Y is given as

cor (S):= {s S[ for each y s Y there is some X > 0 with

s + Ay S for all A (0, X]}.

(and Y’Y*), respectively) denotes the closure of a set S Y in the norm topology
(and the weak topology r( Y, Y*), respectively), and int (S) means the interior of the
set $. For some 37 Y and some r/> 0 the notation

N(37, r/):= {y Y[ Ily-yll._-<

is used for a closed ball around 37 with radius r/. The cone generated by a nonempty

* Received by the editors October 4, 1983, and in revised form April 25, 1984.
f Technische Hochschule Darmstadt, Fachbereich Mathematik, Schlossgartenstrasse 7, 6100 Darmstadt,

West Germany. This paper was written when the author was a visitor at the Department of Mathematics
of North Carolina State University, Raleigh, North Carolina 27695-8205.
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subset S of Y is denoted

cone (S)".= {hsl h >_- 0 and s S}.

Furthermore, we recall that the (Bouligand) tangent cone T(S, g) to a set S c Y at
some g S is defined as

T( S, g) := { lim An(s-g)[A, =>0 and snS for all n and g= lim s,}

(the convergence is to be understood with respect to the norm I1" ). The tangent
cone T(S, g) is a local approximation of the set S at g. T(S, g) is closed (in a normed
setting), and it is even convex, if the set S is convex.

DEFINITION 1.1. Let (Y, [1" Y) be a real normed space, let Cy be a convex cone
in Y, and let V be a nonempty subset of Y.

a) An element )7 V is called a minimal element of the set V, if

({)- C.) V= {).

b) An element 37 V is called a properly minimal element of the set V, if 97 is a
minimal element of the set V and the zero element 0y is a minimal element of the
tangent cone T( V+ Cy, ).

Definition 1.1b was given by Borwein [3] in the case of a topological linear space
Y. Benson 1] gave a slightly different definition: An element 37 V is called a properly
minimal element of the set V (in the sense of Benson), if 37 is a minimal element of
the set V and the zero element 0v is a minimal element of the set cone V+ Cy- { fi}).
If the set V+ Cy is starshaped at 37, a well-known result states that

T( V+ Cy, 37)= cone (V+ Cy {})

(e.g., see [14, p. 155]); in this case the definitions of Borwein and Benson coincide.
In [4] Borwein presented an interesting extension of his concept of proper minimal-

ity: An element 37 V is called a properly minimal element of the set V, if

(-Cy) fq cone V- {iP’}) c Cy.

If Cy is pointed (i.e. (-Cy)f)Cy {0y}), then this inclusion reduces to

(-Cy) f’l cone V- {97}) {0y}.

Since we assume implicitly in the theorems of the next section that the ordering cone
Cy is pointed (although this assumption is not formulated explicitly), the main result
of this paper does not hold for Borwein’s extended concept of proper minimality [4].

2. A characterization result. First, we formulate a sufficient condition for properly
minimal elements of a set. For this purpose we need

DEFINITION 2.1. Let S be a nonempty subset of a real linear space Y, and let Cy
be a convex cone in Y. A functional S is called strongly monotonically increasing
on S, if for each g S

s ({s}- c) C s, s (s) < ().

In the following we consider an additional norm I1" on Y which is strongly
monotonically increasing on Cv. If such a norm exists, then the ordering cone Cv is

necessarily pointed.
The next theorem states that certain approximation problems are especially

qualified for the determination ofproperly minimal elements of a set where no convexity
assumptions are required (for a convex version of this theorem see [13, Thm. 2.7.]).
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THeOReM 2.2. Let Y, II" be a real normed space, and let Cr be a convex cone
in Y which has a nonempty core. Let I1" be any (additional) norm on Y which is strongly
monotonically increasing on Cr and for which there exists some a > 0 with

(1) Y -< Y " for all y Y.

Further, let an element Y with Vc {33}+ cor Cy) be given. If there exists an element
V with the property

(2) ; y for all y V,

then fi is a properly minimal element of the set E
oof First, we show that fi is a minimal element of the set E If we assume that

fi is not a minimal element of V, then there exists some y ({fi}- Cy) V with y .
Consequently, we obtain

y-fi ({fi-fi}- Cy) (V-{}) = ({-fi}- Cy) Cy.

Since the norm . is strongly monotonically increasing on Cy, we get

which contradicts the assumption (2). So, is a minimal element of the set E
Next, we prove that 0y is a minimal element of the tangent cone T(V+ Cy, ).

Since the norm . is assumed to be strongly monotonically increasing on Cy, we
obtain from (2)

;- ;11 y 3311 =< y + c 13tl for all y V and all c Cy

and

(3) 97- --< Y 3311 for all y V+ Cy,

respectively. It is evident that the functional -911 is convex. But it is also continuous
in the topology generated by the norm because with the inequality (1) we conclude

III Yl  11- I[y2-  111--< yl y211--< a yl y21l Y for all y, y2 Y.

Then a well-known result from optimization theory states that the inequality (3) implies

(4) Ily-fill<_-IIp-)+yll for all ye T(V+Cy,.p)

(e.g., see [14, p. 156]). With S:= T( V+ Cy, f) f’l ({9)-37}+ Cy) the inequality (4) is also
true for all y e S. With the same arguments as in the first part of this proof we conclude
that 0y is a minimal element of the set S.

Now, we assume that 0y is not a minimal element ofthe tangent cone T( V+ Cy, ).
Then there exists some y (-Cy) T( V+ Cy, fi) with y 0y. Because of the inclusion
Vc { 33} + cor (Cy) there exists some A > 0 with Aye {)3 -)5} + Cy. Consequently, we get

Aye (- C,v) CI T( V+ Cy, 37) I’1 ({.,P .9} + Cy),

and therefore we have Ay (-Cy)f3 S which contradicts the fact that 0 is a minimal
element of the set S. Hence, 0r is a minimal element of the tangent cone T( V+ Cy, ),
and the assertion is obvious.

Dinkelbach/Diirr [6] proved for Y=" and Cy= that certain /p-norms are
qualified for the determination of properly minimal elements in the sense of Geoffrion
[7]. This result is extended by Theorem 2.2.
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With the following theorem we answer the question under which assumptions a
properly minimal element of a set is a minimal solution of an approximation problem.
For a better insight we give the definition of a base of a cone (e.g., see [17, p. 25]).

DEFINITION 2.3. Let Y be a real linear space, and let Cc Y be a nontrivial
convex cone (i.e. C # (0g)). A nonempty convex subset B of C is called a base for
C, if each nonzero element y C has a unique representation of the form y Ab for
some A > 0 and some b B.

If the ordering cone C of a real linear space Y has a base, then it is nontrivial
and pointed (i.e. (-C)(3 C--{Oy}) by definition. Now we establish the promised
necessary condition for properly minimal elements.

THEOREM 2.4. Let Y, I1" Y) be a real normed space, and let Cy be a convex cone
in Y which has a weakly compact base. Let V be a subset of Y, and for some V let
the cone generated by T( V+ Cy, ) t_J V- { 37}) be weakly closed. If is aproperly minimal
element of the set V, then for each {}- Cy, , there exists an (additional) norm

II" Y which is strongly monotonically increasing on Cy, for which there exists some
a > 0 with

y <-- a y Y for all y Y

and which has the property

l=ll)7-)311<lly-)31l for all y V\{37}.

Proof. The proof of this theorem is rather technical, and therefore a short overview
is given first in order to examine the geometry. In part 1 it is shown that the base of
the convex cone -Cy and the cone S generated by T(V+ Cy, fi)t.J (V-{37}) have a

positive "distance" e. This allows us to construct another cone C in the second part
which is "larger" than the ordering cone Cy but for which (-C) f’l S {0y}. It can be
shown that C is convex, closed, pointed and that it has a nonempty interior. In part
3 we define the desired norm I1" as the Minkowski functional with respect to an

appropriate order interval. Moreover, in part 4 several properties of the norm are

proved.
1. In the following let B denote the base of the convex cone Cy and let S denote

the cone generated by T( V+ Cy, ) U V- {)7}), i.e.

S := cone T( V+ Cv, Y) U V- {y})).

Since the base B is weakly compact and for each x S the functional IIx- Y" Y
is weakly lower semicontinuous, for each x S the scalar optimization problem

inf IIx- y Y
y-B

is solvable, i.e., there is a y(x) -B with the property that

IIx-y(x)ll<-llx-ytl for all y -B.

Next, we consider the scalar optimization problem

e := inf x y(x)ll .
xS

If we assume e--0, then there exists an infimal net

(5) x, y(x,)ll v 0 with x, e S.

Since B is weakly compact and S is weakly closed, the set $ + B is weakly closed, and
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the condition (5) implies

(6) 0y( S--B S+ Br(Y’Y*) S+ B.

fi is assumed to be a properly minimal element of the set V. Consequently, 0y is a
minimal element of the tangent cone T( V+ Cy, ) and a minimal element of the set
V-{y}, and we obtain

and

{0v} (-Cy) f’l T( V+ Cy, y) 12 (-Cv) CI V- {y})

(-Cy) ffl T( V+ Cy, y) I,J V- (.}))

{0v} (-Cv) CI cone T( V+ Cv, Y) I,.J V- {y}))

=(-B)S.

Since 0y B, we conclude (-B)f-)S which contradicts the condition (6). Thus,
we get

0 < e inf inf IIx- yll Y,
S y-B

i.e. the sets S and -B have a positive "distance" e.
2. Now, we "separate" the sets -B and S by a cone -C. Since the base B is

weakly compact and 0y B we obtain

0 < := inf Y -.
yB

For

we define the set

U:=B+N(Oy, 3)

(N(Oy, fl) denotes a closed ball around 0y with radius/3). It is evident that U is a
convex set. Consequently, the cone generated by U and its closure

C := cone (U)

is a convex cone. By definition, this cone has a nonempty interior. In order to see that
C is pointed, we investigate the cone

t := cone (B + N(Oy, ))
which is a superset of C. If we assume that there is a 37 (-C)fq C with )7 0y, then
there exists a A > 0 and a y B + N(Oy,) with Ay. Because of-3; A(-y) (
we obtain for some tz > 0

-y e B + N(0y, /3).
So, y and -tzy are elements of the convex set B+N(0y,/3) which implies

0y e B + N(0y, /3). But this is a contradiction to the choice of fl <_- 3/2. Consequently,
C is pointed and with C c C the cone C is pointed as well.

3. Next, we choose an arbitrary )3 e {)7}-Cy with )3 )7 and we define the order
interval (with respect to the partial ordering induced by C)

[-y, y-] := ({-y}+ c) 3 ({y-}- c).
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Because of the construction of C and the set U, respectively, 37- belongs to the
interior of C. Furthermore, C is closed and pointed. Consequently, the Minkowski
functional I1" I1" Y -> R given by

Ilyll := inf {A 1 )x >o - y [93 )7, )7 13] for all y Y

is a norm on Y and

(7) [-Y,Y-]={Y El Ilyll <-- 1)

4. We have to show several properties of the norm I1" II. Since 0y belongs to the
interior of the order interval 33-)7, 37- )3], there exists some a > 0 with

N(0y, a)c [33-37, 37-33]

which implies with (7)

Y <- a Y Y for all y e Y.

In order to see that the norm is strongly monotonically increasing on Cy, observe
that the norm is C-monotone on C, i.e.

)7 C, y

For each jT Cy C and each y ({}-(Cy\{Oy}))f’l Cy we have with Cy\{Oy}c
int (C)

Y

So, I1 is strongly monotonically increasing on Cy. Finally, we prove that j7 is a

unique solution of a certain approximation problem. Since 97- )3 belongs to the closure
of the unit ball, we obtain ;-Jll 1. Furthermore, we assert that

(8) (-c)s={o}.

Because of the construction of the set U and the choice of/3 <-(e/2), respectively, for
each y e S\{0y} there exists some r/> 0 with

N y,

which implies y cone (U)= C. So (-C) f3 (S\{0y})= and the set equality (8) is
evident. Moreover, with (8) and (7) we conclude

[)t-y,

and

1 jT- 11 < 97- j + yll for all y e S\{Oy}.

Since V {)7} = S, we get

1 37 1311 < Y 1311 for all y e V\{37}.

This completes the proof.
In the proof of the preceding theorem the cones -Cv and cone (T(V+ Cy, )7)U

(V-{p})) are "separated". For a finite dimensional linear space Henig [10, Thin. 2.1]
presented a cone separation theorem. But in this abstract case we need stronger
assumptions since Henig’s proof depends on the finite dimensionality of the linear
space. Here we use the notion of the base of a cone in order to obtain the desired result.
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The assumption that the ordering cone Cy has a weakly compact base implies
the closedness of Cy. In Theorem 2.4 we do not need the assumptions cor (Cy)
and 3 {)7} cor (Cy) which play an important role in Theorem 2.2. On the other hand
in Theorem 2.2 it is not required that is uniquely determined by the inequality (2).
With Theorem 2.2 and Theorem 2.4 we get immediately the main result of this paper.

COROLLARY 2.5. Let (Y, I1" IIY) be a real normed space, and let Cy be a convex
cone in Y which has a nonempty core and a weakly compact base. Let V be a subset of
Y, and let an element Y with Vc {}+ cor (Cy) be given. Further, for some V let
the cone generated by T(V+ Cy, fi)U (V-{y}) be weakly closed. Then is a properly
minimal element of the set V if and only if there exists an (additional) norm I1" on Y
which is strongly monotonically increasing on Cy, for which there exists some a > 0 with

Y Y Y for all y Y

and which has the property

1 IlY-fll < Ily-fll for all v V\{37}.

In the preceding corollary we assume that the ordering cone Cy has a weakly
compact base B and a nonempty core. But this implies that the convex hull of the set
B (.J {0y} is also weakly compact and it has a nonempty core. For any element e of
this core we define a norm I1" on Y with the aid of the order interval [-e, e]. Since
this unit ball is weakly compact as well, the real normed space Y, I1" II) is even reflexive.

With the following propositions we give sufficient conditions under which various
assumptions of Corollary 2.5 are fulfilled. The first proposition is standard.

PROPOSITION 2.6. Let Y, ]]. Y) be a reflexive Banach space with a closed ordering
cone Cy. The convex cone Cy has a weakly compact base if and only if there exists a
linear functional with

t( y) > 0 for all y Cy\{Oy}

such that the set {y CyIt(y)= 1} is bounded.
PROPOSITION 2.7. Let Y, I]" II ) be a real normed space, and let V and Cy be

nonempty subsets of Y with O y Cy. If the set V+ Cy is starshaped at some V and
the tangent cone T( V+ Cy, fi) is weakly closed, then the cone generated by T( V+ Cy,
(V-{37}) is also weakly closed.

Proof. Since the set V+ Cy is starshaped at 97 we conclude

V-{)7}c V+Cy-{y}c T(V+Cv, Y).

So, we obtain

cone T( V+ Cv, Y) U V-{y})) cone T( V+ Cv, y)) T( V+ Cy, y)

which leads to the assertion.
If the set V+ Cy is starshaped at 37 V, then Corollary 2.5 remains also valid for

the notion of properly minimal elements in the sense of Benson. In this case the cone
generated by the set T(V+Cy,)7)LI(V-{)7}) can be replaced by the tangent cone
T( V+ Cv, ). With the following proposition we investigate the special case that V+
is a convex set.

PROPOSITION 2.8. Let Y, 11. IIv) be a real normed space, and let V and Cy be
nonempty subsets of Y with 0 v Cv. If the set V+ Cv is convex, then for each V the
cone generated by T( V+ Cv,) (V-{p}) is weakly closed.
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Proof. The tangent cone T( V+ Cy, 37) is closed and also convex because of the
convexity of the set V+ Cy. Consequently, the tangent cone T(V+ Cy, ) is weakly
closed. Thus the assertion follows from Proposition 2.7. l-]

3. Conclusion. Properly minimal elements of an arbitrary set are characterized as
minimal solutions of certain approximation problems. Even in the nonconvex case, it
turns out that under suitable assumptions these approximation problems are equivalent
to a vector optimization problem, if the notion of proper minimality is used. This
shows the importance of the approximation theory in vector optimization.

Acknowledgment. The author gratefully acknowledges the helpful comments of
the referees which improved the presentation of this paper.

REFERENCES

[1] H. P. BENSON, An improved definition ofproper efficiency for vector maximization with respect to cones,
J. Math. Anal. Appl., 71 (1979), pp. 232-241.

[2] H. P. BENSON AND T. L. MORIN, The vector maximization problem: proper efficiency and stability,
SIAM J. Appl. Math., 32 (1977), pp. 64-72.

[3] J. BORWEIN, Proper efficient points for maximizations with respect to cones, this Journal, 15 (1977),
pp. 57-63.

[4], The geometry of Pareto efficiency over cones, Math. Oper. Statist., Ser. Optim., 11 (1980),
pp. 235-248.

[5] J. M. BORWEIN AND J. W. NIEUWENHUIS, Two kinds of normality in vector optimization, Math.
Programming, 28 (1984), pp. 185-191.

16] W. DINKELBACH AND W. DORR, Effizienzaussagen bei Ersatzprogrammen zum Vektormaximumproblem,
Oper. Res. Verfahren, XII (1972), pp. 69-77.

1"7] A. M. GEOFFRION, Proper efficiency and the theory of vector maximization, J. Math. Anal. Appl., 22
(1968), pp. 618-630.

[8] R. HARTLEY, On cone-ejciency, cone-convexity and cone-compactness, SIAM J. Appl. Math., 34 (1978),
pp. 211-222.

1"9] M. I. HENIG, Proper efficiency with respect to cones, J. Optim. Theory Appl., 36 (1982), pp. 387-407.
[10] A cone separation theorem, J. Optim. Theory Appl., 36 (1982), pp. 451-455.
[11] J. JAHN, Duality in vector optimization, Math. Programming, 25 (1983), pp. 343-353.
12] Zur vektoriellen linearen Tschebyscheff-Approximation, Math. Oper. Statis., Ser. Optim., 14 (1983),

pp. 577-591.
[13], Scalarization in vector optimization, Math. Programming, 29 (1984), pp. 203-218.
[14] W. KRA13S, Optimization and Approximation, John Wiley, Chichester, 1979.
[15] H. W. KUHN AND A. W. TUCKER, Nonlinear programming, in Proc. Second Berkeley Symposium on

Mathematical Statistics and Probability, J. Neyman, ed., Univ. California Press, Berkeley, 1951,
pp. 481-492.

[16] J. W. NIEUWENHUIS, Properly efficient and efficient solutions for vector maximization problems in
Euclidean space, J. Math. Anal. Appl., 84 (1981), pp. 311-317.

[17] A. L. PERESSINI, Ordered Topological Vector Spaces, Harper and Row, New York, 1967.
[18] W. VOGEL, Vektoroptimierung in Produktriiumen, Verlag Anton Hain, Mathematical Systems in

Economics 35, Meisenheim am Glan, 1977.
[19] R. E. WENDELL AND D. N. LEE, Efficiency in multiple objective optimization problems, Math. Program-

ming, 12 (1977), pp. 406-414.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 23, No. 5, September 1985

1985 Society for Industrial and Applied Mathematics
O02

A COMPUTATIONAL COMPARISON OF THE
ELLIPSOID ALGORITHM WITH SEVERAL NONLINEAR

PROGRAMMING ALGORITHMS*

J. G. ECKER" AND M. KUPFERSCHMID

Abstract. A computational comparison of several general purpose nonlinear programming algorithms
is presented. This study was motivated by the preliminary results in [12] which show that the recently
developed ellipsoid algorithm is competitive with a widely used augmented Lagrangian algorithm. To provide
a better perspective on the value of ellipsoid algorithms in nonlinear programming, the present study includes
some of the most highly regarded nonlinear programming algorithms and is a much more comprehensive
study than [12]. The algorithms considered here are chosen from four distinct classes and 50 well-known
test problems are used. The algorithms used represent augmented Lagrangian, ellipsoid, generalized reduced
gradient, and iterative quadratic programming methods. Results regarding robustness and relative efficiency
are presented.

Key words, nonlinear programming, algorithm evaluation, ellipsoid algorithm

1. Introduction. In 12], Ecker and Kupferschmid provide computational evidence
that the ellipsoid algorithm is extremely robust and, relative to efficiency, is competitive
with the augmented Lagrangian algorithm implemented in subroutine EO4VAF of the
Mark 7 NAG Subroutine Library [16], hereafter referred to as NAGT. The results in
[12] are surprising because for most of the test problems the ellipsoid algorithm was
superior to NAG7 with regard to both the computer time and the number of function
evaluations required to reduce the solution error to a certain level. In [13], the
comparison was extended, for geometric programming problems, to include a special-
purpose geometric programming algorithm and the general-purpose algorithms GRG2
and NAG8, described below, in addition to NAGT. That study confirmed the results
of [12] with regard to the robustness of the ellipsoid algorithm and, among the general
purpose algorithms, the ellipsoid algorithm was found to be most efficient at some
levels of solution error.

To obtain a better perspective on the performance of the ellipsoid algorithm in
nonlinear programming, a much more extensive computational study was warranted.
The present study includes a wider selection of test problems than either of the earlier
studies [12] and [13], and a wider selection of algorithms chosen from four distinct
classes. To represent the ellipsoid, generalized reduced gradient, iterative quadratic
programming, and augmented Lagrangian methods, we chose the following
implementations"
EA3: The variant of the ellipsoid algorithm implemented by Kupferschmid and

Ecker [27].
GRG2: The generalized reduced gradient algorithm of Lasdon, Waren, Jain and

Ratner [28].
IQP: The Han-Powel! [21], [30], iterative quadratic programming algorithm

implemented by Crane, Hillstrom and Minkoff [8].
NAGS: The augmented Lagrangian algorithm of Gill and Murray [18], as imple-

mented in subroutine EO4VAF of the Mark 8 NAG Subroutine Library 17].

* Received by the editors October 12, 1982, and in revised form June 15, 1984. This research was

supported in part by National Science Foundation under grant MCS82-01790.
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12181.

Voorhees Computing Center, and Department of Mathematical Sciences, Rensselaer Polytechnic

Institute, Troy, New York 12181.
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RQP: The recursive (iterative) quadratic programming method of Biggs [4], as
implemented in subroutine OPRQP of the Hatfield Subroutine Library [22].

In [33], Schittkowski performed a computational comparison of 26 nonlinear
programming algorithms and ranked them according to various criteria. Relative to
efficiency and reliability, the Schittkowski rankings of the above algorithms are as
shown in Table 1.

TABLE
Schittkowski rankings.

Method Efficiency Reliability

GRG2 7
IQP 2 3 (see Remark 1)
NAG8 14 22 (see Remark 2)
RQP 3 7

Remark 1. IQP is a slightly different (and earlier) version ofthe Harwell subroutine
VF02AD used in [33]. In [8], however, the authors state that their implementation
"leaves Powell’s original algorithm unchanged" but the program was made easier to

use and incorporates some recently developed LINPACK subprograms. IQP uses the
quadratic programming subroutine of Fletcher [15].

Remark 2. The routine SALQDR used in [33] is, according to the NAG
documentation [17], essentially identic;al to the subroutine EO4VAF used here.

The above rankings are given here only to provide some evidence that the
algorithms chosen for comparison with EA3 in this study include some of the better
nonlinear programming algorithms. Of course, one can never claim that the version
of an algorithm used in a particular study is the best or the most current version
because of the continuing nature of algorithm development.

Because the ellipsoid algorithm is not as well-known as the other algorithms used
in this study, we provide a brief, but detailed, description of the method. The algorithm
was first proposed by Shor in [35] and it is a simple method for solving nonlinear
programming problems of the form

minimize fo(x)

subject to x S {x R if/(x) _< 0, 1, 2,. ., m},

where each f is a convex function. The method assumes that there exists an optimal
point x* S and that an initial ellipsoid

(1) Eo {x e Rn (x x)TQI(x x) <-- 1},

centered at x with a symmetric positive definite matrix Qo, can be found such that
x* Eo and such that Eofq S has computationally positive volume in R n. The method
is now known as the ellipsoid algorithm and the basic steps of the algorithm are as
follows.

THE ELLIPSOID ALGORITHM.

Step 0. Select x and a symmetric positive definite matrix Qo so that the ellipsoid Eo
in (1) contains an optimal point x*.
Set k 0.

Step 1. Let fv be a constraint function for which fv(xk) > 0 or the objective function
if fo(xk)<=O, i= 1,’’’, m.



COMPARISON OF ELLIPSOID AND OTHER NONLINEAR ALGORITHMS 659

Step 2.

Calculate a subgradient gk of fv at x k. If gk--0, STOP because X
k is a

minimizing point.
Calculate d =--Qkgk/x/gQkgk provided gQkgk >0, otherwise STOP.
Let xk+l=Xk+(1/(n+ 1))d and Qk+l=(nE/(nE--1))(Qk--(2/(n+ 1))dd at)
Return to Step 1 with k + 1 replacing k.

Starting with Eo, the algorithm generates a sequence of successively smaller
ellipsoids so that if Ek denotes the current ellipsoid with matrix Qk and center xk,
then the next ellipsoid has its center at xk+ and a matrix Qk+l as given in Step 2. The
ratio qn of the x,olume of Ek+I to the volume of Ek is given by

q= n/l n2- <1

and thus the volumes decrease as a geometric series with ratio qn depending on the
dimension n [35].

Geometrically, the ellipsoid Ek+ is generated as follows. Using the subgradient
gk of Step 1, construct the hyperplane gkr(X- Xk) 0 passing through the center xk of
Eg. Because each f is convex, x* belongs to the half-space

n, (xl-g(x- x") O}

and so x* Ek I1Hk. The ellipsoid Ek+ defined by the update formulae in Step 2 is
actually the unique ellipsoid of minimum volume containing Ek f) Hk and so x* Ek/.
For a complete derivation of these update formulae see the survey of ellipsoid
algorithms given by Bland, Goldfarb and Todd [5].

In Step 1, if fv is ditterentiable the subgradient gk of fv at xk is the gradient and
in the implementation of the ellipsoid algorithm used in this paper we normalize gk

in Step 1 by dividing it by the Chebyshev norm of gk. Analytically, this does not alter
the calculation of d.

In the above form, the ellipsoid algorithm stops with the current point x being
optimal or when the current matrix Qk is seen numerically to be not positive definite.
Of course, the latter could be replaced by other standard convergence criteria but for
the results of this paper we simply let the algorithm run until Qk is no longer positive
definite.

In [36], Shot shows for the convex unconstrained case that the best objective
function value obtained in the first k iteratiois of the ellipsoid algorithm converges
to the optimal value as the terms of a geometric series with a ratio q,. Another similar
convergence result is given by Gottin [19].

The test problems used in this study are chosen from several major collections of
nonrandomly generated problems. A total of 50 test problems are used, including 25
geometric programming problems and 25 general nonlinear problems. The collection
includes 13 convex and 37 nonconvex problems. Table 2 summarizes the geometric
programming problems, and Table 3 summarizes the general problems.

All of the test problems have the form

min fo(x) subject to f(x) 0, 1, 2,. ., m,

where x R ", and we let x denote the starting point for the algorithms.
After Eason and Fenton [11] we use error versus effort curves to display the

convergence trajectories of the various algorithms. The error measure that we use here
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TABLE 2
Geometric programming test problems.

Problem Convex n m Reference

Dembo lb yes 12 3 [9]
Dembo 2f no 5 9 [9]
Dembo 3 no 7 15" [9]
Dembo 4a no 8 4 [9]
Dembo 5 no 8 6 [9]
Dembo 6 no 13 18" [9]
Dembo 7 no 16 25* [9]
Dembo 8a yes 7 4 [91
RM 10 no 3 [32]
RM 11 no 4 2 [32]
RM 12 no 9 4 [32]
RM 13 no 9 6 [32]
RM 14 no 10 7 [32]
RM 15 no 10 7 [32]
RM 16 no 10 7 [32]
RM 17 no 11 9 [32]
RM 18 no 13 9 [32]
RM 19 no 9 5 [32]
RM 20 no 13 11 [32]
RM 21 no 10 22 [32]
RM 22 no 9 10 [32]
Beck 15 yes 8 7 [2]
Avriel no 5 8
Smeers yes 33 36 [38]
Tower yes 36 33 [39]

* These include as constraints some explicit bounds on variables.
f The statement of this problem in [9] is imprecise and contains some

typographical errors; see [25] for a correct problem statement.
Here "RM" denotes a problem from Rijckaert and Martens.
n number of variables, and m number of constraints.

is computed as follows. First, the combined error measure

e(x’)= lfo(x)-fo(x*)l+ Z
i=1

is computed for each iterate xk in the solution process, where the A * are the Lagrange
multipliers at optimality and x* denotes the optimal solution. These values are then
normalized to obtain the relative error measure

E(xk) e(xk)/ e(x),
and the common logs of the E(xk) are plotted versus the measure of effort used so
far. In [13], details regarding the calculation of the optimal Lagrange multipliers are
given.

The measure of ettort used for the error curves in this paper is the problem state
central processing unit (PSCPU) time used by an algorithm. In [12] and [25], complete
details are given regarding the determination of PSCPU time used by an algorithm in
the solution process. In summary, we turn a timer on and ott so as to measure only
the effort used in performing the steps of the algorithm, thereby excluding from the
measurements any time used for input and output operations, for other tasks performed
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TABLE 3
General nonlinear test problems*.

Problem Convex n m Reference

Colville yes 5 15 [6]
Colville 2 no 15 20 [6]
Colville 3 no 5 16 [6]
Colville 4 no 4 8 [6]
Colville 5f no 6 4 [6]
Colville 8" no 3 20 [6]
Himmelblau 3 no 2 7 [23]
Himmelblau 9 no 4 6 [23]
Himmelblau 12"t" no 5 48 [23]
Himmelblau 13" no 5 16 [23]
Himmelblau 16 no 6 14 [23]
Himmelblau 17 no 10 20 [23]
Himmelblau 21 no 6 6 [23]
Himmelblau 22 no 6 16 [23]
Himmelblau 24 no 2 2 [23]
BBZ 1 yes 3 3 [3]
BBZ 2 yes 5 7 [3]
BBZ 3 yes 16 13 [3]
Hald & Madsen 5 no 5 40 [20]
Swiss 5 no 2 5 [26]
Dixon no 2 4 10]
Hearn Dual yes 2 2 [26]
Rosen-Suzuki yes 4 3 [20]
Quad 2 yes 5 4 14]
Shapiro 2 yes 10 [34]

* This set of general nonlinear problems contains all of the inequality
constrained Colville problems and all of the inequality constrained Himmel-
blau problems except Himmelblau 23 (which has 100 variables and is therefore
too big to conveniently handle using our test programs).

These problems involve functions for which analytical derivatives
cannot be given.

BBZ denotes a problem from Ben-Israel, Ben-Tal, and Zlobec.

only as conveniences to the experimenter, and for the performance measurement
process itself. Extensive experiments, see [25], have shown that our method ofmeasuring
PSCPU time is accurate, reproducible, and substantially uncontaminated by system-
load effects and other influences external to the experiments.

The construction of meaningful error curves using the process described above
requires the optimal solution to be known to considerably more precision than is
usually reported in the literature. We therefore use very accurate solutions x* in the
construction of the error curves. These solutions are also chosen to be strictly feasible;
see [26] for exact problem statements and the best strictly feasible point known to us
for each of the test problems used in this study.

To supplement the error curves, we provide a tabular summary showing the overall
performance of each algorithm on all of the problems. On some problems we also
report the number of function and gradient evaluations used to reach the reasonable
error level of 10-3. When effort is reported in terms of function and gradient evaluations,
we report a pair of numbers, (FE, GE), where FE is the number of times the objective
function or a constraint is evaluated and GE is the number of times the gradient of
the objective function or the gradient of a constraint is evaluated.
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2. Experimental procedure. Given a test problem and a starting point, each
algorithm was allowed to run until its best possible solution was obtained. The best
strictly feasible point obtained by any of the algorithms was then declared as the
optimal solution x*. Most of the algorithms have parameters that can be adjusted to
affect algorithm performance. Given an algorithm, we selected one set of parameters
to be used for all of the test problems. Through a trial and error process involving
several runs, one might optimize the performance of an algorithm on each problem.
However, it is difficult to quantify the effort required for such a "tuning" process, and
such tuning was not included as part of our experimental process. For GRG2, we used
the parameters suggested by Lasdon et al. when they used GRG2 to solve the geometric
programming test problems in [31]. Following the advice of Lasdon [29], these same
parameters were also used for the general nonlinear programming problems. For NAG8
we used the parameter values suggested in the documentation [17], although we did
try to find other parameters to improve its performance but were unsuccessful. For
IQP and RQP, we also set the parameters as suggested in the documentation. These
latter two algorithms solve a quadratic programming subproblem at each iteration and
their overall performance is affected by the performance of this subproblem solver.
We did not alter these algorithms by providing for a more efficient quadratic program-
ming solver, although this is an area of current research.

The experiments reported below were conducted using an IBM System/370 Model
3033 computer with a type UO6 central processor. All calculations were done in IBM
double-precision (with 56 fraction bits of accuracy). The programs were executed in
an interactive multiprocessing environment with virtual memory under the Michigan
Terminal System (MTS) operating program, release 5.OC. The computer has a 56 ns
average cycle time and executes about 5.0 million machine instructions per second.

At each iteration of an algorithm, the following quantities are written in a file"
the current iterate xk, the current objective function value fo(xk), the PSCPU time used
so far by the algorithm, and the numbers of function and gradient evaluations used
so far. After the experiment is over, this performance measurements file is used in
analyzing the performance of the algorithm and in constructing the error versus effort
curves.

For each test problem, we assume that a vector, xu, of upper bounds and a vector,
x, of lower bounds on the variables is known, and the starting point x is chosen as
the midpoint of these bounds. Many of the test problems have published upper and
lower bounds and, when available, we use these bounds to generate the starting point.
If published bounds are not available, then reasonably wide bounds are chosen so as
to include the optimal vector. The ellipsoid algorithm requires that an initial ellipsoid
Eo be given which contains the optimal point, and we select Eo as the ellipsoid of
minimum volume containing

{xlx<=x<_x’}.

In 5, we consider the sensitivity of EA3 to the starting ellipsoids along with the
sensitivity of the other algorithms to the starting points resulting from the chosen
bounds.

In order to guarantee that each algorithm solves the same problems, the data
necessary to define a particular problem is given in a single data structure accessed
by each of the algorithms.

3. Results of the computational experiments. For some of the problems, conver-
gence behavior of the various algorithms is displayed by means of the error versus
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effort curves described above. Unfortunately, because of space limitations, error curves
cannot be presented for all of the problems. Therefore, computational results for all
of the problems are summarized in Tables 4 and 5. We discuss the error curves first.

Figures 1-3 give the error curves for each algorithm on three of the geometric
programming problems. The convergence behavior displayed by the various algorithms
in Fig. 1 is rather typical of their behavior on most of the geometric programming
problems. In particular, the error curves for Dembo 3 in Fig. 1 show EA3 to be the
most efficient in reducing the combined relative error to the 10-1 and 10-2 range, and
for error levels in the 10-3 to 10-8 range, GRG2 and IQP are the most efficient. On
Dembo 3, the behavior of the latter two algorithms is nearly identical down to the
10-6 error level and then GRG2 stops making any further reduction in the error while
IQP succeeds in eventually reducing the error to about 10-11. The error curve for RQP
shows only a negligible reduction in the error for about 3 seconds and then a sudden
reduction to the 10-14 error level. NAG8 is unsuccessful on Dembo 3 and converges
to a point with an objective function value of about 1,388 instead of the true optimal
value of about 1,227, and the point to which it converges, before terminating with an
exponent overflow in one of its internal routines, is not a Kuhn-Tucker point.

In Fig. 1 the error curve for EA3 departs from its linear trend at the error level
of about 10-14 and this is typical of the end behavior in EA3’s convergence trajectories.
The elements of the positive-definite matrix defining the current ellipsoid are extremely
small (usually less than 10-20 when this occurs and this is the only evidence of
numerical instability that we have observed for EA3.

Dembo 7 is well-known as a very difficult problem [31], partly because the feasible
region is extremely small. When Dembo’s original bounds [9] are used, EA3 converges
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to a nonstationary point and none of the other algorithms solve the problem either.
We therefore use tighter bounds [26] for all of the algorithms. Even with the tighter
bounds, the error curves in Fig. 3 show that the only algorithm to make any significant
progress is EA3 (the data for EA3 were truncated for plotting, but EA3 ultimately
reduces the solution error to about 10-7). No error curve is visible for IQP because it
terminates on the second iteration with a floating point overflow in its internal routine
HARWQP.

It is interesting to observe the distinct linear trend of the convergence trajectories
for EA3 in these figures. Roughly speaking, EA3 makes consistent, but slow, progress
independent of its closeness to the solution. In contrast, as displayed nicely in Fig. 3,
once the other algorithms get close to the solution there is usually an acceleration of
the convergence process. Another observation regarding the linear convergence trend
displayed by EA3 is that the vertical axis intercept of the linear trend is usually -1 or
less.

Figures 4-6 contain error curves for some of the general problems and again EA3
displays relatively "slow but sure" convergence. Again, however, at error levels of 10-1

and 10-2, EA3 is more efficient than the other algorithms.
The departure of EA3’s error curves from their linear trend at extremely low error

levels is most visible in Figs. 4 and 5. Part of the departure in Fig. 5 is due to the fact
that Colville 8 does not have analytical derivatives and near the end of EA3’s trajectory,
when the ellipsoids are extremely small, the numerically approximated gradients are
not sufficiently accurate. This problem also appeared to cause some instability in GRG2.

The last problem for which error curves are given is Hald 5 (see Fig. 6) which is
a minimax optimization problem with 5 variables and 40 constraints. Here the ellipsoid
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algorithm performs remarkably better than most of the other algorithms all the way
down to the 10-9 error level. This is in keeping with the fact that the volume reduction
ratio q, of the ellipsoid algorithm depends only on the number of variables and not
on the number of constraints.

Most of the test problems used in this study involve functions that are relatively
easy to evaluate. The one exception is the problem Shapiro 2. Evaluating the objective
function and the single constraint for this problem requires considerable effort. Evaluat-
ing the objective function or its gradient requires the solution of a Lyapunov equation
of order 6. Evaluating the constraint requires finding all of the eigenvalues of a 6 by
6 matrix, and using finite differencing n+ 1 function evaluations are required to
numerically determine the constraint gradient. After the first few iterations the stability
constraint is inactive and so its gradient is not needed. As in most of the problems
considered above, EA3 is again first in reducing the error to 10-1 and 10-2, and
ultimately obtains the best solution. GRG2 is the only other algorithm that has any
success on this problem. NAG8 and RQP terminate at points with relative errors of
about 10+14 and 10+9 respectively while IQP terminates after a few iterations with the
message that the quadratic programming subproblem is infeasible. It is interesting to
note that when the starting point is chosen to be extremely near the true solution then
these algorithms are successful in solving the problem.

4. General discussion of results. To supplement the error curves and to summarize
the results for all 50 problems, we have constructed tables which show the efficiency
and robustness of the algorithms for the error levels 10-1 through 10-8

The results reported in Table 4 show that EA3 is by far the most efficient of the
algorithms in reducing the relative solution error to the 10-1 and 10-2 levels. However,

TABLE 4
Efficiency at various error levels for all 50 test problems. Fraction of test problems solved first.

Solution error level required*

Method 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8

EA3 .66* .44* .18 .22 .16 .12 .14 .12
GRG2 .14 .12 .26 .26 .32* .36* .28" .14
IQP .00 .08 .14 .16 .16 .18 .22 .28
NAG8 .08 .10 .10 .06 .08 .08 .08 .10
RQP .12 .26 .30* .28" .26 .24 .24 .30*

* Denotes best performance at this error level.

TABLE 5
Robustness at various error levels for all 50 test problems. Fraction of test problems solved.

Solution error level required

Method 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8

EA3 .98" .98" .96" .96* .96* .96* .94" .92*
GRG2 .90 .80 .76 .76 .74 .74 .58 .30
IQP .80 .76 .76 .76 .76 .76 .76 .76
NAG8 .80 .72 .64 .54 .50 .50 .48 .40
RQP .74 .68 .66 .60 .60 .60 .58 .56

* Denotes the most robust algorithm at this error level.
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at smaller levels, of error, the performance of both GRG2 and RQP is superior to that
of EA3 and the other algorithms.

The results regarding robustness of the algorithms are summarized in Table 5. In
constructing this table, we simply record whether or not the algorithms reduce the
relative error to the given error levels. As mentioned in 2, the relative error is defined
using a declared solution to each problem. One thing that does not show in these
tables is whether or not the failure of an algorithm to reach a given error level is due
to the fact that it converges to a local minimum with a larger objective function value
than the declared solution. As part of our experimental process, we routinely check
to see if a point to which an algorithm converges is a Kuhn-Tucker point, and for the
50 test problems, there are only 6 for which some algorithm converges to such a point
with an objective value different from the declared solution. Those details are not
included here and would not alter any of the qualitative behavior that is observed.

TABLE 6
Function and gradient evaluations required to reach the 10-3 solution error level.

Method lter* Timer FE’s GE’s Problem

EA3 203 .105 1,878 203
GRG2 7 .030 528 112
IQP 3 .054 64 64 Colville
NAG8 61 .218 992 992
RQP 7 .019 144 144

EA3 482 .759 4,424 482
GRG2 38 .773 10,647 798
IQP 7 .857 147 147 Colville 2
NAG8 518 3.236 12,369 12,327
RQP 15 .231 336 315

EA3 230 .120 1,930 230
GRG2 7 .035 799 119
IQP 3 .043 51 51 Colville 3
NAG8 66 .238 1,547 1,071
RQP 9 .027 170 153

EA3 138 .058 1,242 138
GRG2 10 .024 509 90
IQP 13 .140 189 189 Colville 4
NAG8 12 .040 252 243

RQP 22 .035 666 198

EA3 53 .426 190 53
GRG2 6 .497 480 30
IQP 9 .610 70 70 Colville 5
NAG8 t t
RQP $

EA3 60 .312 865 59
GRG2 25 2.118 5,754 525

IQP 18 .862 378 378 Colville 8
NAG8 61 2.305 1,470 1,428
RQP 22 .651 672 462

* Number of iterations to attain the 10-3 error level.
f PSCPU time in seconds.
For this problem the results are for the 10- error level because no algorithm attained

the 10-3 level and NAG8 and RQP did not even attain the 10- error level.
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We conclude this section with some information regarding the number of function
and gradient evaluations required by the algorithms to reach the relative error level
of 10-3. We present results for a subset of the problems, namely the 6 Colville and
the 8 Dembo problems. In Tables 6-7, we give the number of function evaluations
(FE’s) and the number of gradient evaluations (GE’s) that are required by the various
algorithms to reduce the relative solution error to the 10-3 error level. On this subset
of test problems, it is clear that IQP is vastly superior to all of the other algorithms
with regard to function and gradient evaluations.

TABLE 7
Function and gradient evaluations required to reach the 10-3 solution error level

Method Iter* Time* FE’s GE’s Problem

EA3 165 .979 406 164
GRG2 11 .380 568 44
IQP 14 .798 64 64 Dembo
NAG8 289 1.532 1,280 1,272
RQP 21 .451 152 84

EA3 254 .290 1,693 253
GRG2 5 .063 480 50
IQP 3 .037 30 30 Dembo 2
NAG8 92 .255 1,140 790
RQP 9 .055 100 90

EA3 442 .838 3,387 441
GRG2 17 .579 3,728 272
IQP 13 .536 256 256 Dembo 3
NAG8 # t t t
RQP 174 2.857 5,440 2,784

EA3 404 .670 1,178 403
GRG2 37 .517 2,570 185
IQP 8 .215 40 40 Dembo 4
NAG8 t t t t
RQP 969 7.828 9,752 4,845

EA3 467 .790 1,907 466
GRG2 51 .820 4,270 357
IQP 22 .729 287 287 Dembo 5
NAG8 t t t t
RQP 29 .265 252 203

EA3 172 .706 1,271 171
GRG2 27 1.480 6,251 513
IQP 44 6.140, 1,520 1,520 Dembo 6
NAG8 67 .494 1,520 1,311
RQP t t t t

EA3 2,219 13.559 26,462 2,218
all other algorithms failed Dembo 7
to attain 10-3 error level

EA3 215 .343 614 214
GRG2 15 .199 910 75
IQP 25 .606 265 265
NAG8 84 .215 415 410
RQP 149 1.201 1,705 745

Dembo 8

* See the footnotes to Table 6.
t The error level of 10-3 was not attained.
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It is interesting to note from Fig. 4 that EA3, GRG2, and IQP take about the
same PSCPU time to reduce the error to 10-3 (the precise times are .76, .77, and .86
seconds, respectively), but Table 6 shows that IQP requires vastly fewer numbers of
function and gradient evaluations to reach the same error level. The reason for this is
that during this same time IQP has a considerable amount of other work that it needs
to perform. For example, in the 7 iterations to reach the 10-3 error level, IQP solves
7 quadratic programming subproblems to determine search directions and then per-
forms the subsequent line searches. On this problem, the effort required by IQP for
this other work accounts for the vast majority of its effort. Clearly, if the time for this
other work were negligible relative to the function and gradient evaluations, then IQP
would have reached the 10-3 error level in much less time than all the other algorithms.
However, as we discussed above, this study involves problems with functions that are
relatively easy to evaluate even though they are, for the most part, taken from real
applications and are representative of a large class of nonlinear programming problems.
We should note, however, that even for problems involving functions that take a
considerable amount of time to evaluate (such as functions defined by computer
simulations, differential equation solvers, etc.), PSCPU time is a reasonable measure
of effort.

5. Additional discussion of ellipsoid algorithm performance. Before summarizing
our conclusions, we consider some additional features of the ellipsoid algorithm that
we have observed in the course of our experimental work for this paper and for the
experiments reported in [25], [12], and [13].

First, we have observed that the qualitative behavior of the ellipsoid algorithm is
relatively insensitive to the size of the starting ellipsoid. Increasing the size of the
initial ellipsoid does, of course, alter the sequence of iterates xk, and the convergence
trajectory followed by EA3 is dependent on the starting ellipsoids.

In order to obtain further insight into the sensitivity ofEA3 to the starting ellipsoids,
as well as the sensitivity of the other algorithms to the starting points, the following
experiment was performed. The test problems, Colville I, 2, 3, 4 and Dembo 2, 4, 6,
8 were arbitrarily chosen and the original upper bounds, used for the results in 4,
were systematically increased but the lower bounds were left unchanged. In particular,
these 8 problems were rerun using a new upper bound on each variable that is I0
times the original upper bound, if the upper bound is positive, and I/I0 the upper
bound, if it is negative. This process was then repeated with I00 replacing I0. The
results of this experiment are summarized below:

(i) For each of these 8 problems, the time required by EA3 to reduce the relative
error to each given error level consistently decreases as the bounds are enlarged. These
results are consistent with the way in which an ellipsoid algorithm works, and a
plausible explanation of this phenomenon is that the larger the starting ellipsoid, the
more widely dispersed are the iterates generated. Since the time required for a single
EA3 iteration is typically less than the time required for an iteration of the other
algorithms, it typically takes a shorter time for EA3 to "sample" widely dispersed
points. If the initial absolute error is large, then it is likely that initially EA3 will
reduce the relative error more quickly than the other algorithms. In summary, enlarging
the bounds does not adversely affect the qualitative behavior displayed by EA3 in
Table 4.

(ii) With regard to robustness, the other algorithms appear to be far more sensitive
to the starting point (the midpoint of the enlarged bounds) than EA3 is to the size of
the starting ellipsoids. Increasing the bounds, and thus the distance between the starting
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point and the optimal point, did riot affect the robustness of EA3 but it dramatically
worsened the robustness of the other algorithms.

Another ellipsoid algorithm phenomenon that we have observed regards local
minima. From the beginning of our experimental work, we have observed that on
problems with several local minima the ellipsoid algorithm often converges to a global
minimum. For example, as we report in [12], on Himmelblau 22 EA3 finds a strictly
feasible point with an objective function value of about 3.13 whereas the previously
published minimum value for this problem is 4.07 (see [24], [7] and [23]).

To investigate this phenomenon further, the following experiment was performed.
The notorious "six hump camel back" function of Dixon et al. [10], was chosen and
the five algorithms of our study were run using several diiterent sets of bounds. A
contour plot of this two variable problem is given in Fig. 7, and within the bounds

1.5

X2

-1.5
-3.0 ! 3.0

FIG. 7. The six hump camel problem [10].

[-3, +3] for xl and [-1.5, +1.5] for X2 there are six local minima, 2 local maxima, and
7 saddle points. Two of the local minimizing points, P and Q, have the same objective
function value of-1.032 which is the global minimum value. The local minimizing
point S has an objective function of about -.2155 and the local minimizing point R
has an objective function value of about 2.104.

Six starting points labeled A through F (see Table 8) were generated as the
midpoints of bounds chosen so that two of the original (four) bounds are part of each

TABLE 8
Points converged to on the six hump camel problem.

Starting pt. EA3 GRG2 IQP NAG8 RQP

A Q R R R R
B Q S S S S
C P Q Q S R
D P P * R R
E Q S * S S
F P P Q p p

* For these bounds, IQP converges to the saddle point at 0, 0.
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set of bounds and so that the new bounded region contains the original region. (Given
the starting points, this uniquely determines the bounds.) The function is symmetric
to the diagonals and so starting points were only chosen on one side. The results of
this experiment are given in Table 8.

For all of these starting points, EA3 converges to a global minimizing point. Of
course, EA3 does not always converge to such a point on this problem. For example,
if upper bounds of 1,000 and 500 and lower bounds of -100 and -50 are chosen, then
EA3 converges to a local minimum.

The last ellipsoid algorithm phenomenon discussed here concerns the ability of
EA3 to sometimes converge to an optimal point that is far outside the starting ellipsoid.
We have observed this happen on several problems but only one will be discussed
here to illustrate the point. The test problem Hald & Madsen 5 has an optimal value
of about 115.7 and an optimal point x* with components given approximately by

(-12.2, 14.0,-.451,-.010, 115.7).

For the results of 4, upper bounds of 20 and lower bounds of -20 were chosen for
the first four variables and an upper bound of 150 and a lower bound of 50 was chosen
for xs. If upper bounds of 5 and lower bounds of -5 are chosen for the variables x
through x4, and the bounds on x5 left unchanged so x* is far from being in the initial
ellipsoid, then EA3 converges to a point z that is essentially the same as x* in that

X* Z < 10-6.

In part, it is the ability of the ellipsoid algorithm to generate highly aspheric ellipsoids
during the solution process that accounts for this phenomenon.

6. Observations and conclusions. Based on the results reported in this paper, we
draw the following conclusions.

(1) Of all the algorithms studied, EA3 is clearly the most robust. GRG2 and IQP
are also reasonably robust for most levels of solution error but NAG8 and RQP are not.

(2) Relative to computational efficiency, EA3 is superior to all the other algorithms
at solution error levels down to 10-2. For relative error between 10-3 and 10-8, RQP
and GRG2 are the most efficient. Typically, EA3 ultimately gets the best solution.

(3) In terms of using the fewest number of function and gradient evaluations to
reach a given error level, IQP is vastly superior to all of the other algorithms.

We observed the following features regarding the performance of EA3.
Except at the beginning of its trajectory, EA3 displays the linear convergence

that is predicted theoretically. Its initial trajectory is usually convex, so that the linear
trend intersects the error axis below zero (typically below -1).

EA3 remains numerically stable until extremely small error levels have been
attained.

The qualitative behavior of EA3 is insensitive to the size of the starting ellipsoid.
Often, EA3 finds global minima and avoids local minima.
It is not always necessary for the initial ellipsoid to contain the optimal point

in order for EA3 to converge to the optimal point.
A final comparison between the algorithms considered in this study concerns their

complexity and the complexity of the computer programs required to implement them.
The ellipsoid algorithm is very simple, whereas all of the other algorithms are relatively
much more complicated. The magnitude of the contrast can be seen from the following
statistics on the number of lines of executable Fortran code contained in the



COMPARISON OF ELLIPSOID AND OTHER NONLINEAR ALGORITHMS 673

implementations:

GRG2 2,495
IQP 1,007
RQP 475
CA3 61

The NAG8 code is proprietary and we therefore could not examine it to count lines,
but it consists of 54 separate subroutines.

In view of the above conclusions and observations, it appears that, in addition to
being used as a stand-alone method, the ellipsoid algorithm could also be used
to provide good starting points for algorithms with better convergence rates near
optimality.
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STOCHASTIC APPROXIMATIONS VIA LARGE DEVIATIONS:
ASYMPTOTIC PROPERTIES*

PAUL DUPUIS" AND HAROLD J. KUSHNER

Abstract. Asymptotic properties of Robbins-Munro and Kiefer-Wolfowitz type stochastic approxima-
tion algorithms are obtained via the theory of large deviations. The conditions are weak and can even yield
w.p.1, convergence results. The probability of escape of the iterates from a neighborhood of a stable point
ofthe algorithm is estimated and shown to be considerably smaller than suggested by the classical "asymptotic
normality of local normalized errors" method of getting the asymptotic properties. The escape probabilities
are a natural quantity of interest. In many applications, they are more useful than the "local normalized
mean square errors." Other large deviations estimates are also obtained. Typically, if a, 1/n, p =< 1, then
the probability of escape from a neighborhood of a stable point in some (normalized) time interval
[n, m]: ai T is exp- n’V,, where Vp does not depend on p for p < and is the solution to an optimal
control problem. If the noise is Gaussian, then the optimal control problem is relatively easy. Under quite
broad conditions, in the Kiefer-Wolfowitz case the control problem has the Gaussian form, whether or not
the noise is Gaussian. The techniques are expected to be quite useful in the analysis of the asymptotic
properties of recursive algorithms generally.

Key words, stochastic approximation, large deviations, recursive algorithms, asymptotic properties

1. Introduction. This paper concerns a useful approach to the asymptotic behavior
of stochastic approximation algorithms (SA) of the Robbins-Munro (RM) type

(1.1) X,,+l=X,+a,,b(X,,)+a,b(X,,n), an>-O, a,=, a,,-O,

or the Kiefer-Wolfowitz (KW) type

(1.2) Xn+ X. 4- a,b(X,) + a,b(X,, ,)/ c.,

where Eb(x, ,,)=0 and 0< cn 0, and x R r, Euclidean r-space.
Let 0 denote a stable point of

(1.3) 2 b(x).

Under quite broad conditions X,- 0 w.p.1. (at least if X, is in a neighborhood of 0
often enough or if 0 is globally asymptotically stable). The classical rate of convergence
theory (for 1.1 ), for example) 1 ], 2], concerns asymptotic normality of { X, 0 /x/--}.
It is a "local" result, and the only "dynamical" information which it uses is the gradient
matrix bx(0). This asymptotic result is useful, but does not provide enough information,
and does not fully exploit the dynamical properties.

Here, we take an alternative point of view. Let G denote a bounded open set
containing 0, and let Px denote probability given that X, x. If Xn 0 w.p.l., then the
probability that the tail {X,j -> n} leaves G goes to zero as n. The dependence of
this rate on b(. and the other data of the problem is of interest. Suitably normalized
estimates can yield considerable information, and provide a useful and informative
alternative to the classical approach. For many problems escape probabilities are of
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greater interest than the "localized" asymptotic normalized variances of the errors.
We now formulate the precise problem. It will be necessary to deal with (1.1) and
(1.2) both in their original discrete parameter form, and in an interpolated continuous
parameter form. To facilitate this, define to 0, tn o ai, and m(t) max {n" tn <= t}.
Thus m(tn) n. Define m,(t) m(t,+t). Then 0 < "nmn(t)-I a <= am.(,). For each n
and x define the process {X,j >= n} by X," x and

1.4RM Xjn+

(1.4rw) Xj"+I

X; + a(b(X )+ b(X;, )),

X+ ajb(Xj + ajb(X;, )/c,,
Thus, we have fixed the initial time at n, and initial condition at x. Define the piecewise
constant function x"(.) by

x"(t) X on t t., t+l- t,),

and let g"(.) denote the piecewise linear interpolation. Henceforth, for notational
simplicity, we drop the superscript n on X.

Fix T<m and define r=min{t:,"(t)_G} and let AcCx[O, T], the set of
Rr-valued continuous functions on [0, T] with initial value x. We seek normalizing
sequences {An} such that the limits below exist and can be evaluated:

(1.5) lim An log Px{z-<_ T}, lim h, log P{n(" A}.

The limits (1.5) are often continuous in x. In particular, under quite broad conditions,
the first limit is continuous in x in G.

The limits in (1.5) are of considerable value in studying the asymptotic properties
of {X,}. The analysis yields information on the locations or distributions of the X,
for large n, and on the most likely escape routes from G. It exploits more of the
structure of the algorithm, and results can be obtained even when b(. is "flat" near
0. Also (unlike the classical theory) b(.) need not be ditierentiableLipschitz con-
tinuity is enough. This is useful in dealing with cases where the algorithm arises in a
minimax problem--or where the derivatives of b(. or b(.,. are discontinuous at 0.
The limits are obtained via the variational approach of the theory of large deviations
[3], [4], [5], ([5] is our main reference). The values of the limits provide useful
information on the dependence of the performance of the algorithm on the data b(-),
the sequences {a,, c,} and the statistics of {so,}, and some of this information is
obtainable even without solving the variational problem.

The type of theory used and developed here should also be of considerable value
in the analysis of the asymptotic behavior of other types of recursive and tracking
algorithms (e.g., adaptive control and communications systems where a, a, a constant
gain). Commonly, for such systems, estimates of path excursions and passage times
and moments (from a "stability" set, for example) are of at least as much interest as
the usual "localized" mean square error estimates. Applications to other problems in
probability and statistics appear in [6], [7]. In [8], large deviations theory is used to
approximate the probability of breakdown of a form of an ALOHA-type communica-
tions system.

The basic assumptions are introduced in 2. In (A2) and (A2’) the H-functional
(the normalized log of an exponential moment) is introduced in the form in which it
is needed, and ways of obtaining the functional and its structure from the structure
of the {} noise are discussed. Various ways of approximating it (required in the
subsequent development) are also discussed. In 3 the Legendre (or Cramer) transfor-
mation of H is introduced, together with the action functional S(T, b), and the main
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limit theorems proven. The basic result is of the following "large deviations" type. Let
A c Cx[0, T], with ft. closure of A and A= interior of A. Then, under our conditions
(we usually write x" for x"(. ))

inf_ S( T, ) < lim h log Px{x" A} <- lim A, log Px{x" A}
4,cA

(1.6) -<-inf S(T, 6).

Because of its importance in applications, we are particularly concerned with the case
where A is the closed set

A { b(. )" 4)(0) x and b(t) G for some -< T},
(1.7)

and with the dependence of {A,} and S(T, b) on the problem data. Appendix 1 proves
an auxiliary "large deviations" estimate. Appendix 2 obtains some "exponential-type"
estimates of the probability of various sets, for use in 3, when the noise is unbounded.

If A is defined by (1.7), then even if there is not equality in (1.6), there will be
for a slight perturbation of G. For p > 0, let Go denote a p-neighborhood of G. For
p<0, define Go={Xe (3" d(x, OG)>-p}. Let Ao denote the set (1.7) corresponding
to Go. Then So inf,a, S(T, ) decreases as p decreases, and So is continuous at all
but a countable number of p. Let So be continuous at/9 0 ((3o (3). Then

(*) inf S( T,
bA bA

and there is equality in (1.6). This continuity, as well as the continuity of inf,A S( T, )
in the initial condition x can be proved via the methods in [10]. In particular, if the
infin (1.6) are finite, then (*) holds under the degeneracy or nondegeneracy assumptions
(A4.2), (A4.4) (for bounded noise) and the controllability-type assumptions (A4.7) in
[10]. In an earlier paper [9], the special case b(x, :)= :, with {:,} i.i.d, and Gaussian
was treated. The A, sequence used there is proportional to the one used here, but is
not the same. Korostelev [12], [13] has also considered this type of noise sequence
with b(x, )= bo(x).

We now cite some specific results. Let a, 1/n, p _-< 1, c, 1/n v where p -2y > 0
(if a, A/n", etc., absorb the A into the other data). Then (asymptotic logarithmic
equivalence)

(1.8RM) P,{’r <= T}--- exp- nVo,
(1.8KW) P,{r < T}" exp- nO-2vW

where for p < 1, Vo V, and does not depend on p. The Vo are obtained from the
solution to a variational or optimal control problem, and the solution also yields the
"most likely" exit paths from Gminformation which is useful in applications.

If the {:,} are mean zero stationary, Gaussian and b(x, ) bo(x)sc, then the action
functional is (if the inverse exists)

S(T, )= 1/2(-(d))’[bo(4))-b(4))]-(-())h(s) ds

(1.9)

=Io
where R Y_ E: and 0 < h (s) is a continuous function, h (s) 1 if p < and equals
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(RM case) e if p= 1. Also Vp =inf{S(T, th)" b(0) x, b(t) G for some t_-< T}. If
the inverse does not exist, then replace the integrand in (1.9) by

min [a’(b (ck))-1/2a’bo(ck)b’o(Ch)a]h(s) L(c, ok, s).

Alternatively we can minimize 1/2 o u’uds subject to =/(b) + bo(rk)l/-u and b(0)=
x, b(t) (3 for some =< T. Whether {:,} is Gaussian or not, the action functional for
the KW case is of the form (1.9).

Note that (1.8) is a much faster rate of decrease of the escape probability than is
implied by the "asymptotic normality" way of dealing with the asymptotic properties.

In the general case covered by Theorem 2.4 (and for the corresponding KW case),
the equivalent optimal control problem can be shown to be the following

subject to

S( T, ok)= ho(s)L2(u(s)) ds

c (ck + bo( ck gu,

b(0) x, q(t) (3 for some t_-< T.
Note. The book [14] came to the authors’ attention after this paper was completed.

It uses large deviations methods to obtain weak conditions for w.p.1, convergence of
the algorithm Xn/ Xn + anb(Xn)+ dnn, where dn and :n do not depend on Xn. For
the more complex systems dealt with in this paper, the methods which we use can also
yield w.p.1, convergence under much weaker conditions than are used, but our main
interest is in obtaining explicit formulas for a rate of convergence or an escape
probability, so as too better understand the algorithm.

2. The H-functional and its lroperties. The first assumption is on {an}, and essen-
tially says that an does not decrease "too fast." Examples appear below.

A1. an SO as n o, and an =o. There is a continuous function h(.) (positive
for s < o) and such that

(2.1) a,,,.s+)/an-hl(S) asn and then 6],0.

By (2.1), [ran(s+ 6)- ran(s)]" 6/a,,.). Thus

(2.2) an[mn(s + 6)- mn(s)]/ 6 ho(s)=- h-(s),

as n c and then 6 0. Let a(. and q(. be piecewise constant functions; w.l.o.g.,
we let A denote the length of their intervals of constancy (which will depend on the
function). The next assumption concerns the existence of an exponential moment of
the type used in the theory of large deviations. We state the assumption in the form
(A2), because that is the form in which it is generally used. But, under (A3), (A2) is
equivalent to (A2’) (stated after Theorem 1), and (A2’) is the usual form used in the
theory of large deviations for discrete systems.

See the motivation for (2.3) given after (A3). For the RM case, the natural
2normalization is An an and for the KW case An an on.

The form (2.3) below is somewhat abstract, although it is the correct form for our
problem. In order to get a feeling for (2.3), several equivalent forms are developed in
the sequel, together with results which show how to calculate it in special cases.

A2RM (RM case). There is a continuous function H(.,., with Hi(’, x, s) con-
tinuously differentiable for each x and s, and such that for each a(. ), q(. ), the limit in
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(2.3) exists. (Here 6 < A and 4/6 is taken to be an integer.)

(2.3)

H,(a(s), O(s), s) ds.

A2KW. Replace ar,.i) by a..i)/c,,.i in (2.3).
A3RM. Let b(x, ,)= hi(x, ,)+ bo(x),, where {:,} and {st,} are mutually indepen-

dent, {,} is stationary mean zero Gaussian with a summable correlation function and
{:,} is stationary and bounded, bl( ", ), bo(" and b(. are uniformly (in , x) Lipschitz
and are bounded.

The limit in (2.3) exists in "typical" situations. The form is also consistent with
that used in [5] for the system

V=b(xV,(t/y)),

or the discrete parameter counterpart

Xr.+, X+ yb(X

where the H-functional is defined by

or by

H(a(s), O(s)) ds lim y log E exp a’(ys)b(d/(ys), (s)) ds

lim y log E exp Z a’(iy)b(q(iy), ).
/ o

We use am.i)b(d/(i6), ) in lieu of ajb(O(i6), ) because it is easier to calculate the
limits when the coefficients are "piecewise constant." But the limits are the same under
our conditions; see the remark after (A2’) below. The functions hi and ho and the time
dependence of Hi(., .,.) appear due to the "time-varying" scaling (due to the fact
that a, - 0).

Remarks. Hi(’, , s) is convex for each q and s. If (A2) holds and ajb in (2.3)
is replaced by ajb+ab (or ab+a2b/c in the KW case) then Hi(a, ,s) is replaced
by H(a, 0, s) where

(2.4) H(a, O, s)= Hi(a, , s)+

In order to simplify the notation, we do the proofsfor the "bounded" and Gaussian noise
cases separately, and use the notation b(x, ) or b(x) as appropriate. The results hold
for the "combined" case.

In the Gaussian case, H can be explicitly evaluated. Using the fact that for
Gaussian mean zero , log E exp E2/2, we obtain

HI(a , s)=1/2hl(S)a’bo(d/)bo(d/)a,

where R Z.i=- R(j) and R(j) EsCoscj.
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In the scalar case with a(s)= a, O(s)= , both constants, (2.5) follows from

and the general case is dealt with in the same way.
Examples of (A1). Let a, 1In An. Then m,(s)--, ne (gn f, means that gn/fn -1 asn-o)andho(s)=eS, hl(S)=e-LIfan 1/nP, wherep(O, 1), then m,(s)--- n+sn

and ho(s)= 1. Let Vo denote the infima (on either the r.h.s, or 1.h.s. of (1.6)) when
p < 1 and p 1, respectively. Then for p < 1, Vo does not depend on p. Also if there
is equality in (1.6) for the set A of (1.7), then (1.8) holds.

We next present an approximation theorem, and then some examples. In (2.3),
we used piecewise constant (on intervals of length 6) coefficients of b(@, ), since it
is usually easier to prove that the appropriate limit exists (as compared with the case
where ab(@, ) is used). For the subsequent work, it is important that the limits hold
when the coefficients are varied slightly. In particular, we will need that H1 can also
be defined by the limit in (2.6).

(2.6)

r
H,(a(s), q(s), s) ds

T/8-1 mn(iS+8)-I }=lim An log E exp c’(i) ab(O(i), )/An
i=0 j=mn(i

THEOREM 2.1. Assume (A1), (A2RM) and (A3RM). Then (2.6) holds. Also the limit
in (2.6) is the same if the a) are replaced by , where

(2.7) lim lim sup la ajl / a O,
nj[n,mn(T))

and the limit in (2.6) is then taken in the order lim_o limn_.
Remark. It is readily seen that if a,,o) in the interval j mn (i6), m, i6 + )),

then (2.7) holds.
Proof For notational simplicity, let a(.)= a and b(x, )= :, a scalar, and let., i. The general proof is almost the same. We will show that

(2.8)
lim IA,, log E exp n- An log E exp "n[ 0,

where

Ol mn(T)-I

An E jj, n ol mn T)-

sup Ij jl/ aj %0, a O(A.).
j[n,mn(T))

For the Gaussian case, a direct evaluation (along the lines of the calculation which
we would use to get (2.5)) yields the result. For the bounded noise case, let ]ti- l/An -<
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e. Then there is a constant k such that

(2.9)

Also,

exp- e[m,( T) n]k <= exp a
mn( T)-I

-< exp e[m,( T) n]k.

(2.8) h,,[log E exp (, + (,,, A,, )) log E exp .,,1.

The use of (2.9) and (2.2) in (2.8) yields that (2.8) 0 as n . Q.E.D.
Under (A1) and (A3RM), Theorem 2.1 implies that (A2RM) is equivalent to (A2M)

below. In (A2M) we divide by m/6, the number of j indices in the sum. In (A2RM),
the normalization is a multiplication by a, which is or ho(s) ds (->1) times the inverse
of the number of j indices in that sum.

(A2,M). There is a continuous function Ho(’," such that Ho(’, x) is continuously
differentiable and

Ho(a(s) (s)) ds= lim --6 log E exp a’(ia)
,-- m i=o

mi+m--1 }
j=mi

Under (A1), (A2,M) and (A3RM), it can readily be shown that

(2.10) Hl(O x, S) ho(s)Ho(h,(s)a, x).

The general form (2.10) will be quite useful in the sequel.
In order to "roughly" check (2.10), let c<d with d-c small and set a(s)= a,

0(s) 0 on [c, d] and zero elsewhere. Then under (A2,M)

X,,
[m,,(d)- m,,(c)]

log E exp a’
[m,(d)-m,(c)]

mn(d)-I

m.(c)
ajb(, j)/A, (d-c)ho(c)Ho(h(c)a, d/).

(The ratios converge as d $ c.)
The following corollary is proved by a method very similar to that of Theorem

2.1. Combinations of Theorem 2.1 and the corollary will be used frequently.
COROLLARY 2.2. Assume (A1), (A2RM) and (A3RM). Let equal either zero or a

and let

mn(8+iS)--I

m.(iS)
[a-j[<-_6 fori<-_ T/&

Then

(2.11)

mn(iS+8)_iT/15-1

’(itS)lim lim lim a log E exp Y
a 8’ i=0 j=m,,(iS)

H,(a(s), q(s), s) ds.

Bounded stationary mixing (:,}. Let Eo denote conditioning on (j,j<0}. For
another way of obtaining H or Ho consider:

A4RM. Let {,,,-c < n < o} be bounded and stationary, and suppose that there is
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a continuous I2Io(., with I2Io( x) continuously differentiable for each x and such that

(2.12) lim
1 N-1 1 -N lgEexpa’ E b(,)=lim-logEoexpa’ E b(,)=Ho(a,),

o o

where the convergence is uniform in the conditioning data.
Example. Let {so,} be a finite state Markov chain with all states communicating

with each other. Then (A4RM) holds by an argument similar to that of Freidlin [5,
Thm. 2.2]. It is also a special case [10, Thm. 3.8].

THEOREM 2.3. Under (A1) and (A4RM), condition (A2RM) holds and

H,(a, , s)= ho(s)Ho(hl(S)a, ).

Proof Let M T6 integer. By Theorem 2.1, (2.3) is equivalent to

(2.13)

r

Hl(C(s), (S), S) ds

lim lim ,, log E exp od(i)h(i)
8-,0 n- k i=0

mn(iS+8)--I }E b(q(i6), j)
j=mn(iS)

Thus, we are concerned with limB,, h. log Es,., where

M-1 mn(iS+8)--I }E8. E exp Y a’h, Y b(,. j)
i=0 j= mn iS

where a, a(i6), h,= h,(i6) and q,= qt(i6).
Let E denote conditioning in { scj, j <_- rn, (i6) 1 }. Then

(2.14)

Es,. E exp /a’oho m.(8)-I
E

j=mn(O)
b(o, scj)} EM_lexp {a4-hM- mn(T)-I

mn( T--8)
b(OM-1, j)}.

By the hypotheses,

Ei exp a
j----ran(iS

b(,, )-exp I?to(a,h,, d/,)(m.(i6 + 6)- m,,(i6))

<_-- exp p.i[m,,( i6 + 6) m.( i6)]

where p.- 0 as n , uniformly in i, and in the conditioning data. Substituting this

into (2.14), multiplying by h, log and taking n-c yields

M-1

*.logEs,.- E *,,(m,,(i6+6)-m.(i6))I2Io(ah, i)
i=O

from which the theorem readily follows. Q.E.D.
We now treat the special case:
(AS) =k gj-kOk, where the {Ok} are i.i.d, and either Gaussian or bounded, and

klgkl < c and gk 0 for k < O, and b(d/, ) bo(b), b(. and bo(" are bounded and
Lipschitz continuous.
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Define

(2.15) H2(a) log E exp a’O, R E E:.

THEOREM 2.4. (RM case). Under (A1) and (A5)

Hi(a, /, s)= ho(,s)H2(h(s)g’b(q)a),

where g .=o g,-
Proof. By the corollary to Theorem 2.1, we can calculate H by using 8j instead

of aj, where ti 0 for j m, (i8), m, (i8 + 8’)), 8’ < 8, for each i, and using ti a
otherwise, and taking limits in the order lim lim, lim,. We now do an additional

E k=-oo ,-kOk, where g for j _--< No andapproximation. Let No < 0 and define
; 0 for j No. We show that we obtain the correct H1 by taking limits in the order

(2.16) lim lim lim lim.
8’ N

Write ti;abo($j), where cr:a(iS) and $ $(i8) forj[m,(iS),
Define

"n mn(T)--I mn(T)--I
ak E jgj-k/ A., A E ljj-k/ An"

Since

mn(T)-I
E ,/. E 3,7, 0.

in order to show (2.16), we need to show that

lim lim lim lim A, log E exp AkOk--log E exp ,,Ok =0.
5’ N k

Using the independence of the Ok, and the fact that E exp AkOk exp 1/2 k E[AkOk[2,
(2.17) follows by a direct evaluation in the Gaussian case.

Following the proof of Theorem 2.1, to obtain (2.17) for the bounded noise case,
we need only show that for any constant K,

lim lim A. log exp K E I i -, Zl o.
N k

Equivalently, it is enough to show that

mn(T)-I
’. E a; E Ig;- ;-1/a. - 0, as n and then No .

j=n k

But this follows from the fact that Ig-l0 as No. Thus (2.17) holds, and
in the evaluation of H, we can use ; in lieu of a; and assume that g 0 for k No
for arbitrary No <, and take limits in the order (2.16).

Thus, the functional H is given by (2.18).

(2.18) lim lim lim lim I log N exp a"bo()_ 0/I
’ N k=n_No

In fact, owing to the definition of 8, , we can replace n- No by m,(’)- No. Due to
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the definitions of 5j and j, for fixed k and large enough n, the coefficients bo(j) and
aj of Ok will depend on k only via the index of the set [m, (i6), m, (i6 + 6)) in which
k lies. Thus using the independence of the {Ok} and the definition of H2 given in (2.15),
we get that

T/6-1 mn(i6+6)-I
(2.18) lim lim lim lim h. Y.

6 8’ N i---O k=mn(i8

The theorem follows from this and the continuity of H2. Q.E.D.
The KW case. Define
A6Kw. There is a continuous and positive function h2(" such that (A, a,/c)

hm.(s+)/h. -> h2(s)

as n - oe and then 6 $ 0.
THF,OREM 2.5 (KW case). Assume (A1), (A6) and the Gaussian case of (A5). Then

(A2Kw) holds with

(2.19) H,(a, tp, s)=1/2h2(s)a’bo(O)-b’o(O)a.

Also, the limit in (A2w) is the same if the coefficients used there are replaced by , c
such that /a, and /c,- as n- oo and then O.

Proof. For ease of calculation, we set a =constant, =constant, and use the
coefficients r, a,/c,. We have

mn( T)--I

A, log E exp a’ rjbo(O)j/An
j=n

A, log exp E a’ Y. rjbo(d/)j/A,
(2.20)

J="

1 ran( T)-I
rrja’bo(O)R(i-j)bo(O)a/h,,

2 i,j=n

-- h(s) ds a’bo(O)Rb’o()a.
2

The last assertion of the theorem can readily be seen from the form of the sum
above. Q.E.D.

THEOREM 2.6 (KW case). Let {:} be i.i.d, and bounded and assume (A1) and
(A6Kw). Then the last sentence of Theorem 2.5 holds. Define (the Ho below is the same
as the Ho of A2.M))

Ho(a, 0)= log E exp a’b(0, ).

Then

(2.21)
H,(a, 4’, s)= h2(s)o’Ho.,,(O, O)a/2

h(s)a’Eb(O, )b’(O, )a/2.

Proof Ho(’, q,) is infinitely differentiable, since the sc. are bounded. We have
Ho(0, )=0= Ho,.(0, q,), since Eb(q,, so.) 0, and in general

(2.22a) Ho,.(a, q,)=
Eb(O, ) exp a’b(O, )

E exp a’b(O, )
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Also, using the definition Eb(d/, a)= Eb(q,, ) exp a’b(q,, ),

(2.22b)
E[b(q,, ) exp a’b(q,, :)-Eb(q,, a)][b(q,, :)exp a’b(q,, )-Eb(ff, a)]’

Ho,(a, )=
(E exp a’b(O, ))2

We need to evaluate the limit of

T/8-1 mn(iS+8)--I

i=0 j=m.(iS)
Ho( ra ia )/ a,,, d/( i6 ).

Owing to the smoothness of Ho(’, @), we can write

(.3 aNo(r(i/, 4,(=-’(igo.(O, 4,((+aO

where O(. is uniform in a, $ in each bounded set. Then the expression (2.23) converges
to 5oT Hl(a(s), O(s), s) ds, as n-+oo and 8-0. The first assertion of the theorem readily
follows from the special form of (2.23). Q.E.D.

Remark. Observe that the H-functional in (2.21) has the Gaussian form, although
the scj are not Gaussian. Let a, n- -c, n with 2y<l. Then a,=n2v-1 and
h2(s)=exp(2y-1)s. If a,=n-p, c,=n- with 2y<p, then h2(s)= 1.

The last two results can be combined and extended.
2 (A1), (AS) and (A6Kw). DefineTHEOREM 2.7 (KW case). Let a,/ c, $ 0 and assume

the KW H-function by

r

H,(a(s), d/(s), s) ds

lim lim log E exp
1 r -1

a’(i6) Y. a,,.{i)b(4,(i6), j)/c,..{,)
8 i=0 j=mn(iS)

The limit is the same ifa. c replace a,,.{ is), c,,,.{ i in each interval mn (iS), m,, i8 + 1
if . / aj -+ 1, ./ c -+ 1 as j -+ oo then -+ O. Furthermore, we have the Gaussian form

H,(ce, , s)=1/2ha(s)a’bo(d/)gH2,,(O)g’b(O)a.
The proof uses the partial summation idea of Theorem 2.4 and the expansion idea

of Theorem 2.6, and is omitted.

3. The limit theorems. Until mentioned otherwise, attention is restricted to the
RM case. Define the Legendre transform L and action functional S by

(3.1)
L(/3, x, s) sup [a’/3 H(a, x, s)],

(3.2) S( T, cb) Ifto L(b, oh, s) ds if 4 is absolutely continuous,

otherwise.

Using the representation (2.10), and H(a, x, s) a’b(x)+ H(a, x, s) and ho(s)h(s)
1, we have

L(fl, x, s) sup [a’(fl b(x)) ho(s)Ho( hl(S)a, x)]

(3.3)
ho(s)Lo( 6(x), x),
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where

(3.4)
Lo(fl, x) sup [a’fl Ho(a, s)].

The key result is Theorem 3.2, which proves (1.6). Theorem 3.1 gives an estimate
which is needed in the proof of Theorem 3.2. Owing to the assumptions on the noise,
some modification of the classical results [5] is needed.

All the functions b below, with or without affixes, are in Cx[0, T].
THEOREM 3.1. Assume (A1), (A2RM) and (A3RM). Given positive c, h and s and

function qb (.), there is an no < such that for n >-_ no (d (., is the sup norm distance)

(3.5)

(3.6)

P{d(x’, &)<=c}>=exp-[S(T, &)+ h]/A.

P{d(x’, s)> c} <-_ exp-[s- h]/A,

where s {b Cx[0, T]: S( T, b) <= s}.
Before proving Theorem 3.1, we state the desired result, Theorem 3.2. Inequalities

(3.5) and (3.6) imply (3.7). The result is well-known in large deviations theory. See
[5], [6], and the remark following the theorem statement.

THEOREM 3.2. Under (A1), (A2RM) and (A3RM), for any A a Cx[0, T],

(3.7)
info S(T, &)<=limh, logPx{x"(.)A}

<=limh, log Px{x(.)A}<--inf_ S(T, &).
thA

Remark. For purposes of self containment, a brief outline of the proof that (3.5)
and (3.6) imply (3.7) will be given. Let bo A and let Np(&o) be a p-neighborhood
of &o in A. Fix small h > 0. Then for large n, (3.5) implies

A, log P{x A} >- A. log P{d(x, &o)< p} -> -[S( T, tho)+ h/2].

Choose bo such that the r.h.s, is within h/2 of inf6a S(T, &). This yields the left side
of (3.7). For any s > 0 such that is disjoint (distance > p > 0) from A, we have for
large n

A, log P{x" A} <= ), log P{d(x",)> p},

where 2p is the distance between A and the compact set. Let s inf6a S( T, &) h/2
and choose p appropriately to complete the details.

Proof of eorem 3.1. Fix 3, and let (.) be piecewise constant (A =width of
intervals of constancy). If is piecewise constant, with value (iA) on [iA, iA+ A),
define 6 to be its piecewise linear interpolation. Define for 6 absolutely continuous
(let S+(T, )= otherwise).

(3.a s(r,= (g(s, (s, s s,

(3.9) {& C,[0, T]: S’( T, &) <_- s}.

For each q, x and n, define the processes {X"",j >- n} and x+’" by X,+’"= x and
for j >_- n (writing q7 for q,(tj- t,))

(3.10) X$I Xy’" + aj6( O7) + ajb( 07, j),

and x""(t)=X"" on [t)-t,,, tj+l-t,). Thus Sq’(T, 49) is the action functional corre-
sponding to {x+’", n 1, 2,...}.
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It is proved in Appendix 1 that for each positive a, h and s and each C,[0, T],
there is an no < such that for n->_ no,

(3.11) P{d(x’", )<a}>-exp-[S(T, )+]/A,,
(3.12) P{d(x"", * > a} <-exp-[s-l/A.

Let {0k} denote a sequence of step functions which converge uniformly on [0, T]
to a continuous function b(.). Then Friedlin’s [5, Lemma 3.2] yields (with only a
minor adjustment to take care of the fact that L(/3, x, s) is time dependent) that there
is a sequence ck which converges to uniformly on [0, T] and such that

(3.13) S’(T, rbk) S(T, 49).

Fix and h > 0. For each e > 0 choose 4 and a step function q such that d (4, 4) < e,
d(0, 4) < e and

(3.14) S4"(T, ch)<-S(T, th) + h/2.

We proceed to use this approximation and (3.11), (3.12) to obtain (3.5) and (3.6),
following the proof in [5] as closely as possible.

It follows from the estimates in Appendix 2 (Lemma A.4) that for each c > 0,
6 > 0 and K < there are no < c, Co > 0 and eo > 0 and a set B, such that n -> no, c’ =< Co
and e-< eo imply that P{B,} =<exp-K/A,, and (compare with [5, bottom of p. 141])

(3.15) {w: d(x", 05) < c} {w: d(xq’’", ) < c’}- B,.

By this inclusion and (3.11) and (3.14), for small e and large n

P{d(x", ch)<c}>=exp-[S(T, qb)+]/A,+(exp-K/A,)
>- exp-[S(T, b)+

which is (3.5).
If {} is bounded, then the Lipschitz condition on b(. an b(., sc) imply that for

each B < the set of piecewise linear interpolations

R, {x"(t), t_-< T}

are in a compact set Ro, not depending on n. As far as the estimates (3.5), (3.6) or
(3.11), (3.12) are concerned, it does not matter whether we used x" and x"’ or their
piecewise linear interpolations. Henceforth we use the piecewise linear interpolations,
without altering the notation. In the Gaussian case, due to the unboundedness of {,},
the Rn are not in a compact set since the linear interpolations of y,__.(,t) ajbo(X’) are

(T)
not in a compact set--since the . are unbounded The nterpolatons of a.b(X.2.J j=n

are in a compact set because b(.) is bounded. But the estimates in Lemma A.2 of
Appendix 2 imply the following: For each K and p > 0, there are N < and bl, ,
such that for each n the union of the p- neighborhoods of the bi covers R, except for
a set of paths B, whose probability is ---k exp-K/A,, where k does not depend on n.

Fix positive s, c and p. By the above remarks there are N < and 4i, <-- N, such
that d(,)> c/2 ( is compact in C,,[0, T] by the lower semicontinuity of $(T, b))
and the union of the p-neighborhoods of the covers

F, R.- (c/2-neighborhood of )-B,,
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for each n. If p < c/2, then
N

(3.16) P{d(x", s) > c} <= Y P{d(x",
i=l

By the results of Appendix 2 (Lemma A.4) for each K < c, there are po > 0 and no <
such that p_-< Po and n_-> no and d(b, )=< p imply that there is a A (which we can

choose such that it goes to zero as p 0) such that (compare with [5, (3.15)])

(3.17) {o: d(x, b) <p} {w: d(x*’", b) <,} LI C,(, b),

where P{C,o(q,ck)}<=exp-K/,,. Choose p small enough such that ,<c/8 and
p<c/4.

For small enough d(b, q), d(b, s)> c/2 implies that d(b, ,)> c/4. This is
a consequence of the lower semicontinuity of S+( T, b) in (0, 4) and the compactness
of ,. If this assertion is not true, then there is a sequence q7 such that d(4, q) 0
and d(b, b)-0 where S*,(T, chT)<-_s for all e>0. But there is an s>0 such that
for any ho> 0 and small enough e > 0 (by the cited lower semicontinuity and com-
pactness)

S’;(T, ch)>-S(T, b,)-ho>=S+ s,-ho,
a contradiction.

We now put these estimates together to get (3.6) as follows. Fix h > 0. Choose
step functions 6, such that d (qi, b,) < p and is small enough to guarantee d (4,, ’) >
c/4. Then, by (3.12) and , < c/8

A, log P{d(x’,’", 4),)< A} _-< A, log Pd(x’’", ’)> c/8}
(3.18)

<=-(s-h/2)

for large n. Finally, (3.16) to (3.18) yield (N can depend on p and K)

P{d(x",) > c} <-_ (k + N) exp- K/)t, + N exp-(s- h/2)/,,,

which is less than exp-(s- h)/A, for large enough n and (3.6) is proved. Q.E.D.
The KW case.

2 (T)THEOREM 3.3. Let a./c. $ 0 and ,." Iri+- ril - 0 and assume (A1), (A5) and
(A6w). Let {.} be i.i.d, and either bounded or Gaussian. Then (3.7) holds for the KW
case for the general form b (x, cs ). Assume

(3.19) ,+=A,+CO,,

where {0,} are i.i.d, mean zero and either bounded or Gaussian, and the roots ofA are
inside the unit circle. Let b(x, ) bo(x), where bo(" also has a Lipshitz continuous and
bounded gradient. Then (3.7) holds for the KW case.

The proof is the same as that of Theorem 3.2 with the exception that the "exponen-
tial estimates" of Appendix 2 for the KW case are used.

Appendix 1.

Proof of (3.11) and (3.12). The proof closely follows that of Freidlin [5, Lemma
3.1]. Let 6ai, i>=O, be vectors in R r. Define the piecewise constant function (.) by

N--1a(t)=Yk= 6ak for t[iA, iA+A), where N= T/A integer. Let q(.) be constant on
each [iA, i/X+A) interval. Define X+a’"=(x+’"(i/x), i= 1,..., N). Define

N--1

tx,n(AI.1) h,+(6Co, ,3cu_) A, log E exp
i=0

1This holds if r. $ 0, the "typical" case.
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Recall that

x6’"(iA+ A) x6(t,,.(,a+a)
Rewrite the sum in (AI.1) in the more convenient form (A1.2) in order to bring (AI.1)
closer to (2.3) in appearance.

(A1.2)
6a’i (x6",,(jA+ A)-x

i=o =o
6’,,(jA)) + x]

N-1 mn(iA+A)-I
a’(O)x + E a’( iA) E

i=0 j=mn(iA)
aj[b((iA))+ b(6(iA), )].

We can write

lim h*,(6ao,. 6aN_,) H(a(s), d(s), s) ds+ a’(O)x

=- h6(6ao, 6arv-1).

The function h 6 is continuously differentiable and convex, since H(., p, s) is. Let
16(flo, ,/3_) denote the Legendre transform of h6:

We also have

(A1.3) 16(flo, ", flrq-) L(I(s), b(s), s) ds $6( T, fl),

where we define/(t) [/3+- fl]/A in [iA, iA + A) and/3(0) x. The proof is the same
as that of [5, (3.1)], with a slight modification for the s-dependence.

By Gartner’s theorem [11, Lemmas 1 and 2], for any c>0, h >0 vector B
(rio,’’’,/3N_1),/3i R’, there is an no < c such that for n => no

(A1.4a) P{d(X*A’,,, B) < c} >- exp- I I6 (flo,

(A1.4b) P{d(Xa",,, a+,)> c} <- exp- [s-]/h,,,
where a*. {B: 16(/3o, .,/3v_1) -< s} and d(.,. sup norm distance. For each
C[0, T], define 4A(" to be the piecewise linear interpolation (interval A) of the vector

CA= ((0), , b(NA-A)). By Appendix 2, Lemma A.2, for each c>0 and K <c,
there are po > 0, Ao > 0 and no < c such that p <- po, A =< Ao and n _-> no imply

P{d(x 6’,,, 6)<C}>--P{d(XA’,,, ) < p}

(A1.5) -P{ max max [x6",,(t)-x6""(iA)l> p}
i<=N-1 iA<=t<:iA+A

> P{d(Xa’ Ca) <p}-exp-

In fact, if {.} is bounded, then the exp-K/I,, term can be deleted.
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If L(/3, 0(" )," were constant on each [iA, iA / A) interval, then the convexity of
L(., 0, s) and Jensen’s inequality yields

N-1 f iA+A

(A1.6) <= 2 L((b(s), 0(iA), iA) ds
o diA

L(p(s), O(s), s) ds=-S+(T, ok).

But a simple approximation argument gives the same result, since L([3, x,s)=
ho(s)Lo(fl- b(x), x) and Lo(’, x) is convex. Thus, by (A1.3), (A1.4a) and (A1.6), for
given c > 0 and h > 0, and for large n and small A,

(AI.5) exp -[ Ior>- L((s), g/(s),s) ds+ -(exp- K/A,)

(Al.7)

=> exp-[S+(T, b) +]/A,- (exp- K/A,)

which is equivalent to (3.11) for large enough K.
In order to derive (3.12), interpret inequality (A1.4b) as follows: Let a’"( denote

the piecewise linear interpolation of {x+’"(iA), 1 <_-i=< N}. Then, by (A1.3),

.s {b(. Cx[0, T]:

4(" piecewise linear (on the [iA, iA+ A) intervals), S(T, b) <- s}.

Thus ,s .
By,c and the estimate used for the P(max max) term in the middle term

of (A1.5), inequality (A1.4b) implies that for large n

P{d(x’",)> 2c} _-< P{d(a6’",)> c} + exp-

(Al.8) <- P{d(f[+a"", (I),) > c} +exp-

<-exp- [s-]/A, +exp- K/A,

which is equivalent to (3.12), since K can be chosen to be arbitrarily large by making
A small and n large.

Appendix 2.
RM case. (A1) and (A3RM) are assumed.
If {so,} is bounded, then the various estimates of the form exp- K/A, required in

3 are trivially satisfied, so we need only work with the Gaussian case, where so,
Yj g,_jOj, {0j} i.i.d., EO =0 and ], nlg, < oo, g, =0 for n < 0 and A, a,. In fact, we
do a slightly more general case where there is a k < oo such that

(A2.1) E exp la’0l <= exp
Define B Z[g[, B E= [g[ and/ Zi (i + 1)[g] Zi:--o Bi"

LMMA A.1. Let [aj- [/h, <= eforj[n, m,(T)], andlet T>= to> t>-O. Thenthere
is a constant k such that (for c k( 2- t) kA.B >- O)

lm.()-1 } 1 (C-kl(t2-tl)-klA.)2

(A2.2) P I(a- a)&[->_ c _-< exp---
.j=mn(t,) A 4e2[(t2-- tl)-t-
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Proof We need only do the case of scalar valued 0. For any A > 0, the exponential
Chebyshev’s inequality and (A2.1) and the estimate A,[mn(t2)-m,(q)]=O(t2-t)
yield the existence of a k < c such that for any A > 0

_--< exp [-Ac + k,(( t2 t,) + A,,/) (eA + e2A 2)]/

Minimizing the r.h.s, with respect to A > 0 yields (A2.2). Q.E.D.
LEMMA A.2. Let sup, supjt,,,,,(T)I ]fij/a,I < c. Then for each K <, and c > O,

there are no < c and Ao > 0 such that n >= no and A <= Ao imply that

mn(iA+A)_i
(A2.3) P max

iT/A mn(iA)
jljl c} <- exp- K/A..

Proof By Lemma A.1, there is a constant k2 such that for large n and small
enough A,

T k2(A2.3) =<S exp-

which yields the result. Q.E.D.
Note that Lemma A.2 implies that for each K,

P{max max d(x"( iA), x"( iA + t)) >= c} <-- exp- K/A.
iA<= T

for large nmand similarly for the x*’n (.). This is what gives us the "almost compactness"
of Rn--used in the proof of Theorem 3.1.

LEMMA A.3. Define

Y+, x +
j=n

+,=x+ E a[5()+bo()]+p,,
j=n

where sup []p]+lcrl]_-<fi. Then for each c>O and K <o, there is a po>O such that
fi <-- Po implies that

supP{n<=i<m.(T)
Proof Define 6 [Y- Y[. There is a ko < m such that
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By Gronwall’s inequality

mn(T)-I
(A2.4) 6i--< suP IP,- o’1 exp ko aj(1 / I1).

By choosing the c and e suitably in Lemma A.1 (e 1, j =0), we obtain that there
are constants k such that for any large enough M and for large n,

mn(T)-I
P y al1 M} <_ exp- k2[M- k,]2/

Choosing M and po appropriately yields the result. Q.E.D.
LEMMA A.4. Equations (3.15) and (3.17) hold.
Proof The proofs for the two cases are quite similar and we only do (3.17). We

need to show that if d(x", oh) and d(q, ) are small then so is d(x’", ), modulo a
set of sufficiently small probability. Writing and q for (tj-t,) and q(tj-t,),
respectively, we have

(A2.5)

We can write

xT+, x + y a[b(X;.) + bo(X;)],
j=n

j=n

,"+, x +E aj[b(j )+ bo(qbj )j]+ p,,

i+l-- X"- a[(. )+ bo(. )j]+o’j,

where

O, =[,+,- X,+,] + E aj[b(X;)-
j=n

+ 2 aj[bo(X.)- bo(f)]j,
j=n

i E a[b($;)-- b(;)]+ 2 aj[bo(;)- bo(j )].
j=n j=n

By Lemma A.3, if d(x", ) and d(, $) are small enough, then the sup [Ipi[+ll] is
small, except on a set whose probability is bounded by exp-K/A, for large n. This
yields (3.17). Q.E.D.
e KW case. We first prove the estimates needed for the first paa of Theorem

3.3, and then do the more general case.
LzA A.5. Assume (A1), (A5) and (A6nw), but let {,} be i.i.d, and either

bounded or Gaussian. Let ( a)/aj[ e and ( c)/cl e. enfor each c > 0 and
K <, there are eo > O, no < and o> 0 such thatfor e Co, n no and o we have

(A2.6) P{ max max
i<=T/A k<mn(iA+A)

-: b(Xj j)
mn(iA) Cj

>= c} <=exp- K/h,..

Similarly for d/; replacing
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Proof It is sufficient to prove (A2.6) without the maxi__<T/a and for the scalar case
where b(x, sc) so. The sum j/ is a martingale. Hence for h > 0

P max ->ck<mn(iA+A) mn(iA)

P{ max (exp n k-1 ) }k<mn(i+) mn(i)

m.(iA+A)-I
(exp Ac/A.)E exp

mn(iA+A)-I
(exp- hc/h,) exp X H(A/A,),

mn(i&)

where H2(a) log E exp a. Expanding H2 as Ho was expanded in Theorem 2.6, noting
that the leading term in the expansion is

mn(i+)--I
!H,(o) X xalxc."-

m.(iA)

and choosing A and A appropriately (then repeating for - replacing ) yields
(A2.6). Q.e.D.

We omit the proof of the following lemma.
LMMA A.6. Assume (A1), (A6) and let b(. be bounded and Lipschitz continuous.

Let {,} be i.i.d, and either ounded or Gaussian. In the Gaussian case, let bo(x, )
and in the bounded case, let bo(’, ) e ounded and uniformly Lipschitz continuous.
en (3.15) and (3.17) hold for the KW case.

We now turn to the more general KW case, under the conditions associated with
(3.19). We need to show that (and also for 6 replacing X) for each c > 0 and K <,
there is an no such that for n no (recall that r a/c)

(A2.7) P max max rbo(X) c Nexp-K/.
iNT k<mn(i&+

It is enough to prove it without the max ia=<r term. Also, we need the KW analogue
of Lemma A.4. Following the calculation in Lemma A.4, we have

(A2.8)

where

Pi--[in+l-Xin+l] + Z aj[b(X;)-b(dpj )]+ Z )[bo(Xj )-bo(dpj )],

o’i Z a[b(q9 )- b(b)]+ Z rj[bo(q;)- bo(b)]).

Since ,.(t,) rj--> as n--> if t2> tl, we need to be more careful in the KW case.
LEMMA A.7. Under the conditions of Theorem 3.3, (3.15), (3.17) and (A2.7) hold

for the KW case.

Proof. Again, only the KW analogue of the case (3.17) dealt with in Lemma A.4
will be dealt with. The proof of (A2.7) is similar. The proof for (3.15) is a little harder
but uses essentially the same estimates and we comment on it briefly after the proof.
Let vj denote either bo(X.)-bo(dp) or bo(q,7)- bo(4,).
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Part 1. Define

zi Y rjvjj Y rjvj A I)-l(A-

Absorbing (A-I)- into vj, we have

(A2.9) z, rjvj j+ j rj)jCOj.

By a partial summation, the first sum in (A2.9) is

(A2.10) r,v,s,+,- r,v,, + Z (rj+,vj+,-

We now get probability estimates for the terms in (A2.9) and (A2.10). To obtain
(3.17), we will need to show that if d(x’, ) and d(&, q,) are small, then (modulo a
set of appropriately small probability) d(x+’", oh) is small. Let z, denote the first escape
time of x" from the p-neighborhood of . Then we need only show that if d(, q,) is
small, so is2 (modulo the appropriate set of small probability) d(xq""( f-) z,), &(. f3 r,)).

Let/ 1 if d(XT,, &)< p for k<_-j. and set/ =0 otherwise. Since 0j is mean zero
and independent of the bounded vj, Y’, rjvjlsCO Z7 is a martingale. Then (doing the
scalar case and dropping C)

P{ sup Z>=c}<=(exp-hc/h.)D.,
imn( T)

where (write m rn. (T) 1)

D, E exp -, rjvjOjlj E exp rjvjOjI, exp H2 r,,v,,Ir,

Expanding Hz(a) as Ho(a, x) was expanded in Theorem 2.6, bounding [v,,I,,, (by a

quantity which goes to zero as p--> 0 and d(b, 0)= P --> 0) and iterating, choosing A
appropriately, and repeating for -0j replacing 0j yields that for each c > 0 and K <
there are Po > 0 and plO > 0 such that for p -<_ po, pl =< po,

(A2.11) P{ sup IZTl>-c}<=exp-K/A,
n<=i<=mn(T)

for large n.
Part 2. We now show that for each c > 0 and K <,

(A2.12) P{ sup Iril>=c}<=exp-K/A.
nimn(T)

for larg.e n. (Since {v} is bounded, we need not include it in (A2.12).) We have

+1 j=_ Q_jOj where IQ, I-0 geometrically as n- oe. Thus, it is sufficient to prove
(A2.12) for a scalar {:, 0i} case, where +1 _f_j0j and Ill < d, d < 1, and some
small cl replaces c. Now,

P{ri >= ci} <= (exp- Acl/A.)E exp ri fi-jOjA/An

(exp- Acl/A,,) exp H2(rifi-jA/An).

Expand 2j H2 and note that the leading term in the expansion is
1

rg_jA A, _-< (constant)aA 2/A.2EH2,,(0 2 2/ 2

Define aClb=min (a, b). Thus (.Nr,) is the function 4’, stopped at zn" &(sVlr,)=(s) for
and =(sflz) for s>-z.
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Choosing h appropriately yields

(A2.13) P{riji >- Cl} -< exp- 2K/

for large n. The (scalar case) 1.h.s. of (A2.12) is thus
which (together with a similar estimate for - replacing and the use of[m.(T) n]
O(1/a.)) yields (A2.12) for large n.

Part 3. We have

(r+,vj+,- rive) (rj+, t))vj +(v+,-vj)ri+,.

For v [bo(X’)- bo(b;)], (v+, v)= O(a + rl El)+ [bo(6%,)- bo(b)]. Thus we need
exponential estimates for the maxima of the sums

(A2.14) , Irj+,-rj[[jl, rj+l(bo(j%l)-bo())j rjrj+ll] 2.
j=n j=n j=n

We now do the third sum, replacing r+ by r and using (w.l.o.g.) the scalar model
used in Pa 2.

Since r} O(a,A,) and a,[m,( T)- n] is bounded and {} stationary, it is sucient
to show that for each c > 0 and K <,
(A2.15) P 16 exp-K/h.

for large N and n. A straightforward calculation yields

N 2IN-1 -1 ]+
(1-d =o =-

Thus by the usual exponential Chebychev’s inequality, there is a constant k such that
the 1.h.s. of (A2.15) is bounded above by

_Ic exp 0 +exp
I.] =o =-

In the bounded noise case exp kO/N exp k1 /N for some constant k, and in the
Gaussian case, for 2(O)kI/N<l, exp kO/NN(1-2kEO/N)-1. In either
case for large N and n, we can choose to obtain (A2.15).

Appropriate exponential estimates of all the other terms can also be obtained by
similar methods, and we omit the details. We note only that the condition(r- r+-
r[ 0 is used to handle the first term of (A2.14). Upon assembling the estimates we
obtain that for any K < and c > 0 and small enough p and d (, 0)

P{ sup Ir-X’lIec}exp-K/a
nNiNmn( T)

for large n, which implies (3.17) for the KW case. Q.E.D.
Only a remark will be made on obtaining (3.15). For simplicity, set b(. 0. Write

X’ X’ + rbo(X’) + ei+1

X X2 + rbo(X), e r[bo(0)- bo(X’)],

B,(i) ds[bo(X’ + s(X’"-



696 PAUL DUPUIS AND HAROLD J. KUSHNER

Then

k k

A,+I= E [I (I+rjBj())e
i=n j=i+l

I-I (I + Bgj()) (I + Bj())
i=n j=n

By the methods of Lemma A.?, we can show that for any K < and c > O, there is
an M< such that

P sup (I+rBo()) M Nexp-K/,
nNkNm(T)

P{ sup lrBg()l> c}Nexp-K/.
nNkNmn( T)

Using these estimates, an argument similar to that of Lemma A.7 yields (3.15a).
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STOCHASTIC OPTIMIZATION PROBLEMS WITH INCOMPLETE
INFORMATION ON DISTRIBUTION FUNCTIONS*

YU. ERMOLIEV?, A. GAIVORONSKI? AND C. NEDEVA*

Abstract. The main purpose of this paper is to discuss numerical optimization procedures, based on
duality theory, for stochastic extremal problems in which the distribution function is only partially known.
We formulate such problems as minimax problems in which the "inner" problem involves optimization
with respect to probability measures. The latter problem is solved using generalized linear programming
techniques. Then we state the dual problem to the initial stochastic optimization problem. Numerical

procedures that avoid the difficulties associated with solving the "inner" problem are proposed.

Key words, stochastic optimization, moment problem, duality theory, minimax problems

1. Introduction. A conventional stochastic programming problem may be formu-
lated with some generality as minimization of the function

(1) r(x) EyV(X, y): { v(x, y) dH(y)
Y

subject to

(2) x e X c R n,
where y e Y R"* is a vector of random parameters, H(y) is a given distribution
function and v(x,.) is a random function possessing all the properties necessary for
expression (1) to be meaningful [8].

In practice, we often do not have full information on H(y); we sometimes only
have some of its characteristics, in particular bounds for the mean value or other
moments. Such information can often be written in terms of constraints

(3) Qk(H)=Eyqk(Y)=I qk(y) dH(y)<--O’ k= l,

(4) f dH(y)= 1,
Y

where the q’(y), k= 1, l, are known functions. We could, for example, have the
following constraints on joint moments:

where C,,,2,...,,, c,,,2,...,, are given constants.
Consider the following problem: find a vector x which minimizes

(6) T(x) max I v(x, y) dH(y),
HK y

subject to constraints (2), where K is the set of functions H satisfying constraints (3)
and (4).

* Received by the editors December 1, 1983, and in revised form August 1, 1984.

" International Institute for Applied Systems Analysis, Laxenburg, Austria, and Glushkov Institute of
Cybernetics, Kiev, USSR., Institute of Mathematics, Bulgarian Academy of Sciences, Sophia, Bulgaria.
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Special cases of this problem have been studied in [4], [5], [24]. Under certain
assumptions concerning the family K and the function v(. ), the solution of the "inner"
problem has a simple analytical form and hence (6) is reduced to a conventional
nonlinear programming problem. The main purpose ofthis paper is to discuss numerical
methods for the solution of problem (6) in the more general case. Sections 2, 3, and
4 deal with the reduction ofthis problem to minimax-type problems without randomized
strategies and describe numerical methods based on some of the same ideas as
generalized linear programming. A quite general method for solving the resulting
minimax-type problems, in which the inner problem of maximization is not concave,
is considered in 5.

2. Optimization with respect to distribution functions. The possible methods of
minimizing T(x) depend on solution procedures for the following "inner" maximiz-
ation problem: find a distribution function H that maximizes

(7) QO(H EqO(y)_. f qO(y) dH(y)
Y

subject to

(8) Qk(H) Eq’(y) | q(y) dH(y)<-O, k= 1, l,
.1Y

(9) f till(y)= ,
./Y

where q, k 0, l, are given functions R" R1. This is a generalization of the known
moments problem (see, for instance, [15], [16], [17]). It can also be regarded as a
generalization of the nonlinear programming problem

max {qO(y). q’(y)<=O, y Y, k= 1, l}

to an optimization problem involving randomized strategies [7], [12], [14].
It appears possible to solve problem (7)-(9) by means of a modification of the

revised simplex method [7], [13]. This modification is based on Krein’s "geometrical
approach" to the theory of moments [8], [15], [17]. Consider the set

Z {z" z (qO(y), ql(y),.. ", q(y)),y y}

and suppose that Z is compact. This will be true, for instance, if Y is compact and
functions q, k O, l, are continuous. Consider also the convex hull of Z"

coZ= z’z= Y p,z’,z Z, p,=l,p,>=O,t=l,N
t=l r=l

where N is an arbitrary finite number. Then general results from convex analysis lead
to

(10) coZ={O=(O(H),Ol(H),...,Ol(H),H>=O, Iy dH 1}.
Therefore problem (7)-(9) is equivalent to maximizing Zo subject to

z=(zo, zl,...,zt)coZ, zk<=0, k=l,l.

According to the Caratheodory theorem, each point on the boundary of co Z can be
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represented as a convex combination of at most I+ 1 points from Z"

co/= Z" Zk E qk(y)pj, k=O, l, Pj >-0, E Pj=I,YY
j=l j=l

Thus problem (7)-(9) is equivalent to the following generalized linear programming
problem [2]" lind points 3/e Y, j 1, t, -<_ + 1 and real numbers p, j 1, t, such that

(11) qO()/)p max
j=l

subject to

(12) qk(yi)p <= O, k 1, l,
j=l

(13) pj=l, p>-_O, j=l,t.
j=l

Consider arbitrary points ,j 1, l+ 1 (setting l+ 1), and for the fixed set
{)5)5, ., )5+} find a solution/7 (/5, p,. .,/5/) of problem (11)-(13) with respect
to p. Assume that /5 exists and that (i, i,..., /1) are the corresponding dual
variables, i.e., solve the problem

(14)

subject to

min UI/

(15) qO(ffl)_ ukqk(f,j)_Ul+l<=O, j=l,/+l,
k=l

(16) IgkO k= l,l.

Now let y be an arbitrary point of Y. Consider the following augmented problem of
maximization with respect to (pl, P2, ",P/I, P)" maximize

1+1

(18) E qk(fri)P+qk(y)P <=0, k= 1, l,
j----1

/+1

(19) Y pj +p 1.
j=l

It is clear that if there exists a point y* such that

qO(y,)_ kqk(y,) /,1+1 > 0
k=l

then the solution / could be improved by dropping one of the columns
(qO(ffi), ql(),..., q(,ffi), 1),j= 1, l+ 1, from the basis and replacing it bythe column
(qO(y.), q(y.),..., q(y.), 1), following the revised simplex method. Point y* could
be defined as

(20) y*=argmax [qO(,)_ iq(y)].
yY k=l

subject to

1+1

(17) E qO(fia)p + qO(y)p
j=l
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Then a new solution p* of (11)-(13) with fixed y= y* can be determined in the same
way as p-, together with the dual variables u*. This method gives us a conceptual
framework for solving not only (6) but also some more general classes of problems.

If y(x) (yl(x), y2(x), , y+l(x)), p(x) (pl(x), p2(x), , pl+l(x)) is a solu-
tion of the inner optimization problem for fixed x, then the function (6) may be
nonditterentiable with subgradient

1+1

r(x) E v(x,/(x)lp(x),
j=l

where vx is a subgradient of function v(., y). Nonditterentiable optimization techniques
could therefore be used to minimize T(x). The main difficulty of such an approach
would be to obtain a solution of (20) and exact values of y(x), p(x) at each current
point x for iterations s =0, 1,.... This last difficulty can sometimes be avoided by
dealing with approximate solutions rather than precise values y(x), p(x), and using
e-subgradient methods (see [20], [21]). Generalized linear programming methods which
do not require exact solutions of subproblem (20) are studied in 4.

3. Duality relations. The duality relations for problem (7)-(9) enable us to find
a more general approach to the solution of problem (6). Consider the following problem

(21)

where

min max [qO(y)_ ukqk(y)],
U y Y k=l

U+ ={u" u (ul, u2," u), ui >-0, i= 1, m}.

This problem can be regarded as dual to (7)-(9) or (11)-(13), but to explain this we
must introduce some more definitions.

In what follows we shall use the same letter, say H, for both the distribution
function and the underlying probabilistic measure, where this will not cause confusion.
We shall denote by Y/(H) the collection of all closed subsets A of Y such that
H(A) 1, and by supp H the support set of distribution H, i.e.,

Set

supp H f) A.
Aa Y+ H)

U*= {u*" u* U+, (u*)= min (u)},
U

Y(u)= {y" y Y, tP(u)=q(Y)-
k=l

ukqk(y)}"
Then the following generalization of the results given in [10] holds.

THEOREM 1. Assume that
1. Y is compact and qk(y), k =0, l, are continuous;
2. 0 int co Z.

Then
1. Solutions to both problem (7)-(9) and problem (21) exist, and the optimal values

of the objective functions of both problems are equal.
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2. For any solution H* ofproblem (7)-(9) there exists a u* U* such that

supp H* Y(u*).

In other words, the duality gap vanishes in nonlinear programs with randomized
strategies. A proof of this theorem can be derived from general duality results [18],
[21] and the theory of moments [15]. The proof given below is close to the ideas
expressed in [21] and illustrates certain connections with results from conventional
nonlinear programming.

Proof. From (10), problem (7)-(9) is equivalent to

(22) max {Zo: z=(zl, z2,’", z)co Z, Zk <--O, k= 1, 1},

where Z {z" z (qO(y), ql(y),..., ql(y)), y y}. From assumption 1 of Theorem 1,
co Z is a convex compact set and therefore a solution z* (Zo*, z*,. , z) to problem
(22) exists. Let L(u, z) be a Lagrange function for (22)"

From assumption 2,

L( u, z)= Zo- E uz.
k=l

Zo* max min L(u, z) min max L(u, z).
zcoZ U U zcoZ

Note that any other regularity assumption which secures the previous equality can be
used instead of assumption 2. According to (10), there exists for any z co Z a
distribution H such that

Zk= I qk(y) dH(y)’
Y Y

dH(y) 1, k O, I.

We therefore have

y k=l

and

Obviously

max L(u,z)=max {[,(u,H)lH>=O, I dH(y)= l}.zcoZ Y

max {Iv [qO(y)_
g=l

ugqg(Y)] dH(y)IH>-O’ Iv dH(y)= 1}
yY k=l

which proves the first part of the theorem.
Under the assumptions of the theorem we know that for any solution (Zo*,. ., z*)

there exists a u U* such that
Zo* max L(u*, z).

zcoZ
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Thus, for any optimal distribution H* we have

qO(y) dH*(y) max qO(y)_ E u*kqk(y) dH(y)IH >- O, all(y) 1
y y k=l Y

=max qO(y)_ 2 u*qk(y)
yY k=l

which proves the second part of the theorem.
Remark 1. From the duality theorem above we have

max v(x, y) dH(y)= min max V(x, y)--
HK uU y Y k=l

for each fixed x e X, where v(x,.) is a continuous function. Problem (6) can then be
reduced to a minimax-type problem as follows" minimize the function

/(x, u) max v(x, y) 2 uq(Y)
yY k=l

with respect to x e X, u 0.
Remark 2. Theorem 1 can be used to characterize optimal distributions for a

variety of nonlinear optimization problems with distribution functions. The approach
is, first, to state necessary optimality conditions through linearization and then to apply
T,heorem 1. This is illustrated in the following example.

Consider the optimization problem

(7a) max g(H),

(8a) g’(H) <_- 0,

(9a) f dn(y)= 1,
Y

where gi(H), i= 1, m, are nonlinear functionals depending on distribution functions
H with support set Y.

THEOREM la. Assume that the following statements are true:

1. Set Y is a compact subset of Euclidean space R".
2. For any distibutions H1, H2 such that supp H1

_
Y, supp H2 Y we have

g’(H1 + a(H2- HI)) gi(H1)+ o fy q’(y, HI) d(H2- H1)-F e(c, HI, H2),

where 1, m, ce 6[0, 1] and e(cr, HI, Hz)/a -0 as t 0.
3. Functions q(y, H) are continuous in y for every H such that supp H Y; for

any H1, H2 such that supp H1 Y, supp H2 Y we have

[qi(y’ H)-q’(y’ H)I<-I IY A,(y, H1, H) d(H1-H)I,

where I,x(y, H1, H2)I <-- K1 < c for some K1 which does not depend on H1, H2.
4. Functions gi(H), 1, m, are convex, i.e.,

g’(aiH1 + 02H2) alg’(H1) + o2gi(H2),

O 0, 02 0, O + a2 1.

5. There exists an I7I such that supp I Y and gi(fi) < 0 for 1, m.



PROBLEMS WITH PARTLY KNOWN DISTRIBUTION FUNCTIONS 703

Then"
1. A solution ofproblem (7a)-(9a) exists.
2. For any such solution H* we have

I qO(y, H*) q(u, H*),dH* min
y U

where

q:,(u,H*)=max [qo(y, H*)- _, uq(y, H*)] + uc,
ye Y ie

Io {i" gi(g*)=0}, ci I q’(y’ g*) dg*(y).
Y

3. If H* is a solution of (7a)-(9a), then for some u* U+ we have supp H*_

Y( u*, H*), where
q(u*, H*)= min q(u, H*),

uU

Y(u, H)=(y" y Y,p(u, H)=q(y,H)- Y uiqi(y,H)+ UiCi).
i i

Thus, the main assumptions of this theorem are the existence, continuity (in some
sense) and boundedness of the directional derivatives of functions gi(H).

The following theorem is analogous to known results in linear programming and
provides a useful stopping rule for methods of the type described in 2 (see also 4).

THEOREM 2. (optimality condition). Let the assumptions of Theorem 1 hold and
let be a solution ofproblem (11)-(13) forfixed (1, 2, fit), fie R t’. Then the
pair fi, is an optimal solution ofproblem (1 1)-(13) if and only iffor given fi there exists
a solution (til, ti2,.’’, ill+l) ofproblem (14)-(16) such that

qO(y)_ Z kqk(y)--l+, <-0 forally Y.
k=l

Proof.
1. Suppose that 37,/3 is an optimal solution of problem (11)-(13), that

(U*l,U*2,’",U*l+l) is a solution of problem (14)-(16) for given 37, and that
(tT, t72, , t) is a solution of the problem (21). Take

l+l-minmax[q(y)- ukqk(y)]=max[q(Y)- kqk(y)]
U y Y k---1 ye Y k=l

We shall show that a, t72,. , a/ is a solution of problem (14)-(16). Consider the
two functions

O(u) =max qO(y)_ y uq(y)
yY k=l

O(u)= max qO()_ uq()
lNj--t k-=l

According to Theorem 1

q()/3j= min $(u).
j=l U
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Since problem (11)-(13) is dual to problem (14)-(16) for given )7, then

q(3)/j= min I]/I(U).
j=l uU

Therefore

(23)

where

0(tT)-- min p(u)- min I]/I(U II(U* U*/+1
U U

Since Y, j= 1, t, then I]/I(U)<-- I]/(U) for u U+. In particular, Ol(t)<= 0(fi). But
(23) implies

q,l(t) -> min qq(u)
U

and this gives O(tT)= (tT)= (u*). Hence (tT1, 2,""", al+) is a solution of problem
(14)-(16).

2. Suppose now that for given 97 there exists a solution (ill, 2, ", 1+1) ofproblem
(14)-(16) such that

qO(y) kqk(y) _/!+1 0, y Y.
k=l

From the duality between problems (11)-(13) and (14)-(16) we have

q(jTt)/j --> O(t),
j=l

where (fi,/:,. , ,) is a solution of problem (11)-(13) for given 37. On the other
hand, the duality between problems (21) and (11)-(13) leads to the inequality

qO()/)p <__ q(fi),
j=l

for any {yl, y,..., y,}, p satisfying (12)-(13). In other words,

qO(f/)>__ qO(y)p
j=l j=l

and this completes the proof.
The next theorem provides a means of deriving a solution to the initial problem

(7)-(9) from a solution of problem (21), and is complementary to Theorem 1.
THEOREM 3. Assume that the assumptions of Theorem 1 are satisfied and that

q(O) =min {p(u)[u e U+}. Let 35=(y1, , ’), where e Rt and i e g(), and
let be a solution ofproblem (11)-(13) for given . Suppose also that there is a solution
p* to the inequalities (12)-(13) for/= such that

(24) q()P7 N O, k e Io,
j=l

(25) q()P7 O, k e L,
j=l

where I+ { k[ a > 0}, Io { k] O 0}.
en the pair , is an optimal solution ofproblem (11)-(13).
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Proof. The vectors

q() (_q,(fd), _q2()Td),... _ql(fd)), j- 1,---
are subgradients of the convex function

Ol(u)=max [qO(fl)_ tlkqk(f/,j)]
l<-j<=t k=

at a point . Therefore conditions (24)-(25) are necessary and sufficient for point ti

to be an optimal solution of the problem

min {,(u)lu U+}.

From the definition of the set Y(fi) we obtain ()= q()--Yk__ kqk(y/), j= 1,
and therefore (u)=min {,(u)[u U+} which gives

(26) min {Ol(U)[U U+} min {O(u)lu U+}.

The minimization of ,(u), u U+, is equivalent to problem (14)-(16). Hence
t (tl, fi2,"" ", tt) together with /+, l(t) give a solution of problem (14)-(16).
Since problem (14)-(16) is dual to problem (11)-(13), then problem (11)-(13) has a
solution, say/5 (/5,,/52," ",/5), and

,+,- q()/3.
j--1

This together with (26) yields

qO()/ min {(u)[u U/},
j-----1

and this completes the proof.

4. Algorithms. Theorems 2 and 3 justify a dual approach to problem (7)-(9) which
may involve simultaneous approximation of both primal and dual variables subject to
(24)-(25). In this section we consider several versions of generalized-linear-program-
ming-based method discussed briefly in 2. In all cases the current estimate of optimal
solution satisfies (24)-(25) at each iteration. The convergence of such algorithms has
been investigated in a number of papers [2], [23], under the assumption that the initial
column entries for all previous iterations of subproblem (24) and the exact solutions
at each iteration are stored in the memory. There are various ways of avoiding this
expansion of the memory, mainly through selective deletion of these columns [1], [6],
[19], [22]. The aim of this section is to discuss a way of avoiding not only the expansion
of the memory, but also the need to have a precise solution of (20). The last is important
in connection with initial problem (6), as mentioned in 2.

Description of Algorithm 1. Fix points yO,,, yO.2,... ,yO,t+, and solve problem
(11)-(13) with respect to p for y/= yOj, j 1, + 1 and 14-1. Suppose that a solution
pO_ (pO, p2O,..., p+,) to this problem exists. Let u= (Ul, u,..., u+,) be a solution
of the dual problem (14)-(16) with respect to u. The vector u satisfies the following
constraints for y {yO.,, yO,2,.. ", yO,+,}.

(27) qO(y) uOkqk(y) U+, <= 0, U_--> 0, k 1-.
k=l

If u satisfies condition (27) for all y Y, then the pair {yO.1, to.2,..., yO,+}, pO is a
solution of the original problem (11)-(13). If this is not the case, consider a new point
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yO such that

A(yO, uo) qO(yO)_ Z ukqk(y)_ U+I > 0
k=l

and

qO(yO)_ uOqk(yO)>_max[qO(y)_ uOkqk(y)]_eO
k=l yY k=l

for some eo > 0.
Denote by pl_ (pll, p,..., P+I) a solution of the augmented problem (17)-(19)

with respect to p for fixed yO/, Y yO. We shall use y1,1, yl,2,..., yl,l+l to denote
those points yO,1,..., yO,l+l, yO that correspond to the basic variables of solution pl.

Thus, the first step of the algorithm is terminated and we pass to the next step"
determination of u 1, yl, etc. In general, after the sth iteration we have points
yS,1, yS,2,. yS,l+l, a solution pS= (p, p,. P+I) and the corresponding solution
uS=(u, u,..., U/l) to the dual problem (14)-(16). For an es>0, find yS such that

A(yS, u s) qO(yS)_ uqk(ys)_ USl+l > 0
k-1

and

k=l y Y k=l

If we do not obtain A(ys, u s) > 0 for decreasing values of es we arrive at an optimal
solution; otherwise we have to solve the augmented problem (17)-(19) for f =ysd,

Denote by yS+l,1, yS+l,2, ys+l,l+l those points from {yS,1, yS,2,... yS,+l} yO
that correspond to the basic variables of the solution pS+l of the problem (17)-(19).
The pair {yS+l,1, yS+l,2,
original problem.

Define

and

,yS+l,l+l}, pS+l is the new approximate solution to the

=0}, 11--I={k:Uk {k:uk>0}

As (e" e (el, e2,""", el), [lell-- 1, ek =>0for k I and arbitrary ek for k Ils}.

As is actually a set of feasible directions for set U/ at point u s. Let

Ys =max min qk(ysa)ek.
eA j:p>0 k=l

Note that %<=0 if the solution of the problem (17)-(19) exists because

co {(ql(ySd), q2(ySd),..., qt(yS,d)), ,qj: p.j > 0}

is a set of subgradients of the function

max qO(y)_ uq(y)
j:p>0 k=l

at point u s, and this function has a minimum at u s.
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In order to prove that this method is convergent we require, broadly speaking,
that Ys < 0 and tends to zero only as we approach the optimal solution.

Consider the functions

qS(u)= max [qO(ySj)_ ukqk(ySj)].
1NjNI+I k=l

THEOREM 4. Let the conditions ofTheorem 1 be satisfied, and thefollowing additional
conditions hold:

1. There exists a nondecreasing function ’(c), a [0, c), -(0) 0, ’(a) > 0 for
ce > 0, and

(28) Ys --< -’(4’(us) 0s (uS))

2. es>0, esOfor
Then any convergent subsequence ofsequence {yS,1, yS,2, yS,l+l}, pS converges to

a solution ofproblem (7)-(9).
Note that it is not necessary to know es exactly; all we need is
Proof
1. First let us prove that the sequence {us} is bounded. Suppose, arguing by

contradiction, that there exists a subsequence {u S,} such that IluSrll 00 as r-oo.
Assumption 2 of Theorem 1 implies that ff(uSr)c and therefore that
qs.(us.), since O,(us,)<_-minuv+ (u). Hence, there exist and 6>0 such that
for r> f,

Now let us fix an arbitrary point U/ and estimate (ti). We obtain

6(a) >- qrr(fi) >- d/Sr(U s’) sup (g, fi U’"),
hGs,

where Gs is a set of subgradients of function s at point u s’. The definition of 0
implies that

G
_
co {_qa(yS,,), _q2(yS,,),.. ", _q,(yS,,), Vi: p> 0} Ds

and therefore (28) leads to

(a) >_-- Sr(uS,) + sup (g, a u sr)
g DSr

(’ )>-_q,(u)+lla-ull min max ekqk(y’)
eeAsr i:pr>O k=l

Ila- max min 2 ekqk(ys’i)
eeAsr i:pr>O k=l

is last inequality yields O(a)om if Ilu  ll and therefore sequence {u} is
bounded.

2. We shall now estimate the evolution of the quantity w 0(u’), where

us arg min O (u).
U
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Using the same argument as in part 1 of the proof we obtain"

i]/s+l /ds+l s+lw+, q,(u

q(u)+ sup (g, u+- u)
gD-()+ u"/ ull min max 2 eq(ys’)

eeA i:p. >0 k=l

,’ (u) u/’ u" max min
eAs i:p>O /=1

_> ,(u) / (,(u)- ,(u,)) u/’

Sequence {u}s=o is bounded and so (uS)=supy.y (q(y)-E=1 ui (y)) must also
be bounded; thus O(u) is bounded since (u)<-g/(u). This together with the
previous inequality immediately gives

(q,()- q,()) +’- ull-, 0,

which implies

(29) min {(uS)-(u),

Now consider any convergent subsequence {u st} of sequence {u}. We can assume
from (29) without loss of generality that either [[ur- ur+I[[ 0 or 6(uSr) @’"(U’")oO.
In the latter case we get 6"r(U’r)omin,u+6(U)=6* because g/(u,)>--@* and
#/’’(Ur)<--#/*. In the case [[U’"--Ur+I[I’O0 we get the following:

I[A U sr I[I Sr lg Sr II U Sr I]l sr+ u Sr + I/i Sr+ bl Sr

q,,+,(u,+,)+ q,,(u,+’) q,(u)

<=es/l[usr-us’+’’’( sup+ Ilgll/ sup [[gl[)
XgGSr gGSr

so that once again 6(ur)--p’(ur)O and we obtain 6Sr(u,)min,u/6(u).
However, according to Theorem 1 minu u 6(u) is the optimal solution of the initial
problem; minu u p(u) is the optimal solution of problem (11)-(13). Therefore the
solution of (11)-(13) tends to the solution of the initial problem, and any convergent
subsequence of sequence {yS.1, y,:,..., y.l/l}, p, where s 0, 1,. converges to the
optimal solution of the initial problem.

This method can be viewed as the generalized linear programming method applied
to problem (7)-(9) [3], [21], [23]. It drops all points y’ which do not correspond to
basic variables. Theorem 4 shows that in some (rare) cases this method does not
converge; however, this is not surprising because in certain cases the simplex method
does not converge either. It may be possible to modify the algorithm in different ways
to ensure convergence.

If we keep all previous points yO,1, yO,2, y0,t+l, yO, yl,.., and solve problem
(14)-(16) with an increasing number of corresponding columns, then the method
appears to be a form of Kelley’s method for minimizing function O(u), which converges
under the assumptions of Theorem 1. However, it is impossible to allow the set of
points to increase ad infinitum in practical Computations.

In the following modification of the algorithm presented above some nonbasic
columns are dropped when an additional inequality is satisfied.
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Description of Algorithm 2.
1. We first choose a sequence of positive real numbers {/zs}so, take ro-0 and

select initial points {yO,1, yO.2, "’, yO.l+l} such that problem (11)-(13) has a solution
with respect to p for y/= yOj, j 1, l+ 1. Let pO be a solution of this problem and u
be the corresponding dual variables. We then have to find yO such that

qO(yO)_ , uOkqk(yO) >= b(Uo) eo,
k=l

where eo is a positive number. If for any eo and the corresponding Yo we have

A(yO, uo) qO(yO)_ , uOkq,(yO)_ u/O+I _< 0,
k=l

then the pair {yO,,yO,2,... ,yO.+},pO is an optimal solution of problem (7)-(9).
Otherwise it is necessary to select eo, yO such that A(y, u) > 0 and take Ao A(y, u).

Suppose that after the sth iteration we have points yS,,j 1, l, a solution pS=
(p, p,..., p) of problem (11)-(13) for y yS,i,j 1, ls, ls, a corresponding sol-
ution u (u, u,. , u+) of the dual problem (14)-(16), a positive integer number
rs and a positive number As.

2. Find an approximate solution yS such that

and

( qO(yS)_ L Ukq’(Ys) > O(us) e
k=l

qO(y)_ y,. Ukqk(yS)_ U+, A(ys, U s) > O.
k=l

If this is not possible for all e > 0 then we have arrived at a solution. Otherwise
consider the following two cases"

(a) A(y, u) <-- (1 -/zr)As. In this case take As+ A(ys, uS), ls+l + 1, r+l r + 1
and denote by yS/l, yS/.2,... yS/l,l/ those points from {yS,, yS.2, y’/} (_J y that
correspond to the basic variables of the solution

(b) A(y, uS)> (1-- /xr)As. In this case take

As+ As, ls+ l + 1, rs+ rs, yS+a

Find a solution of problem (11)-(13) for t= 1+1, y/=y+l,j= 1, 1+1 and the corre-
sponding dual variables u+1, and proceed to the next iteration.

THEOREM 5. Suppose that the conditions ofTheorem 1 are satisfied and thefollowing
additional conditions hold"

1. e>0, e->0, .=o/Z=, /z->_0.
2.

Then , ts yS,i= Piqo( tends to the optimal value ofproblem (7)-(9).
Proof
1. Suppose that the inequality A(ys, uS) <-- (1-)A is satisfied only a finite

number of times. This implies the existence of a number So such that for s->_ So the
method turns into Kelley’s cutting-plane algorithm for minimization of the convex
function q(u), where the values of q,(u) are calculated with an error that tends to

zero. From assumption 2 of Theorem 1, q,(u) has a bounded set of minimum points
and the initial approximating function q,So(u) has a minimum. Thus such a method
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would converge to the minimum of function $(u) and A(ys, uS)--$(uS)-$S(uS)-O,
which contradicts the assumption that for s _-> So the inequality A(ys, u s) (1- r,)As
is not satisfied.

2. There exists a subsequence Sk such that

A(ysk, uS")<=(1--1a,k)As,, (1-/k)A(ys-’, U’-,).

From the definition of the algorithm we have

O(u)-(u)- 6(y% u)6(u)-O(u)
and therefore

(u)-(u)-e (1 )((u-,) -(u-,)).

Making the substitution (u) (u) w we obtain

w (1 k)wSk- + esk"

Suppose now that there is a > 0 and m such that w a for k m. From the assumption
2 we have that e/k a/2 for suciently large k, hence

w w-’-k, k > m

and

ws" wS,,
Ol-- P’i
i=m+l

for n> m. This gives contradiction with boundedness of ws because ’-1 fti =c.
Therefore sequence tk exists such that wtk-O, which implies Ot(ut’,)- minut (u)
because tk(ut)-d/(u)Vu U. But for any s we have O*(u*)(u), which
together with t(ut)min,u* (u) leads to O(u)min,u (u). However,
(U)= qO(y,ii P and min (u) is an optimal value of problem (7)-(9) due
to Theorem 1. This completes the proof.

Remark. It is not necessary to know the e precisely; we need only that e/ 0.
For example, p may be a small positive constant and the precision with which problem
(20) is solved may gradually increase. This will give automatic fulfillment of the
assumption 2.

Various ways of dropping the cuts in cutting-plane methods have been suggested
in [2], [3]. The following method, which keeps only l+ 1 points at each iteration, is
close to some methods in [3].

Instead of problem (14)-(16), solve the following problem at each iteration:

min u+ + e u u 2),

qO() q()Uk U+ O, j=l,l+l,
k=l

u0, k=,

where u is the solution at the previous iteration. That this modified version converges
can be proved in a similar way to Theorem 5.

5. Stochastic procedure. By a corollary of Theorem 1, Problem 6 is reduced to
a minimax problem with a possibly nonconcave inner problem of maximization and
a convex final problem of minimization. A vast amount of work has been done on
minimax problems but visually all of the existing numerical methods fail if the inner
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problem is nonconcave. To overcome this difficulty, we adopt an approach based on
stochastic optimization techniques.

Consider the faily general minimax problem

min max f(x, y ),
(30) xx ye Y

where f(x, y) is a continuous function of (x, y) and a convex function of x for each
y e Y, X c R, Yc R’. Although

(31)
F(x)-maxf(x,y)

yY

is a convex function, to compute a subgradient

Fx(x)=fx(x, y)ly=y(x),

(32) y(x) arg maxf(x, y),
yeY

fx(X, y) e Oxf(X, y) {glf(z, y) f(x, y) >-- (g, z x), Vz e X}

requires a solution y(x) of nonconcave problem (32). In order to avoid the difficulties
involved in computing y(x) one could try to approximate Y by an e-set Y and consider

y (x) arg max f(x, y)
ye Y

instead of y(x). But, in general, this would require a set Y containing a very large
number of elements. An alternative is to use the following ideas. Consider a sequence
of sets Y, s 0, 1,. and the sequence of functions

F(x)=maxf(x,y).
ye Ys

It can be proved (see, for instance, [9]) that, under certain assumptions concerning
the behavior of sequence F, the sequence of points generated by the rule

(33) xs+l-- x-pF(x), s =0, 1," ",

F(x) OF(x) {giFt(x)- F(x) >- (g, x xS), Vx}

(where the step size p, satisfies assumptions such as p _>-0, p- 0, =o P, o0) tends,
in some sense, to follow the time-path of optimal solutions" for s oo

lim [F(x) min F(x)] 0.

We will show below how Y, (which depends on x) can be chosen so that we obtain
the convergence

min F(x) min F(x),

where Y contains only a finite number N _-> 2 of random elements.
The principal peculiarity of procedure (33) is its nonmonotonicity. Even for

differentiable functions F (x), there is no guarantee that x+ will belong to the domain

{x]F(x) < F(x)}, _-> s +
of smaller values of functions F+, F’+2, The procedure adopted here is the
following (see [11]).

We start by choosing initial points x, yO, a probability measure P on set Y and
an integer No--> 1. Suppose that after the sth iteration we have arrived at points x", y.
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The next approximations xs+l, yS+l are then constructed in the following way. Choose
N => 1 points

yS,1, yS,2, y,
which are sampled from the distribution corresponding to the measure P, and determine
the set

where y,O= yS. Take

and compute

y {y,l, yS,2, ", y,} I,.J y,O,

ys+ Arg maxf(x, y
ye Ys

x+’= rx[X pf(x, y+’)], s=0, 1,’."

where p is the step size and 7rx is the result of a projection operation on X.
Before studying the convergence of this algorithm, we should first clarify the

notation used:
P(A) it a probability measure of set A

_
Y,

X* Arg minxx F(x),
Y*(x) {YIY Y,f(x, y) >= F(x)- e}, e > O,
p(e, x) P{ Y*(x)},
y(e)=inf,,xp(e,x),
7"(k, e) max { 7"]Y 21k_,p<=e, 7"<=k},

i.e., 7"(k, e) is the largest number of steps preceding step k for which the sum of step
sizes does not exceed e.

THEOREM 6. Assume that
1. X is a convex compact set in R" and Y is a compact set in
2. f(x, y) is a continuousfunction of (x, y) and a convexfunction ofxfor any y e Y,

sup IlL(x, y)ll-- K <
xX
yY

3. Measure P is such that 3’( e > 0 for e > O,
4. p,---> +0,

Then for s - oo

E min x" z 0.
zX*

If, in addition, there exists an eo > 0 such that for all e <-_ eo and each 0 < q < 1

(34)
s=0

then, as s ,
min {llx zlllz 0

with probability 1.

Proof
1. First of all let us prove that

E[F(x) f(x, yS)]-> O.
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To simplify the notation we shall assume that Ns N- 1. According to the algorithm

f(xS, y+!)>-_f(xS, y’V), v-0, N

and therefore

f(x+, yS+l)_f(xS+, y,V) >_ [f(xS+l, yS+l)_f(x y+l)]+[f(x y,O)_f(x+, y,O)].

According to the assumption 2 of the theorem there is a constant K such that

If(x+, Y)-f(x, Y)I <- KIIx+- x ll--< K -o.
hence

We also have

f(x+l, yS+l) >= f(xS+l, yS,O) 2K2p.

f(x"+1, y+2)>f(x+l,yS+l’)= v=0, N,

or, in particular, for v 0

f(xS+, y+2)>=f(xS+l, y+l).

Therefore

f(x.l, y.2) >_ f(xS.l, yk,V) 2K2ps,

and in the same way

f(x+2, y+2)_>f(x+2, yk,)_ 2K2(p + p+l),

etc.

Thus, if

then

k s, s+ 1, v O,.N,

k= s, s+l, v =0, N

Continuing this chain of inequalities, we arrive at the following conclusion:

f(x,yS)>_f(x,yk’o)--2Kz
s-1

l=s--z(s,e)
Pl

k= s-’(s, e), s- 1, v =0, N.

y. {yk,, v=O, N, k= s-’(s, e), s- 1}

f(x, y)>= max f(x, y)- 2K2e.
Y Y,

It is easy to see from this that

P{F(x -f(x, y) > (1 + 2KE)e} <- P{F(x max f(x, y) > e} <_-[1 y(e)]N(’).
Y Ys,

Since los O, then -(s, e) oe as s c. Hence

[1 y(e)]N(,)-) 0

as s oo, and therefore.

r P{F(xS) f(x, y)> e}--> 0

for arbitrary e > O. Compactness of X and Y together with the continuity of f(x, y)
gives now maxxx,y y If(x, Y)I < C < which implies

E[F(x) -f(x, y)],-< e + Cr e
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for arbitrary e > 0. This gives finally

E[F(xS)-f(xS, yS)]->O.

2. We shall now show that, under assumption (34), F(xS)-f(x‘,y)->O with
probability 1. It is sufficient to verify that

P{sup [F(xk) -f(xk, yk)]> (1 + 2K2)e}-> 0.
k-----s

We have

yk 2)P{sup[F(xk)-f(xk, )]>(l/2K e}
k>__s

--< P{sup [F(xk) max f(xk, y)]> e}
k>--s Y

<- P{F(xk)-max f(xk, y)>e} <- Y [1--’(e)]N<k’)-->0,
k ye Yk, k

since from assumption (34) the series

X [1- 7(e)]v’(k’) -> 0
k=s

as
3. Let us now prove that Ew(x) - 0 as s-, where

w(x) min IIx- zll =.
zeX*

We have

w<x -IIx x ll w(xs) 2p(fx(x, y), x x)+ pllfx(x, y) [[2
w(x) -2p[f(x, y)-f(x, y)]+ KEp
w(x)-2p[f(x, y) m F(x)]+ KEo2

xeX

w(x)-2p[F(x)-min F(x)]+ 2p[F(x)-f(x, y)]+ K2p.
xeX

Taking the mathematical expectation of both sides of this inequality leads to

(35) Ew(x+ Ew(x) 2pE[F(x min F(x)]+ 2psfl + K2p,
xeX

where fl 0 as s since it has already been proved, that

E[F(x) -f(x’, y)] 0 for s --> .
Now let us suppose, contrary to our original assumption, that

Ew(x) > a > 0, s _-> So.

It is easy to see that because of boundedness and continuity we also have

E[F(xS)-min F(x)]> 5>0,
xX

where 8 5(a) is a constant which depends on a. Then for sufficiently large s >_-s

(36) Ew(x+) <- Ew(x
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since Ps - 0,/3s 0 and therefore we can suppose that

8-2fls-K2ps> 8/2, s>-sl.

Summing the inequality (36) from sl to k, k o, we obtain from assumption (4)
a contradiction to the nonnegativeness of Ew(xS). Hence, a subsequence {xsk) exists
such that

Ew(xk)O

as k o. Therefore for a given c > 0 a number k(a) exists such that

Ew(x) < a,

where Sk> Sk(,,). Let r be such that Sk<--r<--Sk/l and Ew(xr)> a. Take/such that

l= min {i:Ew(xJ)>a for <-_j <= r}.
s <i<=r

Since p0 and/3 0, we may assume that 2fl+K2p<(a) for s> Sk(). This and
(36) together imply that Ew(x) <- Ew(x). Now from (35) and the definition of we get

Ew(xt) <-_ Ew(x-1) + 2p,fl, + K2p ot + 2ptfl + K2p.

Thus Ew(x)O, because a was chosen arbitrarily and p0.
4. It can be proved that w(x) converges to 0 with probability 1 in the same way

that we have already proved mean convergence. We have the inequality
2 2w(x+) <- w(x)-2os[F(x)-min F(x)]+2py + K p,

where , 0 with probability 1 because it has already been shown that under assumption
(34)

F(xs) f(x, y) - 0 as s oo

with probability 1. If we now assume that

w(x) > a, s >- So

for some element of probabilistic space we will also have

F(x) min F(x) > 6 > 0
xX

etc.
We shall now give a special case in which condition (34) is satisfied.
Example. Assume that p 1Is b, a > 0, 0< b-< 1. Then Raab’s test for series

convergence shows that condition (34) is satisfied.
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ON THE PHASE PORTRAIT OF THE MATRIX RICCATI EQUATION
ARISING FROM THE PERIODIC CONTROL PROBLEM*

MARK A. SHAYMAN"

Abstract. A comprehensive description is provided of the properties of the matrix Riccati differential
equation in which the coefficient matrices are T-periodic for some T>0. The main results include: (1) a
classification of all the .periodic equilibria (T-periodic solutions); (2) necessary and sufficient conditions
for convergence to the uniformly asymptotically stable (completely unstable) periodic equilibrium as t- o

(t--o); (3) necessary and sufficient conditions for a solution to escape in finite forward or backward
time; (4) a description of every almost periodic solution; (5) a proof that every solution which does not
escape in finite time is asymptotically almost periodic and an explicit formula for the limiting almost periodic
solution.

Key words. Riccati differential equation, phase portrait, periodic system, linear quadratic optimal control,
Lagrange-Grassmann manifold

1. Introduction. By the Riccati differential equation (RDE) we mean the time-
varying quadratic differential equation

I(t) -A’(t)K(t)- K(t)A(t)+ K(t)B(t)B’(t)K(t)- C’(t)C(t)

defined on the vector space S(n) of real symmetric n n matrices. A(t), B(t), and
C(t) are real matrices of dimensions n n, n rn, and p n respectively. Bythe periodic
Riccati differential equation (PRDE) we mean the special case of the RDE in which
A(t), B(t), and C(t) are each periodic with period T> 0 and are integrable over [0, T].
Due to its central role in the solution of the least squares control problem for a periodic
linear system, the PRDE has been the subject of several investigations in recent years,
including [16], [18], [7], [12], [1], [4], [13], [17], [3], [19]. However, the theory of the
PRDE has remained underdeveloped in comparison to the theory of the time-invariant
RDE.

The purpose of this paper is to generalize to the PRDE a number of key results
in the theory of the time-invariant RDE. We briefly describe the organization of this
paper. In 2, we describe how the RDE is extended to a differential equation on the
so-called Lagrange-Grassrnann manifold (n), which may be viewed as a compactifica-
tion of the space of n n symmetric matrices. This viewpoint is extremely helpful for
the proofs of many of our results. In 3, we classify all of the periodic equilibria of
the PRDE by generalizing a well-known result of J. C. Willems [24] which classifies
the equilibria for the time-invariant RDE. The signatures of the periodic equilibria are
described provided (C(.), A(. )) is observable. In 4, the stability properties of the
periodic equilibria are determined. In particular, we give necessary and sufficient
conditions for convergence to the uniformly asymptotically stable periodic equilibrium
as and for convergence to the completely unstable periodic equilibrium as --> -.
Section 5 gives necessary and sufficient conditions for a solution to have a finite escape
in either forward or backward time. In 6, we determine all of the almost periodic
solutions of the PRDE. These solutions are contained in oscillating manifolds, each
of which is isomorphic to a product of Grassmann manifolds. In 7, we prove that
under mild assumptions, every solution either escapes in finite forward (backward)

* Received by the editors February 14, 1984. This research was partially supported by the National
Science Foundation under grant ECS-8301015. An abridged version of 1-3 of this paper was presented
at the Allerton Conference on Communication, Control, and Computing, Monticello, Illinois, October 1983.

? Department of Systems Science and Mathematics, Washington University, St. Louis, Missouri 63130.
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time or converges to an almost periodic solution as -> oo (t -> -oo). If a given solution
has no finite escape time, we .give .an explicit formula for the limiting almost periodic
solution. Combined with the necessary and sufficient conditions for finite escape times
given in 5, these results furnish a description of the asymptotic behavior of every
solution of the PRDE, and hence constitute a "complete global phase portrait". The
results in 6 and 7 extend to the PRDE recent results of Shayman [22], [23], for the
time-invariant RDE.

Also of interest is the PRDE which arises from a periodic control problem in
which there are conflicting objectives. In this case the nonnegative, definite matrix
C’(t)C(t) is replaced by an arbitrary symmetric T-periodic matrix Q(t). All of our
results, except for those, concerning the signature of solutions (which require an
observability assumption) may be extended to this more general situation simply by
adding to the hypothesis of each theorem the assumption that the set of periodic
equilibria is nonempty. The justification for this claim is that the proofs of our theorems
depend on Q(t) being of the form C’(t)C(t) only so that the existence of the periodic
equilibrium K+(t) can be concluded from the known result Theorem 2. (The proof of
Theorem 2 in the literature [13] depends on Q(t) being of the form C’(t)C(t).) If it
is assumed that there exists a periodic equilibrium Ke(t), the change of variables
K (t) K (t) Ke(t) yields a PRDE in which Q(t) 0 (which is trivially of the form
C’(t)C(t)). Then the existence of K+(t) for the original PRDE is established by
applying Theorem 2 to the transformed PRDE and then transforming back.

The following notation will be used" If X is any matrix, Sp X denotes the subspace
spanned by the columns of X. If X is a square matrix, Spec (X) denotes the spectrum
of X. Also L+(X) (L-(X)) denotes the invariant subspace associated with the eigen-
values of X inside (outside) the unit circle. If S is any subspace of 2,, S

_
denotes

the orthogonal complement of S using the standard inner product on 2,. ’A(t, to) is
the transition matrix for the linear differential equation (t)- A(t)x(t).

2. Background. Associated with the RDE is the 2n 2n Hamiltonian matrix

[ A(t)-B(t)B’(t)]H( t)
-C’( t)C( t) -A’( t)

Let (t, to) denote the transition matrix corresponding to H(t). Partition (t, to) into
n n blocks as

(t, to) [cki(t, to) dpt2(t, to) 1
dp_, t, to) dP22( t, to) 3"

Let K(t, Ko, to) denote the solution of the RDE which goes through Ko at time to. It
is well known [5, p. 156] that

(1) K t, Ko, to) dp2( t, to)+ t22(t, to) Ko][C/b( t, to)+ b2(t, to)Ko]-.
This formula is easily verified by differentiation. It is valid as long as the inverse exists.
The matrix bl(t, to)+bE(t, to)Ko becoming singular at t-t is equivalent to the
solution K(t, Ko, to) having a finite escape time at t.

In order to study the RDE, it is useful to compactify the phase space. The natural
compactification of the phase space S(n) for the RDE has been described by R.
Hermann and C. Martin 11], 15], and is the so-called Lagrange-Grassmann manifold
(n). It is defined as follows: Let J denote the 2n 2n matrix [_ o] and define a
skew-symmetric bilinear form to on 2n by to(x, y)=x’Jy. Let Gn(2") denote the
Grassmann manifold of all n-dimensional subspaces of 2n. Then (n)=
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{SE Gn(R2n): to(x, y)=0, x, yES}. Thus, (n) consists of those n-dimensional sub-
spaces of R2, on which to vanishes identically.

It is natural to view .(n) as a compactification of S(n). To see this, we note that
the n-dimensional subspace Sp[r] (the column space of the 2n x n matrix [r]) belongs
to (n) if and only if the n x n matrix K is symmetric. Thus, we can define a mapping
3" S(n) (n) by y(K Sp []. Let o(n) consist of those subspaces in (n) which
are complementary to the n-dimensional subspace Sp []. In other words, o(n)=
{S (n)" S 71Sp [] 0}. It is easy to show that 3’ is an embedding of S(n) into (n)
with image o(n). Since (n) is compact and o(n) is an open and dense subset of
(n), we can use the embedding 3’ to identify S(n) with o(n) and thereby regard
(n) as a compactification of $(n).

Define a time-varying flow on (n) by S(t, So, to)= (t, to)(So), the image of the
subspace So. under the nonsingular linear mapping (t, to). Note that since H(t) is a
Hamiltonian matrix (JH(t)+H’(t)J=O), it follows that (t, to) is symplectic
(’(t, to)J(t, to)=J). This implies that if So(n), then (t, to)(So)(n), so
S(t, So, to) is indeed a flow on (n). If Ko S(n), then

[ ] [ Chll( t, to) + Ch2( t, to)I
=SpS(t, 3’(Ko), to)-Sp O(t, to)

Ko b2l(t, to)+ bE(t, to)Ko

From (1), we have

3’(K(t, Ko, to)) Sp
[b2,(t, to)+ b22(t, to)Ko][C,,(t, to)+ t12(t, to)Ko]-’

Sp [bl,(t, to)+ blZ(t, to)Ko]
b, t, to) + b22( t, to) KoJ

which is valid as long as the solution K (t, Ko, to) continues to exist. Thus, the flow of
the RDE on S(n) is related to the flow which was defined on (n) by the equation

(2) 3’(K t, Ko, to)) S( t, 3’(Ko), to)

as long as K (t, Ko, to) exists, or equivalently, as long as S(t, 3’(Ko), to) remains in the
subset o(n) of (n). In other words, (2) says that if we use the embedding 3’ to
identify S(n) with o(n), then the restriction to Wo(n) ofthe flow S(t, So, to) is identified
with the flow of the RDE. Thus, the embedding 3’ permits us to view (n) as S(n)
together with some points added at infinity to obtain a compact space, and to view
S(t, So, to) as the extension of the flow of the RDE to the enlarged space. We will
refer to the PRDE extended to (n) as the extendedperiodic Riecati differential equation
(EPRDE).

For our purposes, there are two main advantages to regarding the RDE as a
differential equation on (;). The first advantage is that it permits us to explicitly
consider solutions of the differential equation "at infinity." The second advantage is
that the flow on .(n) is particularly simple. It is given by the natural action of
nonsingular linear transformations on subspaces.

3. Periodic equilibria for the periodic Riccati differential equation. Throughout this
section, it is assumed that the matrices A(.), B(.), and C(.) in the RDE are each
periodic with period T> 0, and are integrable on [0, T]. The first result relates periodic
solutions to invariant subspaces of q(to+ T, to). By a periodic equilibrium, we mean
a T-periodic solution of the PRDE.
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LEMMA 1. (a) If K(t, Ko, to) is a periodic equilibrium of the PRDE, then y(Ko)
is ’I(to+ T, to)-invariant and S( t, y(Ko), to) o(n), Vt. (b) IfSo is ’(to+ T, to)-invariant
and S(t, So, to) L’o(n), V t, then K(t, y-l(So) to)(= y-l(S(t, So, to))) is a periodic equili-
brium of the PRDE.

Proof. (a) Suppose that K (t, Ko, to) is a periodic equilibrium of the PRDE. Then
K(t, Ko, to) exists for all t, which implies (see (2)) that S(t, y(Ko),to)o(n),Vt.
Since K(to/T, Ko, to)-Ko, (2) implies that y(Ko) y(K(to+ T, Ko, to))
S(to+ T, y(Ko), to)=(to+ T, to)(y(Ko)), so y(Ko) is (to+ T, to)-invariant. (b)
Suppose that So is ’(to+ T, to)-invariant and S(t, So, to)o(n),Vt. Then (2) gives
the equation

y(K(t, 5"-1(So) to))= S(t, So, to)

which is valid for all since S(t, So, to) remains in o(n). (y-l(So) is defined since
So o(n).) Hence, K(t, y-l(So) to) exists for all and

K(t, 5’-1(So) to)= 5’-’(S(t, So, to)).

Thus,

K( + T, 5"-1(So) to) 5"-(S( + T, So, to)) 5’-((t+ T, to)(So))

5’-l(q(t + T, to+ T)(to+ T, to)(So)) 5"-((t, to)(So))

5"-(S(t, So, to))= K(t, 5"-(So), to).

Thus, K(t, 5"-1(So) to) is a periodic equilibrium.
If K (t) is a periodic solution ofthe PRDE, then 5’(K (to)) is a q( to + T, to)-invariant

subspace. The next result describes the relationship between the restriction q(to+
T, to)ls’(K(to)) and the transition matrix #/A-BB’c(t, Z) for the periodic closed-loop
system A(t)- B(t)B’(t)K(t).

LEMMA 2. Suppose that K(t) is a periodic equilibrium of the PRDE. Then
bA-B8’K(to+ T, to) is the matrix for (to+ T, to)ls’(K(to)) with respect to the basis
consisting of the columns of [K/to)].

Proof. Let

[X(t’ t)] =op(t, to)[ I ]Y( t, to) K (to)

Then X(to, to)= l. Also

dIX(t, to) 1 =[ A(t) -B(t)B’(t)lIX(t, to) 1dt Y( t, to) -C’( t)C( t) -A’( t) Y( t, to)

Since K(t) exists for all t, X(t, to) is never singular, and K(t)= Y(t, to)X-(t, to).
Hence,

(d/dt)X(t, to)=A(t)X(t, to)-B(t)B’(t)Y(t, to)=(A(t)-B(t)B’(t)K(t))X(t, to),

which shows that X(t, to)= d/A-B,r(t, to).
Let R denote the matrix for (to+ T, to)ls’(K(to)) with respect to the basis

Then

Y(to+ T, to)
=P(to+ T, to)

K(to) K(to)
R,

which shows that X(to+ T, to)= R. Hence R @A-nn’K(t0+ T, to) as asserted.
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COROLLARY. Suppose that K( t) is a periodic equilibrium of the PRDE. Then the
characteristic multipliers of the periodic closed-loop system A(t) B(t) B’( t)K (t) are the
same as the eigenvalues of ( to+ T, to)ly(K(to)).

Lemma 1 shows that if So is a (to/ T, to)-invariant subspace which belongs to
(n), then S(t, So, to) corresponds to a periodic equilibrium K(t)= y-l(s(t, So, to))
provided that S(t, So, to) o(n) for all t. Thus, the existence of periodic equilibria
for the PRDE is related to the existence of (to+ T, to)-invariant subspaces which
belong to (n). The next lemma will be useful in establishing the existence of such
subspaces.

LEMMA 3. Let M be a symplectic matrix. Suppose that $1 and $2 are each sums of
primary components ofM such that if A Spec (MISt), then A- $ Spec (MIS2). Then
x’Jy O, ‘cx S ‘cy $2.

Proof Let X and X2 be basis matrices for S and $2 respectively. Since S1 and
$2 are M-invariant, there exist square matrices R1, RE (of the appropriate dimensions)
such that MX X1R, MX2 X2 RE. Since M is symplectic, we have M’JM J. Thus,
XJX1 XM’JMX1 RX.JX1RI. Let Z XJX. Then Z RZRI or RZ ZR-(.
The hypotheses imply that R- and R have no eigenvalues in common. Hence, the
only solution is Z- 0.

As a preliminary to obtaining further results regarding the periodic equilibria of
the PRDE, we consider a special case. By the stable homogeneous periodic Riccati

differential equation (SHPRDE), we mean the special case of the PRDE where C(t)--0
and all of the characteristic multipliers of A(. are inside the unit circle. We use H(t)
to denote the Hamiltonian matrix

[A(t) -B(t)B’(t)]0 -A’(t)

for the SHPRDE, and we use )(t, to) to denote the transition matrix corresponding
to H(t). Let WA(to, t) denote the controllability Gramian for the pair (A(.), B(.)).
In other words,

WA(to, t)= A(t0, O.)B(O.)B’(O.)’A(to, o.) do’.
to

It may be verified directly that

(3) (t, to)=[ bA(t’ to) --bA(t, to) WA(to, t)]0 ’A( to, t)

We will need the following standard result concerning the discrete version of the
(algebraic) Lyapunov equation.

LEMMA 4. Suppose that the symmetric matrix Z satisfies the equation

Z R’ZR L

where L>-O and ]A[<I, ’CA Spec (R). Then Z<-_O.

LEMMA 5. Suppose that S (n) and that S is P( to + T, to)-invariant. Let ] be
any basis for S. Then X’Y <-O.

Proof Note that since S (n), X’Y is symmetric. We begin by considering the
special case where S L-()(to+ T, to)). In other words, S is the subspace corresponding
to theeigenvalues of )(to + T, to) which are outside the unit circle. It is clear from (3)
that (to+ T, to) has no eigenvalues on the unit circle, so S is an n-dimensional

(to + T, to)-invariant subspace. Applying Lemma 3 with $1 $2- S, we conclude that
S(n).
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Let ] be a basis for S. Let N d/a(to + T, to) and let W WA(to, to + T). From
(3), we have

(to+ T, to)
0 (N-l)

Since S is (to+ T, to)-invariant, there exists an nn matrix R with IXl> 1, VA
Spec (R) such that

Thus,

(4)

(5)

Premultiplying (4) by ’ gives

N-NW R,
(S-)’ g YR.

(6) I’N- I’NW= I’R.
Using (5) to substitute for ’N in (6) gives

(R-1)’y’X-(R-1)’’WY= Y XR.(7)

Letting P- Y’X gives

or

(R-’)’P-(R-’)’’W- PR,

P (R-’)’PR-’ -(R-’)’ ’ WR-’.
Since W>= 0, we conclude from Lemma 4 that P <-_0. Thus, X’Y Y’X <=0.

We continue to use [ to denote a basis for L-((to+ T, to)), but now we let S
denote an arbitrary subspace in (n) which is (to+ T, to)-invariant. Then

s =Is +(4,(to+ T, to))](R)[S f -(4,(to+ T, to))]

Let

There exist n and n (n- 1) full rank matrices C, D such that

So

S= Sp
0 YD.I"

Let X [C XD] and let Y [0 YD]. Since S (n), X’Y must be symmetric, which
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implies that C’ f’D 0. Then we obtain

0 D’X’ YD

Since X’ Y_-< 0, we conclude that X’Y
COROLLARY. Let K (t) be a periodic equilibrium of the SHPRDE. en K(t) N 0.
Proo Given any t, we have K(t)=K(t+T). Thus, Sp[,] is (t+

T, t)-invariant. By Lemma 5, K(t)
LMa 6. Sppose that (A(. ), B(. )) is controllable. en every subspace belonging

o (n) which is ( to + T, to)-invariant belongs to o( n).
Proo Let S e (n) and suppose that S is (o+ T, to)-invariant. Let [] be a

basis matrix for S. Since (to-nT, to) =[(to+ T, to)]-, S is (to-nT, to)-invariant.
Hence, there exists an n x n matrix R such that

From (3) we have

(8) A( tO-- nT, to)X A( to-- nT, to) WA( to, to-- nT) Y= XR,

(9) (to, to- nT) Y= YR.

Using (9) to substitute for Y in (8) gives

(10) A( tO-- nT, to)X A( tO-- nT, to) WA( to, to-- nT)k( to- nT, to) YR XR.

A straightforward calculation shows that

WA to, to n T) to, to nT) WA to n T, to) to, to n T).

Substituting in (10) yields

11 A to n T, to)X + WA to n T, to) YR XR.

Suppose that there exists v0 with Xv=O. Premultiplying (11) by v’R’Y’ and post-
multiplying by v gives

(12) v’R’Y’WA(to-- nT, to) YRv v’R’Y’XRv.

Since (A(.), B(.)) is controllable, it follows from [6, Prop. 3] that WA(to--nT, to) is

positive definite. By Lemma 5, Y’X is negative semidefinite. We conclude from (12)
that YRv 0. Then (9) implies that Yv 0. But this is impossible since Xv 0 and []
has rank n. Hence, X must be nonsingular.

We are now prepared to describe all of the periodic equilibria for the PRDE using
the above results for the SHPRDE as tools. Recall that L+((T, 0)) is the (T, 0)-
invariant subspace associated with the eigenvalues of (T, 0) inside the unit circle. If
(T, 0) has no eigenvalues on the unit circle, L+((T, 0)) is n-dimensional. In this
case, it follows from Lemma 3 that L+(( T, 0)) (n). If (t, 0)(L+(( T, 0))) o(n),
Vt, then it follows from Lemma 1 that K(t, y-I(L+((T, 0))), 0) is a periodic equili-
brium. If this solution exists, we will denote it by K+(t). It follows from the Corollary
to Lemma 2 that if it exists, K+(t) is the unique periodic equilibrium with the propey
that every characteristic multiplier of the associated closed-loop system is inside the
unit circle.

If (T, 0) has no eigenvalues on the unit circle and (t, O)(L-((T, 0))) o(n),
Vt, then another periodic equilibrium is given by K(t, V-I(L-((T, 0))), 0). We denote
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this solution by K-(t). If it exists, K-(t) is the unique periodic equilibrium with the
property that every characteristic multiplier of the associated closed-loop system is
outside the unit circle.

The next result shows that if it exists K/(t) is the maximal periodic equilibrium
(in the partial ordering on symmetric matrices). This is true even if (A(.), B(.)) is
not controllable.

THEOREM 1. Suppose that d( T, O) has no eigenvalues on the unit circle and that
K+(t) exists. IfK (t) is any other periodic equilibrium, then K (t) <- K+(t).

Proof. Let A+(t)=A(t)-B(t)B’(t)K/(t) and consider the SHPRDE

t) -A+’( t)I t) I t)A+( t) + I t) B( t) B’( t)I t).

The associated Hamiltonian matrix is

A+(t) -B(t)B’(t) 1/-(t)
0 -A+’(t)

Let (t, to) denote the transition matrix corresponding to/(t). Let K (t) be a periodic
equilibrium of the PRDE. It is straightforward to check that K (t)- K+(t) is a periodic
equilibrium of the SHPRDE. By Lemma 1, the subspacc Sp[c(t)Jc+(t)] is (t+
T, t)-invariant. By Lemma 5, K(t)- K+(t)_-<0 which completes the proof.

Wc will need to use the following known result which is an immediate consequence
of [13, Theorem 4].

THEOREM 2. Suppose that (A(.), B(.)) is controllable and that dI,(T, O) has no
eigenvalues on the unit circle. Then the periodic equilibrium K+(t) of the PRDE exists.

Remark 1. It is assumed in [13] that (T, 0) has distinct eigenvalues. However,
this assumption is not essential to the proof of the result we have quoted. It should
be noted that the results in 13] are stated for the filtering version of the Riccati equation
and must be "dualized" to obtain the corresponding results for the control version of
the Riccati equation which we are considering. When this is done, the assumptions
used in [13] to prove the existence of K+(t) are that ,(T, 0) have no eigenvalues on
the unit circle and that (A(.), B(.)) satisfy a special stabilizability condition for
periodic systems which was introduced in [12]. It is not obvious that the controllability
of (A(.), B(. )) in the usual sense implies (A(.), B(. )) is stabilizable in the special
sense. However, it was recently proven [2] that this is indeed the case. A different
proof for the existence of K+(t) is given in [3].

The next result is crucial in order to establish the existence of periodic equilibria
in addition to K+(t). It generalizes to the PRDE the result in Lemma 6 for the SHPRDE.

LEMMA 7. Suppose that (A(.),B(.)) is controllable and that (T, O) has no
eigenvalues on the unit circle. Then every subspace belonging to (n) which is di,( to+
T, to)-invariant belongs to o( n).

Proof. Let S (n) and suppose that S is (to+ T, to)-invariant. K+(t) exists by
Theorem 2. Let

U(t) _K+(t) I

and let (t) and c(t, to) be defined as in the proof of Theorem 1. It is straightforward
to checkthat/-(t) l(t)U-(t)+ U(t)H(t)U-(t)and (t, to)= U(t)dP(t, to) U-( to).
Since U(t) is periodic, we have

(13) (to+ T, to)-- U(to)(to+ T, to) U-l( to).

Since U(to) is symplectic, U(to)(S) (n). From (13) it follows that U(to)(S) is
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(to+ T, to)-invariant. By Lemma 6, U(to)(S)o(n). Let [,] be a basis for S. Then

U(o(S=Sp
-/(oX+ g

Since U(to)(S)eo(n), X is nonsingular. But this implies that Seo(n).
Lemma 7 is a key result. It shows that if (A(.), B(. )) is controllable and (T, 0)

has no eigenvalues on the unit circle, then every T-periodic solution of the EPRDE
on (n) is completely contained in o(n) and hence corresponds to a T-periodic
solution of the PRDE on S(n). On the other hand, there is a one-to-one correspondence
between T-periodic solutions of the EPRDE on (n) and the set of those elements
of (n) which are (T, 0)-invariant. Hence, there is a one-to-one correspondence
between the set of( T, 0)-invariant elements of (n) and the set of periodic equilibria
of the PRDE. The explicit form of this correspondence is given by the next result.

THEOREM 3. Suppose that (A(.), B(. )) is controllable and ( T, O) has no eigen-
values on the unit circle. Each ( T, O)-invariant subspace So (n determines a unique
periodic equilibrium of the PRDE which is given by ,/-l((t, 0)(So)). Furthermore, every
periodic equilibrium is obtained in this way.

Proof. Let Soe(n) and suppose that So is (T, 0)-invariant. Then
(t+ T, t)(S(t, So, 0))=(t+ T, t)(t, 0)(So)=(t+ T, T)dP(T, 0)(So)= (t, 0)(So)
=S(t, So, O), so S(t, So, O) is (t+ T, t)-invariant. By Lemma 7, S(t, So, O)eo(n),
’t. By Lemma l(b), y-l((t, 0)(So)) is a periodic equilibrium of the PRDE.

Now suppose that K(t) is a periodic equilibrium of the PRDE. Let So y(K(0)).
By Lemma l(a), y(K(0)) is (T, 0)-invariant and S(t, So, O)eo(n), ft. By (2), we
have K(t)= K(t, K(O), O)= y-(S(t, So, 0))- y-((t, 0)(So)). [3

This result describes every periodic equilibrium of the PRDE. However, the
description is given in terms of the set of (T, 0)-invariant subspaces which belong
to (n). Consequently, the next task is to describe this set.

LEMMA 8. Suppose that dp( T, O) has no eigenvalues on the unit circle. Then the
mapping S SO L+(dP(T, 0)) is a bijection of the set of (T, O)-invariant subspaces
which belong to (n) onto the set of dP(T,O)-invariant subspaces of L+((T, 0)).
If S is a (T,O)-invariant subspace of L+(dP(T,O)), then -(SI)-
([J(S,)]- f3 L-(( T, 0))).

Proof. Suppose that S (n) and that S is (T, 0)-invariant. Since S is (T, 0)-
invariant, we have

S =[S f3 L+(( T, 0))]@[S (3 L-(( T, 0))].

Let S, S f3 L+((T, 0)) and let S_= S (3 L-((T, 0)). Since S (n), [J(S)]- S, so
S2_[J(S1)]+/-fqL-((T,O)). Since S is (T, 0)-invariant, so is S1. Since (T, 0) is
symplectic, [J(S)]+/- is also (T, 0)-invariant. Hence,

[J(S,)]+/- ([J(S,)]- fq L+(( T, 0)))@ ([J(S1)] +/- CI L-(( T, 0))).

Since L+(( T, 0)) (n) and S,
_
L+(( T, 0)), it follows that [J(S,)]+/- f3 L+(( T, 0))

L+((T, 0)). Hence,

[J(S,)]" L+(c(r, 0))@ ([J(S,)]" CI L-((T, 0))).

Thus, dim [J(S)]xf’l L-((T, 0))- (2n-dim S)-n n-dim S-dim $2. We con-
clude that $2 [J(S)]x (q L-(( T, 0)). Since $2 is uniquely determined by S, it follows
that 3 is injective. It also shows that if S belongs to the image of , then 3-($1) $1@
([J(S,)]+/- CI L-(( T, 0))).
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It remains only to show that every (T, 0)-invariant subspace of L+((T, 0))
belongs to the image of & Let $1 be a (T, 0)-invariant subspace of L/((T, 0)). Let
S= $103 ([J( S)]+/- fq L-(cb(T, 0))). We claim that S (n), S is (T, 0)-invariant, and
that 8(S) $1. By the same argument as above, we have dim [J(S)]+/- f) L-((T, 0))
n-dim S. Hence, dim S n. The ( T, 0)-invariance of $1 implies the ( T, 0)-invari-
ance of [J(S1)]-fqL-((T, 0)) and consequently the (T, 0)-invariance of S. Since

S G L+(( T, 0)) and [J(S1)]+/- f’) L-(( T, 0)) L-(( T, 0)), the fact that L/(( T, 0))
(n) and L-((T,O))(n) implies that J(S)_t_S and J([J(S)]+/-fq
L-(cb(T,O)))_t_[J(S1)]+/-L-((T,O)). This together with the trivial fact that
J(S)_t_[J(SI)]+/-fqL-((T,O)) implies that J(S)_I_S, so J(n). Finally, it follows
from the definition of S that 8(S)= $1.

Using this result, we immediately obtain a refinement of Theorem 3.
THEOREM 4. Suppose that (A(.), B(. )) is controllable and ( T, O) has no eigen-

values on the unit circle. Each ( T, O)-invariant subspace of L+(( T, 0)) determines a
unique periodic equilibrium of the PRDE. If S is such a subspace, the corresponding
periodic equilibrium is given by y-(( t, 0)(S 0) ([J(S)IX f’) L-(( T, 0) ). Furthermore,
every periodic equilibrium of the PRDE is obtained in this way.

This result is an improvement over Theorem 3 because it describes the periodic
equilibria in terms of the invariant subspaces of ( T, 0)[L+((T, 0)), which is a set of
known structure. On the other hand, Theorem 3 describes the periodic equilibria in
terms of the set of n-dimensional (T, 0)-invariant subspaces which satisfy an addi-
tional condition, namely that [J(S)]x= S.

Theorem 4 gives a one-to-one correspondence between the set ofperiodic equilibria
and the set of (T, 0)-invariant subspaces of L+((T, 0)). By Lemma 2, Oa/( T, 0) is
the matrix for (T, 0)IL/((T, 0)) with respect to the basis given by the columns of
[r+(o)]. Thus, there is a one-to-one correspondence between the set of periodic equilibria
and the set of OA/(T, 0)-invariant subspaces of n. Using this fact, we will prove a
very useful theorem which shows how every periodic equilibrium can be constructed
from the pair K/(t) and K-(t).

We need two preliminary results.
LEMMA 9. Suppose that (A(. ), B(. )) is controllable and dp( T, O) has no eigenvalues

on the unit circle. Let A(t)= K+( t) K-( t). Then A(t)>0,
Proof Since (A(.), B(.)) is controllable and (T, 0) has no eigenvalues on the

unit circle, it follows from Theorem 3 that both K+(t) and K-(t) exist. By Theorem
1, A(t)>-0. It is trivial that A(t) is singular if and only if y(K+(t))f’)y(K-(t))O.
However, it follows easily from the definitions of K+(t) and K-(t) that y(K+(t))
L+((t+ T, t)) and v(K-(t))= L-((t+ T, t)), which implies that y(K+(t))fq
y(K-(t)) =0. Hence, A(t)>0.

LEMMA 10. Suppose that (A(.), B(.)) is controllable and that (T, 0) has no

eigenvalues on the unit circle. Let A-(t) A(t) B(t) B’(t)K (t). Then

-(t, to)A(t)d/A+(t, to) A( to) V t, to.

Proof. The equation holds trivially for to, so it suffices to show that the left-hand
side is constant as a function of t. We have

d
d--t [d/’A-( t, to)A( t)tA+( t, to)] all’A-(t, to)[A-’( t)A( t) + A( t)A+( t) + A( t)]d/A+( t, to).

It is straightforward to check that the quantity in brackets on the right-hand side is
identically zero. [q
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COROLLARY. Suppose that (A(.), B(. )) is controllable and dp( T, O) has no eigen-
values on the unit circle. Then

O-(to+ T, to)A(to)OA+(to+ T, to) A(to) Vto.
Proof. The proof follows immediately from Lemma 10 and the periodicity of

A(t). D
The following theorem shows how every periodic equilibrium can be constructed

from K+(t) and K-(t). It generalizes to the periodic RDE a well-known result of
J. C. Willems [24] for the time-invariant RDE.

THEOREM 5. Suppose that (A(.), B(. )) is controllable and (T, O) has no eigen-
values on the unit circle. There is a one-to-one correspondence between the set ofperiodic
equilibria of the PRDE and the set of A/( T, O)-invariant subspaces of ". Let Mo be a
d/A/( T, O)-invariant subspace, and let M( t) A/( t, 0)(Mo), and let H(t) be the projection
onto M(t) along A-l(t)(M(t)’). The periodic equilibrium corresponding to Mo is

K(t) K+(t)II(t)+ K-(t)[I-II(t)].

Furthermore, L+( d/A_nB,r( + T, t))-M(t) and L-(A-Bn,r + T, t)) A-( t)(M( t)-).
Proof. From the comments following the proof of Theorem 4, we already know

there is a one-to-one correspondence between the set of periodic equilibria and the
set of OA/( T, 0)-invariant subspaces of ". What remains is to show that the correspon-
dence has the asserted form.

The one-to-one correspondence between periodic equilibria and OA/(T, 0)
invariant subspaces results from the composition of three one-to-one correspondences:

(1) There is a one-to-one correspondence between the set of periodic equilibria
and the set of( T, 0)-invariant subspaces which belong to (n), which associates the
subspace S with the periodic equilibrium K(t)= y-((t, 0)(S)).

(2) There is a one-to-one correspondence between the set of (T, 0)-invariant
subspaces which belong to (n) and the set of (T, 0)-invariant subspaces of
L+(( T, 0)). IfS is a( T, 0)-invariant subspace of L+(( T, 0)) then the corresponding

T, 0)-invariant subspace which belongs to (n) is S= S([J(S)]If-I L-(( T, 0))).
(3) There is a one-to-one correspondence between the set of (T, 0)-invariant

subspaces of L+((T, 0)) and the set of A/(T, 0)-invariant subspaces of ". If M is
a A/(T, 0)-invariant subspace of ", then the corresponding (T, 0)-invariant sub-
space of L+((T, 0)) is

S= K/(0

We are given Mo, a A/( T, 0)-invariant subspace of". For each t, M(t) is defined
to be the subspace d/A/(t, 0)(Mo). Since A(t)>0 by Lemma 9, A-(t)(M(t)) is com-
plementary to M(t), so the projection H(t) is defined. Let IIo II(0). In other words,
IIo is the projection onto Mo along A-(0)(M-). The (T, 0)-invariant subspace of
L+((T, 0)) which corresponds to Mo is

S, [K (o)] Mo) Sp [ IK+(O)] IIo"

The ( T, O)-invariant subspaee belonging to (n) which corresponds to S is S S@
([J(S1)]-1- L-((I)( T, 0))).

We claim that

[J(S)]-L-((T’O))=SP K-(O)(I-no).
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First, we note that

dim Sp
K-(0)

(I-IIo) =dim Sp (I-IIo) n-dim Mo n-dim $1

dim ([J(S1)]+/- L-((I)( T, 0))).

Consequently, to prove the claim, it suffices to show that

[ I ](I-Ho)c[J(S1)]+/-CIL-((T,O)).Sp
K-(O)

Since

we have

Sp
K-(0)

L-((T, 0)),

Sp
K-(0)

(I-Ho) L-((T, 0)).

So we need only show that

Sp
K-(O)

(I rio)
_

[Y(S1)]+/-.

To show this, we must prove that

(I-IIo)’[I K-(0)]J K+(0 IIo=0,

which is equivalent to (I-rio)’A(0)IIo 0. Since IIo is the projection onto Mo along
A-I(0)(M-), it follows immediately that this equation holds, which proves the claim.
Thus, the (T, 0)-invariant subspace belonging to (n) which corresponds to $1 is
given by

(4) s=sp K/(0)no(R)Sp K-(0)(1-no).
The periodic equilibrium which corresponds to S is K(t)= y-l((t, 0)(S)). We

claim that

(5 ,(, 0l(s sp
K/(n(l+ K-((-n(l

Note that it follows immediately from this claim that y-l((t, 0)(S))=
K+(t)II(t)+K-(t)(I-ri(t)) which would prove the first assertion of the theorem.
From (14), we have

(16) Op( t, O)( S) Sp OP( t, O) K+(0
IIoSp(t, 0) K-(0)(/-rio).

From the first paragraph of the proof of Lemma 2, it follows that if Kl(t) is any
periodic equilibrium of the PRDE, then

(17) (t, to)
Kl(to) Kl(t) /A-SS’K,(t, to).
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Applying (17) with K(t)= K+(t) gives

Sp(t, 0) K/(0
Ho=Sp

K t)
A/(t’0)H"

Since M(t)-A/(t, 0)(Mo), we obtain

Applying (17) with K(t)= K-(t) gives

Spa(t, 0)
K-(0)

(-no)=Sp
K )

-(t, 0)(I-no).

Using Lemma 10, we have

(19) A-(t)OA+(0, t)(M)
-(t)(M(t);) Sp (I n(t)).

Thus,

(20) Sp(t, 0) K-(0)(I-IIo)=Sp K t)(I-II(t)).
Using (18) and (20) in (16), we obtain

[ II(t) I-II(t) ](t,0)(s)=sp K+(t)n(t) K-(t)(I-n(t))

=Sp
K+(t)H(t)+K_(t)(i_H(t))

This establishes the validity of (15) and shows that the periodic equilibrium which
corresponds to Mo is in fact K(t)= K+(t)H(t)+ K-(t)(I-H(t)) as asserted.

Now we prove that L+(d/A_aB,r(t+T,t))=M(t) and L-(d/A_B,l((t+ T, t))=
A-l(t)(M(t)+/-). Since Mo is OA+(T, 0)-invariant, we have d/A+(t+T, t)(M(t))=rpA+
(t/ T, t)OA+(t, O)(Mo)=tpA+(t+ T, T)OA+(T, O)(Mo)=OA+(t, 0)(Mo)--M(t). Hence,
M(t) is tpA+(t/ T, t)-invariant. It follows from this together with the Corollary to
Lemma 10 that A-l(t)(M(t)+/-) is OA-(t+ T, t)-invariant.

We claim that OA-’:(t + T, t) agrees with OA+(t + T, t) on M(t) and agrees with
d/A-(t+ T, t) on A-(t)(M(t)-). Let Zo Mo, and let z( r) OA+( r, 0)Z0. From the part
of the theorem which has already been proven, we know that K (r) agrees with K+(z)
on M(r). Since z(r)M(r), this implies that (d/d-)z(-)=A+(z)z(a’)
(A(r)-B(z)B’(z)K(’))z(r). Consequently, z(r)-OA-’K(Z, 0)Z0. Hence,

g,_,,(z, O)zo= ,,c(, O)zo v.

In particular, we have OA-B’r( + T, t)z( t) d/A-’l(( + T, t)tA_B,:( t, O)Zo
tPA-’l(( + T, O)zo OA+( + T, O)zo d/A+( + T, t)tPA+( t, O)Zo d/A+( + T, t)z( t). Since
z(t) is an arbitrary element of M(t), this shows that OA-,r(t+ T, t) agrees with
@A+(t + T, t) on M(t).

Let yoA-(O)(M), and let y(r)=6A-(’r,O)yo. From (19), we know that y(r)
A-(r)(M(’r)-), and every element of A-(r)(M(z)-) can be expressed in the
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form q’A-(’, 0)y0 for some choice of yoe A-I(0)(M-). From the part of the theorem
which has already been proven, we know that K(-) agrees with K-(-) on
A-(’)(M(’)-). Since y(-)A-(’)(M(-)x), this implies that (d/d-)y(z)=
A-(-)y(-) (A(-)- B(-)B’(-)K(-))y(-). Hence, y(-) q’A-Bn’K(’, 0)yo. Thus,

q&_..,,,(, O)yo= q&-(, O)yo .
Consequently,

OA-BB’K( + T, t)y( t) A-B’K( + T, t)qtA_aa,K( t, 0)yo

A-UU’K( + T, 0)yo qtA-( + T, 0)yo.

OA-( + T, t)OA-( t, O)yo qtA-( + T, t)y( t).

Since y(t) is an arbitrary element of A-l(t)(M(t)+/-), this shows that l’A--a’K(t+ T, t)
agrees with qA-(t+ T, t) on A-l(t)(M(t)+/-).

At this point, we have proven that M(t) and A-(t)(M(t)+/-) are complementary
subspaces, that M(t) is q,A+(t+T,t)-invariant and A-l(t)(M(t) +/-) is qA-(t+T, t)-
invariant, that qtA_,K(t + T, t) agrees with OA+( + T, t) on M(t) and with 0A-( + T, t)
on A-l(t)(M(t)+/-). In particular, M(t) and A-l(t)(M(t) +/-) are both qA-B’K(t+
T, t)-invariant. Since every eigenvalue of ’A+(t + T, t) is inside the unit circle and every
eigenvalue of q’A-(t+ T, t) is outside the unit circle, it follows immediately that
L+(qtA_,,,K(t+ T, t))= M(t) and L-(qtA-B,K(t+ T, t))=A-l(t)(M(t)-), which com-
pletes the proof. [3

Remark 2. Since M(t) is completely determined by the choice of the q,A+(T, 0)-
invariant subspace Mo, it is possible to give a formula which expresses the projection
H(t) in terms of the projection IIo. The formula is given by

(21) H(t) 4ta+(t, 0)IIo[@a+(t, 0)Ho+ Oa-(t, 0)(I 1-Io)]-1.

To prove this formula, let II(t) denote the right-hand side. First we show that the
indicated inverse exists. Suppose not. Then there exists x e " such that q,A+(t, 0)Hox
--d/A-(t, 0)(I-rIo)x. From the definition of M(t), it is clear that 4,a+(t, 0)Hox M(t).
From (19) it follows that --a-(t, O)(I--rlo)X A-l(t)(M(t)-). Since m(t) and A-l(t)
(M(t)-) are complementary, we obtain Hox=0 and (I-rlo)x o, which implies that
x 0. Thus, the indicated inverse exists.

Next we show that I’I(t) is the identity on M(t). Let x(t) M(t). Then there exists
Xo mo such that x(t)= A+(t, O)Xo. Now, [qA+(t, 0)IIo+ q’A-(t, 0)(I-Ho)]Xo x(t).
Hence, l’I(t)x(t) x( t).

Finally, we show that l’I(t) is zero on A-l(t)(m(t)+/-). Let y(t)eA-l(t)(m(t)+/-).
By (19), there exists yoe A-I(0)(M-) such that y(t)= q’a-(t, O)yo. NOW, [q,A+(t, 0)IIo+
q’A-(t, 0)(I-Ho)]Yo y(t), from which it follows that I(t)y(t)=0. We conclude that
II(t) is the projection onto M(t) along A-l(t)(M(t)+/-), which establishes (21).

Remark 3. It is interesting to consider the specialization of Theorem 5 to the case
where A(. ), B(. ), and C(. are constant matrices A, B, and C (and hence T-periodic
for any T>0). In this case, K+(t) y-(p(t, 0)(L+((T, 0)))) y-(eH’(L+(eH))).
It is clear that L+(eH’) is the sum of the primary components of H corresponding to
its n eigenvalues in the left half-plane. Thus, L+(eHT) is H-invariant (and hence
Hte -invariant as well). Consequently, the solution K+(t) is constant. Let K+ denote

this constant solution. Similarly, the solution K-(t) is constant which we denote by
K- Let A+=- A-BB’K+ and let A- K+- K- Then Theorem 5 specializes to give
the next Corollary.

COROLLARY. Suppose that A, B, C are constant with (A, B) controllable, and suppose
that H has no eigenvalues on the imaginary axis. There is a one-to-one correspondence
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between the set ofT-periodic solutions of the RDE and the set ofeA+’-invariant subspaces
A+Tof R Let Mo be an e -mvarant subspace, let M(t)-- eA/t(Mo), and let II(t) be the

projection onto M(t) along A- (M(t) +/-). The T-periodic solution corresponding to Mo is

K(t)= K+II(t) + K-(I-II(t)). Furthermore, L+(d/A_aa,:(t+ T, t))= M(t) and
L-(d/A_aa,r(t+ T, t))=A-l(M(t)+/-).

This result generalizes Willems’ classification of the equilibria of the time-invariant
RDE [24, Thm. 6] to include the periodic solutions as well. A direct proof of a similar
generalization appears in our paper [20].

The next result shows that the bijection described by Theorem 5 has the additional
property of being order-preserving.

TREOREM 6. Suppose that (A( ), B( is controllable and that dp( T, O) has no

eigenvalueson the unit circle. Let Mo and Mo be A/( T, O)-invariant subs,paces, and let
K (t) and K (t) be the periodic equilibria which correspond to Mo and Mo respectively.
Then K <= if and only if Mo

_
11o.

Proof. Let M( t) d/A/( t, 0)(Mo) and let ll(t)=a/(t, 0)(/t7/0). Let Ii(t) be the
projection onto M(t) along A-l(t)(M(t)-), and let Irl(t) be the projection onto hT/(t)
along A-l(t)(//(t)-). It follows from Theorem 5 that

(22) K (t) K (t) A( t)[II(t) 1I( t)].

Suppose that Mo 57/0. Then M(t) 57/(t), and A-l(t) (hT/(t) +/-) __. A-l( t)(M(t)+/-). Using
the fact that M(t)O3A-l(t)(M(t)+/-)=R" and ll(t)O)A-l(t)(ll(t)+/-)=R", it is easy to
show that

M(t)[A-I( t)(M( t)+/-) CI l1( t)][A-l( t)(]( t)+/-)]= l".

Thus, given x", we can write x=u+v+w with uM(t), vA-l(t)(M(t)+/-)fq
//(t) and wA-l(t)(l(t)). Then x’(Z(t)-K(t))x=x’A(,t)[I(t)-II(t)]x=
x’A(t)[u+v-u]=(u’+v’+ w’)A(,t)v v’A(t)v>--O. Hence, K(t) < K(t).

Now suppose that MogMo. Then A-l(t)(ll(t)-)C.A-l(t)(M(t)+/-). Let y
A-l(t)(//(t) +/-) with y: A-l(t)(M(t)+/-). Since M(t))A-l(t)(M(t))=R,", we can write

y=u+z with uM(t), zA-l(t)(M(t)+/-), and with u0. Then y’(K(,t)-K(t))y=
y’A(t)[I’I(t) II(t)]y -y’A(t)II(t)y -y’A(t)u -u’A(t)u < 0. Thus, K (t) K (t) is
not nonnegative definite, l-1

As an immediate consequence ofthe preceding theorem, we have the next corollary.
COROLLARY 1. Suppose that (A(.), B(. )) is controllable and di,(T,O) has no

eigenvalues on the unit circle. Then every periodic equilibrium K t) satisfies

K-(t) -<_ K (t) <- K+(t), Vt.

By definition, a complete lattice is a partially ordered set with the property that
every subset has a least upper bound and a greatest lower bound. Since the set of all
invariant subspaces of a given square matrix (partially ordered by inclusion) is a

complete lattice, the next result follows directly from Theorem 6.
COROLLARY 2. Suppose that (A(.), B(. )) is controllable and ,(T,.O) has no

eigenvalues on the unit circle.. Then the set ofperiodic equilibria is a complete lattice with

respect to the usual partial ordering of symmetric matrices.

The preceding corollary generalizes to the PRDE results of Coppel [8] for the
equilibria of the time-invariant RDE and of Shayman [20] for the T-periodic solutions
of the time-invariant RDE.

In the case where the pair (C(.), A(. )) is observable, the following result of
Shayman [19] describes the signature of each periodic equilibrium.
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THEOREM 7. Suppose that C( ), A( )) is observable and there exists a periodic
equilibrium Kl(t) to the PRDE. Let Al(t)=-A(t)-B(t)B’(t)Kl(t). Then AI(" has no
characteristic multipliers on the unit circle, K1 (t) is nonsingular, and the number ofpositive
(negative) eigenvalues of Kl(t) is equal to the number of characteristic multipliers of
At(. of modulus less (greater) than 1.

COROLLARY. Suppose that (A(. ), B(. )) is controllable and (C(. ), A(. )) is
observable. Let Mo be a OA/( T, O)-invariant subspace, and let K t) be the corresponding
periodic equilibria of the PRDE. Then K(t) is nonsingular, and the number ofpositive
eigenvalues of K t) is equal to the dimension of Mo.

Proof. It follows from 13] that the controllability of (A(.), B(. )) and observability
of (C(.), A(. )) imply that (T, 0)has no eigenvalues on the unit circle. By Theorem
7, K (t) is nonsingular, and the number of positive eigenvalues of K (t) is equal to the
number of eigenvalues of ABB,K(T, 0) inside the unit circle, or equivalently the
dimension of L+(d/A_B,K(T, 0)). By Theorem 5, L+(OA_B,K(T, 0))= Mo. [q

Remark 4. The reference [13] assumes that (T, 0) has distinct eigenvalues.
However, this assumption is not needed for the proof of the result referred to in our
proof of the preceding corollary.

Remark 5. An immediate consequence of the preceding corollary is that if (A(.),
B(. )) is controllable and (C(.), A(. )) is observable, then K/(t) is the unique positive
definite periodic equilibrium, and K-(t) is the unique negative definite periodic
equilibrium. Every other periodic equilibrium is nonsingular (and hence of constant
signature) but indefinite.

Theorem 5 describes every periodic equilibrium ofthe PRDE by giving a one-to-one
correspondence between the set of periodic equilibria and the set of invariant subspaces
of the n x n matrix I//A+ T, 0). This result is valid even if the monodromy matrix ( T, 0)
has multiple eigenvalues and even if it is nondiagonalizable. The result has several
additional attractive features. Geometric properties of the set of generators of the
periodic equilibria (i.e. the set (Ko: K(t, Ko, 0) is a periodic equilibrium}) can be
obtained from recent results on the geometry of the space of invariant subspaces of a
finite-dimensional linear operator [21]. Since by Theorem 6 the bijection is order-
preserving, it describes the periodic equilibria not simply as a set, but as a lattice. In
other words, the classification describes the partial ordering of the periodic equilibria
in addition to describing the periodic equilibria themselves. Furthermore, it follows
from the Corollary to Theorem 7 that if (C(.), A(.)) is observable, the signature of
each periodic equilibrium is completely determined by the dimension of the associated
I]/A+ T, 0)-invariant subspace.

Our classification of the periodic equilibria is quite different from that given in
[1]. Also, the results in that reference require that (T, 0) have distinct eigenvalues
and that K/(t) and K-(t) be invertible. The invertibility assumption excludes the
PRDE’s arising from many problems of interest such as those corresponding to
nonobservable systems or to control problems with conflicting objectives.

4. Stability of periodic equilibria.
THEOREM 8. Suppose that (A(.), B(. )) is controllable and dp( T, O) has no eigen-

values on the unit circle. Then
(a) K+(t) is uniformly asymptotically stable in backward time. K-(t) is uniformly

asymptotically stable in forward time. No other periodic equilibrium is asymptotically
stable in either forward or backward time.

(b) K(t, Ko, to) converges to K/(t) as t--o if and only if Ko> K-(to).
(c) K t, Ko, to) converges to K-(t) as - o if and only if Ko < K+(to).
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Proofi (a) Let Ke(t) be a periodic equilibrium of the PRDE, and let Ae(t)=-
A( t) B( t)B’( t)Ke( t). Let K(t)=K(t)-Ke(t). Then K(t) satisfies the differential
equation

(23) K(t)=-A’e(t)K(t)-K(t)Ae(t)+ K(t)B(t)B’(t)K(t).

By inspection, the linearization of (23) at the origin is

(24) / -A’e( t) (t) I (t)ae(t).

The characteristic multipliers of this periodic linear system are {,X -Af}j__< where
are the characteristic multipliers associated with Ae(" ). By the Corollary to Lemma 2,
it follows that if Ke(t)= K+(t) every characteristic multiplier of (24) is outside the
unit circle, while if K(t)= K-(t), every characteristic multiplier of (24) is inside the
unit circle. If Ke(t) is any other periodic equilibrium, (24) has at least one characteristic
multiplier inside the unit circle and at least one characteristic multiplier outside the
unit circle. The assertions of (a) follow immediately from the linearization principle
[25, p. 127].

(b) Transform the PRDE by defining K (t) K (t) K-(t). Then K (t) satisfies
the differential equation

(25) I (t) -A-’( t)( (t) ( t)A-( t) + (t) B(t) B’( t)I (t)

where A-(t) A(t)- B(t).B’(t)K-(t). Let K(t, Ko, to) denote thesolution~ of (25) which
goes through the point Ko at to. It suffices to show that K (t, Ko, to) converges to
K/(t) K-(t) =- A(t) as -, -o if and only if/o> 0.

We claim that if Ko is singular, then K (t, Ko, to) is singular as long as the solution
continues to exist. Similarly, if Ko is nonsingular, then K (t, Ko, to) is nonsingular as
long as the solution continues to exist. To see this, rewrite (25) as

(26) I (t) -A-’( t) t) ( t)(A-( t) B(t) B’( t)( t) ).

Thus, /(t) satisfies a homogeneous linear matrix differential equation. Let O(t, to)
and 0(t, to) denote the transition matrices corresponding to -A-’(t) and -(A-(t)-
B(t)B’(t)K(t))’. It follows from (26) that

K(t)= O(t, to)K(to)O(t, to).

Thus, K (t) is singular if and o.nly if K (to) is singular,.provng the claim. An immediate

cons.equence of this is that if Ko is nonsingular, then K (t, Ko, to) has the same signature
as Ko, since no eige.nvalu.es can pass through 0.

Suppose that K (t, Ko, to) converges to A(t) as t-, -. Let C {A(t)" [0, T]}
and let D denote the subset of S(n) consisting of all those symmetric matrices which
are positive definite. Let S(n)-D denote the complement of D in S(n). Let

= inf IIx- YII.
xec

/S(n)-D

Since C and S(n)-D are disjoint subsets of S(n) with C compact and S(n)-D
closed, it follows that > 0. Since/ (t,/o, to) converges to A(t) as + -, there exists
tl =< to such that IlA(t).--/(tl,/.o, to)ll.< . Hence,/(t,/o, to) D. Sinc.e/.(t,/o, to)
is nonsingular, so is Ko. Since K (tl, Ko, to) has the ~same.signature as Ko, Ko must be
positive definite. Thus, a necessary condition for K(t, Ko, to) to converge to A(t) as-- is that /o > 0.
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Conversely, suppose that /o> 0. We show that /(t,/o, to) exists for all <= to
and converges to A(t) as t->-oo. Consider the linear matrix differential equation

(27) P(t) P(t)A-’(t)+ A-(t)P(t)- B(t)B’(t).

Let d/A-(t, to) denote the transition matrix corresponding to A-(t). Let P(t, Po, to)
denote the solution of (27) which goes through Po at to. Then

(a P(, Po, to)= 4,-(t, oeo4,-(, o)- ,,-(t, (’()4,-(, ) .
Since/g is positive definite, it follows from (28) that P(t,/g, to) is positive definite
for all t_-< o. Thus, [P(t,, to)]- exists for all <= to, and it is straightforward to
check that [P(t,/, to)]- satisfies (25). By uniqueness, we have

(29) (t, (o, to)=[P( t, /-1, t0)]-l,

which shows that the solution/ (t,/o, to) exists for all <_- to.
Since A(t) is a solution of (25) which is nonsingular for all t, it follows that A-l(t)

is a solution of (27). From (28), we have

(30) P( t, -1, to) A-l(t) -/A-(t, to)[/-1- A-l( to)]b-( t, to).

Since every characteristic multiplier of A-(.) is outside the unit circle, there exist
positive constants c, c2 such that

II,-(t, )ll-<-c, exp{-c2(--t)} Vt_-<z.

Thus, if <_-to, we have

(31) liP(t,/-l, to)_ A-l(t)[i __< c exp {-2c2(to- A-’(to)ll.
From this, we obtain

II/(t,/o, to)-A(t)ll- I[/(t,/o, to)[A-’(t)-P(t, (’,
(32)

--< IIg:(t,/o, to)ll IIA(t)llc, exp {-2c2(to-

From (32) it is clear that to prove that /(t,/o, to) converges to A(t) as t->-0% it
suffices to show that A(t) and K (t, Ko, to) are bounded on (-oo, to]. The boundedness
of A(t) follows trivially from its periodicity. From (29), it is clear that to prove that
/(t,/o, to) is bounded, it suffices to show that P(t,(1, to) is bounded and
det P(t,/-, to) is bounded away from 0. By (31), P(t,/, to) converges to the periodic
motion A-(t) as t-->-oo, so P(t, ’, to) is bounded on (-0% to].

It remains only to show that det P(t,/1, to) is bounded away from 0 on (-oo, to].
Let F {A-l(t)" [0, T]}. Let a min,to,r det A-l(t). Since A-(t) is positive definite
for all t, a>0. Let U={XS(n): detX>1/2a}. Then U is an open subset of S(n)
which contains F. Let

6 inf X YII.
XF

YS(n)-U

Since the compact set F is disjoint from the closed set S(n)- U, it follows that 8 > O.
Since P(t,/, to) converges to A-l(t) as --, there exists tl -<_ to such that A-l(t)
P(t,/, to)I] < , Vt< tl. Thus, P(t,/, to) U, Vt<t. Hence, detP(t,K1, to)>
a, Vt<tl. Since P(t,K to)>0, Vt-<to, there exists /3>0 such that
det P(t,/, to) ->_/3, V t, to]. This shows that det P(t,/, to) --> min (/3, 1/2 a), V =<
to, proving that det P(t,/1, to) is bounded away from 0 on (-oo, to]. This completes
the proof of (b).
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(C) The proof of (c) is analogous to the proof of (b). One starts by defining
/ (t) K (t) K+(t) and proceeding parallel to (b). The details are left to the reader. [3

The preceding theorem describes all those solutions which converge to K/(t) as
t- and all those solutions which converge to K-(t) as to. In 7, we will
describe all those solutions which converge to a given almost periodic solution as

+o. As a special case ofthis result, we will determine those solutions which converge
to a given periodic equilibrium other than K+(t) or K-(t).

5. Finite escape times. In this section, we determine exactly which solutions of
the PRDE escape in finite forward time or finite backward time. Note that from
Theorem 8, a sufficient condition for K (t, Ko, to) to have no finite escape in forward
time is that Ko < K/(to), and a sufficient condition for K(t, Ko, to) to have no finite
escape in backward time is that Ko> K-(to).

The next lemma generalizes to periodic linear systems a well-known result for
time-invariant systems. (See e.g. 14].)

LEMMA 11. Suppose that (A(. ), B(. )) is controllable and that every characteristic
multiplier of A(. is inside the unit circle. Then given any to and any symmetric matrix
Po, there exists z >= to such that

w to t > Po

Proof. Consider the periodic Lyapunov differential equation (PLDE)

P( t) A( t)P( t) + P( t)A’( t) B( t)B’( t).

Let P(t, Po, to) denote the solution of the PLDE which goes through Po at to. Then

P(t, Po, to)- A(t, to)Pod/’A(t, to)- d/A(t, o.)B(o.)B’(o’)b’A(t, o.) do’.
to

Consider also the SHPRDE

(t)=-A’(t)K(t)-K(t)A(t)+ K(t)B(t)B’(t)K(t).

We have (A(.), B(.)) controllable and K+(t)-= 0. Since A(t) > 0, it follows that
K-(t)<0. Since K-(t) is nonsingular for all t, it is straightforward to check that
K-(t)-1 satisfies the PLDE. Thus, P(t, K-(to)-1, to) K-(t)-1. Since every characteris-
tic multiplier of A(. is inside the unit circle, there exist positive constants c, c2 such
that

Hence,

II A(t, t0)ll exp {-c_(t- to)} Vt => to.

(33)
liP(t, Po, to)- K-(t)-ll--lld/A(t, to)[Po- K-( to)-l]d/A( t, to)l]

--< c exp (-2c=(t- to)} IIPo-/-(to)-

which goes to 0 as t- c. Let F={K-(t)-: t[0, T]}, and let G denote the subset of
S(n) consisting of all those symmetric matrices which are negative definite. Since the
compact set F is disjoint from the closed set S(n)-G, it follows from (33) that there
exists some z >- to such that P(t, Po, to) G, V >- s. Thus, P(t, Po, to) < 0, V -> s. From
this we immediately obtain

0> ffA(t0, t)P(t, Po, to)ff(to, t)= Po- WA(to, t) Vt >= tf.
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We conclude that

WA(to, t)>Po Vt>-tf.
Since Po is arbitrary, the proof is complete.

TIqEOREM 9. Suppose that (A(.), B(.)) is controllable and ( T, O) has no eigen-
values on the unit circle. Then

(a) K(t, Ko, to) has no finite escape time in forward time ifand only ifK+(to) >- Ko.
(b) K( t, Ko, to) has nofinite escape time in backward time ifand only ifKo>= K-(,,to).
Proof (a) Transform the PRDE by defining / (t) K (t) K+(t). Then K (t)

satisfies the differential equation

(34) I(t)=-A+’(t)I(t)-I(t)A+(t)+ I(t)B(t)B’(t)I(t)
where A+(t)=A(t)-B(t)B’(t)K+(t). Let /(t,/o, to) denote the solution of (34)
which goes through the point /o at t=to. Since K(t, Ko, to)-K+(t) satisfies (34),
uniqueness of solutions implies that I(t, Ko- K+(to), to) K(t, Ko, to)- K+(t). Since
K+(t) exists for all,,t, it follows that K(t, Ko, to) has a finite escape time in forward
time if and only if K (t, Ko- K+(to), to) has a finite escape time in forward time. Since

+(to),,>=Ko if and only if Ko-K+(to)<-O, (a) is equivalent to,, the assertion that
K (t, Ko, to) has no finite escape in forward time if and only if Ko <--0.

The Hamiltonian matrix which corresponds to the SHPRDE (34) is

II( t) [A+(
and the associated transition matrix is

(35) t(t, to) [ t, to)
0

where

-B(t)B’(t)]_A+,(t)

--d/A+( t, to) WA+( to, t) 1
d/A+( to, t)

WA+(to, t)= d/A+(to, cr)B(o’)B’(cr)d/’A+(to, o’) dtr.
tO

/(t,/o, to) has a finite escape time te> to if and only if (te, to)(y(/o)) o(n)
and (t, to)(T(/o)) o(n), Vt[to, t). Thus, /(t,/o, to)^escapes in finite forward
time if and only if there exists t> to such that (t, to)(T(Ko)) is not complementary
to Sp []. From (35), we have

(36) *(t, to)(T(/o)) Sp [ d/A+(te’ t)--d/A+(te’ to)WA+(to, te)Io]@’A+( to, tlKo
Let Z(t) =- I- W/(to, t)I22o. By (36),/(t,/o, to) escapes in finite forward time if and
only if there exists t> to such that a/(t, to)-Oa/(t, to) WA/(to, te)Ko is singular, or
equivalently such that Z(t) is singular. Let U(t) denote the symmetric matrix KoZ(t,,).
It is straightforwardto show that Z(t) is nonsingular if and only if ker U(t) ker Ko.

Suppose that Ko<_-0. Showing that K(t, K%, to) has no finite escape in forward
time is equivalent to showing that ker U(t) ker Ko, V >_- to. Trivially we have ker Ko
ker U(t). Let >-to and suppose that x e ker U(t). It follows that

x’Kox x’Ko WA/( to, t) Kox O.

Since,, Ko<-0 and Wa+(to, t)>-O, it follows that x’Kox=O, which then implies that
Kox 0. Thus, ker U(t)= ker Ko, V t->_ to.
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Conversely, suppose that/0 is not negative semidefinite. In other words,/o has
at least one positive eigenvalue. Let r denote the rank of Ko. Choose M e O(n) (the
group of n x n orthogonal matrices) such that the matrix Ko- M’KoM has the form

where~ Ro is r r symmetric, nonsingular.., and has at least one positive eigenvalue. Let
W(t)=-M’WA/(to, t)M, and partition W(t) as

[ W(t) W2( t) ]W(t)
W21(t) WE2(t)

with W11 (t) r r. Let U(t) -= M’ U(t)M. Then it is trivial to check that

(37) (t)= (o_oV(t)(o= [Ro-RoWll(t)Ro O]0 0

To show that K(t, Ko, to) has a finite escape in forward time is equivalent to
showing that there exists te> to such that ker Ko ker U(te). In other words, we must
show that there exisf’ te> to such that rank U(te)< r, or equivalently, such that
rank /](te)< r. By (37), this is equivalent to showing that Ro-Ro Wl(te)Ro is singular.
Since ’(to) 0, Ro- Ro Wl(to)Ro Ro and hence has at least one positive eigenvalue.

We claim that Ro-RoW(t)Ro eventually becomes negative definite. By Lemma
11, given any n n symmetric matrix P, eventually WA+(to, t)--P becomes positive
definite. Equivalently, given any n n symmetric matrix P, eventually W(t)-P
becomes positive definite. This implies that given any rr symmetric matrix
PI, Wl(t) Pll eventually becomes positive definite. Since Ro- Ro Wl(t)Ro
Ro(Rff W(t))Ro, it follows that Ro- Ro Wl(t)Ro eventually becomes negative
definite, as claimed. Since Ro-RoW(to)Ro has at least one positive eigenvalue, there
exists te> to such that Ro-RoW(te)Ro is singular. Hence, K(t, Ko, to) has a finite
escape in forward time, which completes the proof of (a).

The proof of (b) is analogous to the proof of (a) and is left to the reader.
An assertion which is equivalent to the conclusion of (b) appears in [7, Thin. 6].

However, no assumptions are specified and no proof is given. It is easy to show that
the result is not true without the assumption of controllability.

6. Almost periodic solutions. In this section, we determine all ofthe almost periodic
solutions of the PRDE. These solutions include as special cases the constant solutions,
periodic equilibria (i.e. T-periodic solutions), and periodic solutions which are not
T-periodic. The approach we take consists of 2 steps. Firstly, we determine every
almost periodic solution of the EPRDE--i.e. of the Riccati differential equation
extended to (n). Secondly, we prove that every such solution is completely contained
in the subset o(n) and hence corresponds (via the embedding y S(n)- (n)) to an
almost periodic solution of the PRDE on S(n). Thus, we obtain a description of every
almost periodic solution of the PRDE on S(n).

The standard definition of a complex-valued almost periodic function [9] can be
generalized to a function which takes values in a complete metric space. Let (X, p) be
a complete metric space, and let f:- X be a continuous function. We say that f is
almost periodic if and only if given any sequence of real numbers {a,}, there exists
a subsequence {a,j} such that the sequence oftranslates {f(t + a,j)} converges uniformly
in as j . This generalizes the so-called Bochner definition of an almost periodic
complex-valued function. We will need several basic properties of almost periodic
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functions with values in either a complete metric space or in a Banach space. These
are summarized in the Appendix.

The Grassmann manifold G"(R2") of all n-dimensional subspaces of R2, can be
given the structure of a metric space by defining on it the so-called "gap metric" 0.
(See [10] for details concerning this metric.) If S1, S2E Gn(2n) and if P1, P2 are the
orthogonal projections onto S, and $2 respectively, then 0($1,$2)=defllP1--P2[I
(operator norm).

Remark 6. The gap metric is widely used by analysts. However, topologists define
a topology on G"(") in a different way. Let V,(") denote the set of all 2n n full
rank matrices with real entries. V,(2") is an open subset of R"" and thus has the
standard Euclidean topology. (V,(2") is known as a Stiefel manifold.) Define a
mapping q" Vn(Zn) --> Gn(2n) with q(Y) the column space of the matrix Y. Then
G"(2") is given the quotient topology induced by the surjective map q. In other
words, a subset U of G"(R2") is open if and only if q-l(U) is open in V,(2"). It is
not hard to show that the quotient topology is in fact the same as the topology induced
by the gap metric.

Let Sp (n, ) and GI (n, ) denote the symplectic group and the general linear
group respectively.

LEMMA 12. Let M Sp (n, ) be semisimple (diagonalizable) with no eigenvalues
on the unit circle. Then there exists P Sp (n, ) such that p-1Mp has theform [o (D-,),],
where 1 D is a nonsingular semisirnple matrix in real canonicalform (2) every eigenvalue
ofD has modulus less than 1; (3) the blocks on the main diagonal ofD are ordered by
increasing modulus of the corresponding eigenvalues.

Proof Since M is symplectic, semisimple, with no eigenvalues on the unit circle,
the real canonical form of M can then be taken to be of the form [’ (D-,y] with D as
described. Thus, there exists P e G1 (2n, ) such that

0 (D-l)

Let P=[V, W] with V, W each 2nn, and let R= V’JW. Then MV= VD and
MW W(D-1)’. Hence, R V’JW= V’M’JMW= D’V’JW(D-1)’= D’R(D-1)’.
Thus, D’ commutes with R.

Since Sp V L/(M) and Sp W L-(M), it follows from Lemma 3 that V’JV =0
and W’JW 0. Consequently,

-R’ 0

which shows that R is nonsingular. Define P=-[V, WR-1]. Then P’JP= J, so Pe
Sp (n, N). Using the fact that D’ commutes with R, it is easy to show that

MP=P
0 (D,)_I

i-]

LEMMA 13... Let " V1" ( V2r be a direct sum decomposition of 2n with the
specialproperty that [J( V)]+/- )2 Vi, j 1 2 r. Let A 1,i=l,i#2r--j+l A2r be ivlorlzero

real numbers (not necessarily distinct) with the property that Aj-1= A2-+l, j 1,. , r.

Define a linear transformation P on z, by Px Ax, x V, j 1,..., 2r. Then P
Sp (n, [).

Proof Let x V, y V, and suppose that i# 2r-j + 1. Then y’JPx Ajy’Jx O.
Also, y’(p-1)’jx= Av,ly’Jx=O. Now suppose that xe V and ye V2r-j+l. Then y’JPx=
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Ajy’Jx, and y’(p-1)’jx A2-]-j+ly’Jx Ay’Jx. Thus, y’JPx y’(P-)’Jx, Vx V, Vy Vi,
’qi, j. Hence, JP (p-1),j which proves that P Sp (n, R). [3

We are now prepared to begin to construct all of the almost periodic solutions of
the EPRDE on (n). We assume that (T, 0) has no eigenvalues on the unit circle.
Until otherwise specified, we make no additional assumptions concerning (T, 0),
A(.), B(.), and C(.).

Let/1 </2 <" </2r denote the distinct moduli of the eigenvalues of (T, 0).
Since (T, 0) is symplectic, it follows that 0</i < 1 for i= 1,..., r and /i > 1 for
i= r+ 1,. ., 2r. Also,/2r-+ =/-1, /i. Let Ei(t) denote the direct sum of the primary
components of (t + T, t) corresponding to those eigenvalues of(t + T, t) of modulus
]-’i (i- 1,..., 2r). Since (t + T, t) is symplectic, dim E(t)= dim E2r_i+l(t), li. From
the similarityrelation (t+ T, t)- (t, to)(to+ T, to)(to, t) it follows that

(38) E,( t) dP( t, to)(E,( to)).

Since E(to) is (t0+ T, to)-invariant, (38) implies that the subspace E(t) is T-periodic.
Note also that L+(dP(t+ T, t))= El(t)...Er(t) and L-(dp(t+ T, t))= E+(t)

"E2,(t).
Let (1, , I,) be an r-tuple of integers such that0 1 _-< dim E( t),j 1,. , r.

(By (38), dim E(t) is constant.) For each such/ and each t, define a collection of
subspaces of" " by U(I, t)=- {= [S([J(Sj)]+/- E2r_+(t))]: S G(E(t)), j=
1,... ,r}, where G(E(t)) denotes the Grassmann manifold consisting of" all /-
dimensional subspaces of" E(t). The next result shows that U(I, t) is actually a subset
of the Lagrange-Grassmann manifold (n).

LEMM 14. U(I, t) (n).
Proof. Let be fixed. It follows from Lemma 3 that

2r

(39) [J(Ej(t))]= @ E(t), j=l,...,2r.
i=1

i#2r--j+l

Define a linear transformation P on :" by Px-lx, /x E(t), j= 1,... ,2r. By
Lemma 13, P Sp (n, ).

Let S U(I, t). Then S can be expressed in the form S=;=[S([J(Sj)]-fq
E2_j+(t))], where S Gl(Ej(t)), j 1,. ., r. Since S

_
E(t), it follows from (39)

that J(S) is orthogonal to S, j= 1,..., r. Since J([J(S)]+/-fqE2,_+(t))is contained
in J(E2r-j+l(t)), it follows from (39) that J([J(S)]+/-E2_+I(t)) is orthogonal to

@r,=1., E,(t). From this and the fact that J([J(S)]- f’l Er_+(t)) S. fq J(E2,_j+(t)),
it follows that J([J(S)]+/-E2_+I(t)) is orthogonal to S, j=l,...,r. We conclude
that J(S) is orthogonal to S.

Since J(S) is orthogonal to $, it remains only to show that S is n-dimensional.
Since = dim E(t)= n, it suffices to show that

dim Sj +dim ([J(S)]+/- E2_/(t)) dim E(t),
j 1,..., r. From the definition of P, it follows that Sj is P-invariant. Since P
Sp(n,i), it follows that J(Sj) is P’-invariant, so [J(S)]- is P-invariant. Since
E(t), .., E2(t) are the eigenspaces of P, this implies that

2r

[(s)] [(s)] E,(t).
i=1

Since Sj
_
E( t), it follows from (39) that [J(S)]- E,( t) E( t) provided # 2r-j+ I.
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Hence

[J(j)]+/- ([J(j)]+/-f"lE2r_j+(t))t Ei(t)
i=1

i#2r-j+l

Equating the dimensions of the two sides in this equation gives 2n-dim
dim [J(Sj)]-f’I E2r_j+(t)+(2n-dim EEr_)+(t)). Since dim E)(t) dim E2_)+(t), we
obtain dim S)+dim[J(Sj)]-f3EE_j+l(t)=dim E)(t), which completes the proof.

The next result describes the invariant property of the family {U(/, t):
(1 fixed) with respect to the flow of the EPRDE.

LEMMA 15. U(l, t)=(t, to)(U(l, to)).
Proof. Let Se U(l, to). Then S can be expressed in the form S=

(5=, [S]O)([J(S])]an E2r-j+(to))], where S] GS(Ej(to)), j= 1,..., r. Thus,

(t, to)(S) 6 [(t, to)(S)O)(t, to)([J(S)]+/-f3 E2r-S+,(to))].
j=l

By (38), we have (t, to)(Sj) G6(E(t)), j= 1,..., r. Also,

:(t, to)([J(Sj)]+/- f’l E2,_+( to)) q(t, to)([J(S)]+/-) fq E2,_+( t)

[J((t, to)(Sj))]+/-(’l E:r-j+(t),

where the last equality is easily proven using the fact that q(t, to) is symplectic. Thus,

q(t, to)(S)= ) [(t, to)(S3)([J((t, to)(S3))]-fl E2r-+,(t))],
j=l

with (t, to)(S) G6(Ej(t)),j 1," ", r. Hence, (t, to)(S) U(l, t), which shows that

(t, to)(U(l, to))_ U(l, t). Reversing the roles of to and gives (to, t)(U(l, t))_
(U(I, to)), or U(I, t)(t, to)(U(l, to)). Thus, (t, to)(U(l, to)) U(I, t). VI

COROLLARY. f(t/ T, t)(U(l, t))= U(I, t).
Proof. From the definition of U(l, t) and the T-periodicity of the subspace E(t),

it follows that U(l, t)= U(l, + T), so the assertion is an immediate consequence of
Lemma 15.

Remark 7. Let n--dim E(t), j-1,..., r. (As previously noted, nj does not

depend on t.) It is clear from its definition that U(l, t) is an embedded submanifold
of (n) which is analytically isomorphic to the product of Grassmann manifolds

G,(",) x... x Gt,(R",). From the well-known fact that dim Gk(lm) k(m-k), it

follows that dim U(l, t)= q= l(n-l). Since U(l, t/ T)= U( l, t), we see that U(l,t)
is a product of Grassmann manifolds which oscillates with period T.

There is an important special case worth noting. Suppose that in addition to having
no eigenvalues on the unit circle, (T, 0) satisfies the condition that every eigenvalue
is distinct and if two eigenvalues have the same modulus, then they are a pair of
complex conjugates. It is easily seen that this additional condition is generic in the

space of symplectic matrices with no eigenvalues on the unit circle. This condition

implies that nj is equal to either 1 or 2. It is equal to 1 if (T, 0) has a real eigenvalue
of modulus/z, and is equal to 2 if( T, 0) has a pair of complex conjugate eigenvalues
of modulus/x. Since G(m) and Gm(m) are single points for any m, and G(2) is

the projective line which is topologically the circle, it follows that U(l, t) is a torus

(i.e. a product of circles) of dimension equal to the cardinality ofthe set {j: 1 <-j _-< r, n
2,/ 1}.
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We are now prepared to describe all ofthe almost periodic solutions ofthe EPRDE.
THEOREM 10. Suppose that ( T, O) has no eigenvalues on the unit circle and is

semisimple.
(a) If So E U(l, to), then S(t, So, to) is an almost periodic solution of the EPRDE,

and S( t, So, to) U(l, t), I t.

(b) No other solutions of the EPRDE are almost periodic.
Proof. If So U(l, to), then S(t, So, to)=tI(t, to)(So) U(l, t) by Lemma 15. By

Lemma 12, there exists P Sp (n, R) such that

AP-’(T’O)P=[DO (D-) ]
where (1) D is nonsingular semisimple in real canonical form; (2) every eigenvalue
of D has modulus less than 1; (3) the blocks on the main diagonal of D are ordered
by increasing modulus of the corresponding eigenvalues. Then D is of the form
D diag {txl D1,"’, ,tl,rDr} where Dj is dim Ej(O)xdim Ej(O) and is zero except for
1 1 and/or 2 2 blocks on the main diagonal. Each 1 x 1 block is either [1] or [-1],
while each 2 2 block is of the form

[ csa sinaicosc

We now construct a particular Floquet representation for the transition matrix
(t, to). It is a standard result that there exists a real matrix R such that A2-" e2R7". In
fact, we can define R as follows: Let

R-=
0

with W diag { W1,. , W} where W is obtained from D by (1) replacing each 1 x 1
block on the main diagonal ofD (whether[l] or [-1]) with the 1 x 1 block [(1/T) In ],
and (2) replacing each 2 x2 block of the form

[ cosa sinai-sin a cos a

on the main diagonal of D with the 2 2 block

ln- -ln
Then e %r 2 2 e2 WT D2.=/z D, so This implies that ear A2 as required. Let V(t)
P-(t, O)P e-R’. Then it is straightforward to show that V(t + 2T)= V(t) and

(40) (t, to) PV(t) ea(t-to)V-(to)P-.
Next, we modify R to obtain a new matrix as follows: Let if’-= diag { (’,. ., if’r}

where W W (1/ T) In/xjL Define

R
0 W’
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Since (and hence if’) is skew-symmetric, we have

0

Let (t, to)-- PV(t) e(t-to)v-l(to)P-1. We claim that if Soe U(l, to), then

(41) dP(t, to)(So)=(t, to)(So)

By the definition of U(l, to), So is of the form

(42) So + [Sj(([J(Sj)]+/-("I Ezr_j+,(to))]
j=l

where Sy GS(Ey(to)), j= 1,..., r. Consequently, to establish (41), it suffices to show
that if M is any subspace of Ey(to), then (I)(t, to)(M)= (I)(t, to)(M), j 1,..., 2r.

Now, Ey(to) is the sum ofthe primary components of (I)(to + T, to) which correspond
to eigenvalues of modulus /x. Then P-I(I)(0, to)(E(to)) is the sum of the primary
components of P-I(I)(0, to)(I)(to + T, to)(I)(to, 0) P P-I(I)( T, 0)P A which correspond
to eigenvalues of modulus /zy. From the definition of V(t), it follows that
e-Rtv-(to)P-1= P-I(O, to). Thus, e-Rtv-l(to)p-l(Ej(to)) is the sum of the primary
components of A which correspond to eigenvalues of modulus /x. It follows that
e-mV-(to)P-l(E(to)) is the sum of the primary components of Az which correspond
to eigenvalues of modulus/z}. Let F denote this subspace. From the structure of A2,
R, and R, it is apparent that if x 6 F, then

(43) ex r RX,tzj
"/ e j l, 2r.

Thus, e*lF is a nonzero scalar multiple of eR[. This is the key observation.
If M is a subspace of Ej(to), then e-R’v-I(to)P-I(M) is a subspace of F, so

for any - it follows from (43) that

(44) e(e-Rt v-( to)P-(M)) eR(e-R’v-( to)P-(1Vl)).
Using (44), we have

e(’-’o)V-(to)P-(iVI) e(t-,o) eR,o(e-moV-(to)p-l(M))
e,-,o) eto(e-R,oV-(to)P-,(M))
er’(e-R’oV-(to)P-(lVl))
eR(t-to)V-’(to)P-(Mj).

Using (40) and the definition of c(t, to), it follows that c(t, to)(M)=(t, to)(M),
which establishes the claim (41).

Let V(l") denote the subset of V,(I2") which consists of all 2n n matrices
with orthonormal columns. It is easily seen that V,(It2") is compact. From (41), we
have for So U(l, to)

(45) S(t, So, to)= PV(t) ekt-o)V-l(to)P-(So).
Let Xo be a 2n n matrix whose columns form an orthonormal basis for V-(to)P-(So).
In other words, Xo6 V,(2") and q(Xo) V-(to)^P-(So). (See Remark 6 for the
definition of q.) Since R is skew-symmetric, eR-t)O(2n). Thus, e-’)Xo
Vn(2n), Vt. Since V(t) is periodic with period 2T, we have {PV(t) e’(t-t)Xo: }
{PV(t)X" X V,(2"), t[0,2T]}=- which is compact since it is the image of
[0, 2T] V,(") under the continuous mapping (t, X)-- PV(t)X. Since each entry of
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ea(,-,o) is periodic, it follows from AP 3 in the Appendix that e(’-’o) is almost periodic.
Since V(t) is periodic, AP 4 implies that the product PV(t) e(’-’o)Xo is almost periodic.
The quotient map q: V,(2") G"(2,) is continuous, so its restriction to the compact
set is uniformly continuous. Since G"(z") is a compact (and hence complete)
metric space [10], and PV(t) er(t-to)Xol for all t, it follows from AP5 that
q(PV(t) eR(t-’o)Xo) is almost periodic. Since S(t, So, to)=q(PV(t)er(’-’)Xo), this
proves that .S(t, So, to) is almost periodic.

The proof of (a) is now complete. The proof of (b) is deferred to Remark 15 in
the next section. [3

Remark 8. Theorem 10 shows that there is a one-to-one correspondence between
the set of almost periodic solutions of the EPRDE and the disjoint union ! U(l, 0),
which is a union of submanifolds of (n) each of which is topologically a product
of Grassmann manifolds.

It is important to keep in mind that Theorem 10 characterizes every almost periodic
solution of the EPRDE--i.e. of the extended PRDE on (n). In general, there is not
a one-to-one correspondence between the set of almost periodic solutions of the PRDE
(on the space S(n) of n x n symmetric matrices) and the set of almost periodic solutions
of the EPRDE. The problem is that an almost periodic solution of the EPRDE may
intersect the subset (n)-o(n) of (n), or may be completely contained in this
subset. In either case, there is no corresponding almost periodic solution of the PRDE
on S(n).

The next lemma is an absolutely crucial result, and is rather surprising. It implies
that if (A(.), B(. )) is controllable, then every almost periodic solution of the EPRDE
is completely contained in o(n) and hence corresponds to an almost periodic solution
of the PRDE on S(n). Thus, in the presence of controllability, the almost periodic
solutions of the PRDE are in one-to-one correspondence with the almost periodic
solutions of the EPRDE (via the embedding y: S(n) (n)), and can be completely
described using Theorem 10.

LEMMA 16. Suppose that (T, O) has no eigenvalues on the unit circle and
(A( ), B( )) is controllable. Let S (n) and suppose that S is of the form S S+O) S-
where S+

_
L+((t+ T, t)) and S- L-((t+ T, t)). Then So(n).

Proof From the definition of K+(t) and K-(t), we have

L+((t+ T, t))=SP [KI+(t)] and L-((t+ T, t))=SP [KI_(t)].
Let k-= dim S+. Then there exist n k and n (n- k) full rank matrices D+, D- such
that

S+=Sp
K+()D+ and S-=Sp

K-(t)D-

Since Sea(n), we must have J(S+)_t_S-, which implies that (D-)’Z(t)D+=O. Now,

S=Sp K+(t)D+ K-(t)D-

so S e o(n) itt the n x n matrix [D+ D-] is nonsingular. Suppose ::iy eN and z eN"-
such that
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Then D+y+ D-z =0, so D+y -D-z. Premultiplying both sides by z’(D-)’A(t) gives
0= z’(D-)’A(t)D+y=-z’(D-)’A(t)D-z. Since A(t)> 0, this implies that D-z=O and
hence D/y 0 as well. Since D/ and D- each have full rank, y 0 and z 0. Thus,
[D/ D-] is nonsingular, which completes the proof.

COROLLARY. Suppose that b(T, O) has no eigenvalues on the unit circle and
(A(. ), B(.)) is controllable. Then U(l, t) c o(n), Vl, V t.

Proof. By Lemma 14, U(l, t)c (n), and it follows from the definition of U(l, t)
that each S U(l,t) is of the form S=S+O)S with S+_L+(d(t+T, t)) and S-
L-((t + T, t)). Thus, the assertion is an immediate consequence of Lemma 16. l-]

The following result describes every almost periodic solution of the PRDE.
THEOREM 11. Suppose that (A(.), B(. )) is controllable and that dp( T, O) is semi-

simple and has no eigenvalues on the unit circle. (a) Each So Ill U( l, to) determines a
unique almost periodic solution of the PRDE which is given by 3,-l((t, to)(So))=
K(t, ),-l(So) to). (b) Furthermore, every almost periodic solution is obtained in this way.

Proof. Let So U(l, to). By Theorem 10, S(t, So, to)--(t, to)(So) is an almost
periodic solution of the EPRDE. Furthermore, S(t, So, to) U(l, t), Vt. Define a map-
ping a :[0, T]x U(l, 0)-> (n) by a(t, S)-- (t, 0)(S). By Lemma 15, the image of
is kJta U(l, t). Since a is a continuous mapping and [0, T] U(l, 0) is compact, it
follows that the image of a is compact. By the Corollary to Lemma 16, kJta U(l, t)
o(n). The mapping y-1 o(n) --> S(n) is real-analytic. Restricted to the compact subset
kJta U(l,t), y-1 is uniformly continuous. Thus, it follows from AP5 that
y-l(S(t, So, to)) is almost periodic. The proof that every almost periodic solution of
the PRDE is of this form is deferred to Remark 16 in 7.

Remark 9. It follows from Theorem 11 that (under the stated hypotheses) the
almost periodic solutions of the PRDE are in one-to-one correspondence with the
points of II U(l, 0), which is a disjoint union of products of Grassmann manifolds.
So Ill U(l, 0) corresponds to the almost periodic solution 3-((t, 0)(So)). Comparing
this result with Theorem 3 shows that the periodic equilibria (T-periodic solutions)
of the PRDE are precisely those almost periodic solutions y-l((t, 0)(So)) for which
the subspace So is (T, 0)-invariant.

Remark 10. In theory, Theorem 11 can be used to compute any almost periodic
solution of the PRDE. Given a subspace So U(l, 0), choose any basis matrix [o] for
So with Xo, Yo each n n. Let

Then the almost periodic solution ’)t-l((I)(t, 0)(S0) is given by Y(t)x-l(t) where the
matrix inverse exists for all t.

In the case where (C(.), A(. )) is observable, we can determine the signature of
every almost periodic solution.

THEOREM 12. Suppose that (A(. ), B(. )) is controllable, C(. ), A(. )) is observable,
and dp(T,O) is semisimple. Let So U(l, to), and let K(t)=-y-l((t, to)(So)) be the
corresponding almost periodic solution of the PRDE. Then K t) is nonsingular and has
exactly j=l lj positive eigenvalues.

Proof. It follows from [13] that the controllability of (A(.), B(. )) and observability
of (C(.), A(.)) imply that (T, 0) has no eigenvalues on the unit circle. Let S(t)=-

(t, to)(So). Since So U(l, to), we know from Theorem 10 that S(t) U(l, t), Vt. Let
be fixed. From the definition of U(l, t) it follows that S(t) is expressible as S(t) S+ 03

S- with S+ L+((t+ T, t)) and S- L-(Cb(t+ T, t)). Consequently, if k denotes the
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dimension of S+, there exist n x k and n x (n- k) full rank matrices D+, D- such that

S+=Sp K+(t)D+ and S-=Sp
K-()D-

The condition that J(S)- S implies that (D-)’A(t)D+ 0, so Sp D- A-( t)(Sp D+)-.
Now,

S(t)=Sp K+(t)D+ K-(t)D-

By Lemma 16, S(t) o(n), so the n x n matrix [D/ D-] is nonsingular. Equivalently,
Sp D+ and A-l(t)(Sp D+) +/- are complementary subspaces ofRn. Let P be the projection
onto Sp D/ along A-I(t)(Sp D+)+/-. It is easily shown that

S(t)=SP[K+(t P+K-(t)(I-P)

which implies that

(46) K(t)= K+(t)P+ K-(t)(I- P).

By the Corollary to Theorem 7, K+(t) > 0 and K-(t) < 0. Consequently, if x
Sp D+ with x 0, then x’K (t)x x’K+(t)x > O, while if x A-I(t)(Sp D+) +/- with x 0,
then x’K(t)x x’K-(t)x O. It follows from a standard linear algebra result that K(t)
is nonsingular and the number of positive eigenvalues of K(t) is equal to dim Sp D+.
Since dim Sp D+= dim S+= j=l/, the proof is complete.

7. Convergence to almost periodic solutions. In the preceding section, we gave a
complete description of the almost periodic solutions of the PRDE (Theorem 11). In
this section, we will determine the asymptotic behavior of every solution of the PRDE.
In particular, we will show that under mild assumptions, a solution of the PRDE either
escapes in finite forward (backward) time or converges to an almost periodic solution
as -> (t -> -c). Our results describe exactly which almost periodic solution a given
solution approaches. We will obtain these results by first deriving the corresponding
results for the EPRDE--i.e. for the extended differential equation on the Lagrange-
Grassmann manifold.

We assume that (T, 0) has no eigenvalues on the unit circle. Unless otherwise
specified, we make no additional assumptions concerning (T, 0), A(.), B(.), and
C(.). For each t, define a flag (i.e. increasing sequence) of subspaces 0=
Mo(t) c Ml(t) c...c M2r-l(t) c MEt(t) R_n by

Mj( t) El(t), j 0,’’’, 2r.
i=l

2rFrom (38) it follows that Mj(t) is T-periodic. We call the T-periodic flag {Mj( )}j=o
t.2rthe stableflag associated with the PRDE. Define a second T-periodic flag {N( j=o by

(t) (R) r-,+(t), j 0, , 2r.

We call { N(t)}=o the unstableflag associated with the PRDE. As will be shown below,
the stable (unstable) flag plays a critical role in the description of the asymptotic
behavior of solutions of the PRDE as t--)o (t--)
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Let r/j(t) denote the linear projection onto Ej(t) along @l.i#j Ei(t). For each
S e (n), define

2r

I-I+(t)(S) rlj(t)(SMj(t))
j=l

and

2r

II-(t)(S)=- n_+(t)(S n Nj(t)).
j=l

The next result shows that II/(t) and II-(t) map (n) into itself. In fact, they each
map (n) onto the union of the Grassmannians {U(l, t)}1. (t is fixed here.)

LEMMA 17. Let S&e(n) and let be fixed. Let /j=dimSMj(t)-dim
S (q Mj_l(t), j 1,. ., 2r, let l =- dim S N2r-j+l(t) -dim S fq N2r_j(t), j 1,. ., 2r,
and let l=(l,...,l) and I’=(1,..., 1’). Then II+(t)(S) U(l,t) and l-I-(t)(S)
U(l’,t).

Proof. Construct a basis for S by starting with a basis for S f’) M(t) and extending
successively to bases for S f3 M(t),. ., S f’) M(t) S. Since M(t) 1Vl_(t)O) Ej(t),
this basis can be expressed in the form {vj+ wo" j= 1,...,/,; i= 1,...,2r} where
vj E(t), w,j M,_(t), and the set {vj’j 1,. , l 1, , 2r} is linearly indepen-
dent. Then

II+(t)(S)=Sp{vj’j 1,..., l, ;i= 1,... ,2r}.

Note that this shows that dim H+(t)(S) l+...+/2 dim $= n.
LetS,=-Sp{vij’j= 1,..., l}, i= 1,-. ,2r. ThenS, e GI,(E(t)), i= 1,... ,2r, and

H+(t)(S)=)= S,. To show that H+(t)(S)U(l,t), it suffices to show that
S2,_,+=[J(S,)]-f’lE2r_,+(t), i=l,"’,r. In fact since H+(t)(S) and
([J(Si)]fqE2,_+(t)) are each n-dimensional, it suffices to show that S2r-+
[J(S)]-f-lE2r_+(t), i= 1,..., r. Since S2r-+l E2r-i/l(t), it remains only to show
that S2r_+-LJ(S), i= 1,... ,r. Since S(n), J(S)_LS. Consequently, given any j
and k with l<=j<-l and l<-k<=12r_+, we have O=(vj+Wj)’J(V2r-+.k+W2r-+.k).
Since J(Eq(t))_kEp(t) provided p2r-q+l, it follows that WJV2r_+l.k=O,
’Jw2r- -0, and ’Jw2r =0. Thus, 0=v’ JV2r- which shows thatW ij i+ l,k 1) ij -i+ l,k ij i+ l,k

S__i++/-J(S), as required. This completes the proof that II+(t)(S) U(I, t).
The proof that H-(t)(S) U(I’, t) can be constructed by analogy to the above and

is left to the reader.
Remark 11. It is clear from the definitions that the restrictions of H+(t) and H-(t)

to II1U(I, t) are equal to the identity mapping. Since Lemma 17 shows that II+(t) and
II-(t) map (n) into II1U(I, t), it follows that they each map (n) onto II1U(I, t).

COROLLARY. Let S (n ). Then
(a) II+(t)(S)U(l,t) if and only if dimSM(t)-dimSM_(t)=l, j=

(b) 1-I-(t)(S) U(I’, t) if and only if dim S N2_j+(t)-dim Sf-) NE_j(t) lj,
j-1,...,r.

Proof. If dim Sf’) M(t)-dim Sfq M_l(t) =/, j= 1,. ., r, then II+(S) U(l, t)
by Lemma 17. The converse follows immediately from the fact that the sets { U(l, t)}l
are pairwise disjoint. This proves (a). The proof of (b) is similar.

The next lemma describes some useful properties of the mappings r/j(t), II+(t),
and H-(t).

LEMMA 18. (a) lj(t)(t, to)=(t, to)lj(to). (b) H+(t)(t, to)=(t, to)II+(to). (c)
1-I-( t)( t, to) (t, to)H-(to).
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Proof. (a) Let x Ej( t). By (38), ( to, t)x e. Ej( to), so (t, to)lj( to)( to, t)x
(t, to)P(to, t)x x. Let y ),2.r ),2.r E,(to) so1.,j E,(t). Then (to, t)y .i#j

(t, to) b(to)(to, t)y 0. Thus, (t, to) /; (to)(to, t) is the projection onto E;(t) along. Ei(t), which proves (a)
(b) Let S (n). Then

[2r ]P(t, to)(1-[+(to)(S))=(t, to) ) ,i(to)(Sll Mi(to))
i=l

2r

) r/,(t)((t, to)(Sn M(to)))
i=1

2r

l,(t)[CP(t, to)(S)nP(t, to)(M(to))]
i=l

2r

h(t)[(t, to)(S)t M(t)]
i=1

l-[+(t)(CP(t, to)(S)),

where the second equality follows from (a). The proof of (c) is analogous to the proof
of (b). D

Remark 12. Lemma 18 implies that II/(t)(S(t, So, to)) S(t, II/(to)(So), to). Since
II+(to)(So) U(l, to) for some l, it follows from this equality together with Theorem 10
that the image of the solution S(t, So, to) under the time-varying T-periodic mapping
II+(t) is an almost periodic solution, and II+(t)(S(t, So, to)) U(l, t), Vt. It turns out
that II+(t)(S(t, So, to)) is the motion to which S(t, So, to) converges as t-> oo. This is
proved below. Corresponding statements apply to II-( t)( S( t, So, to)) as t->-oo.

In order to prove the next lemma, we need 2 stdndard facts" (1) Let (X, Px) and
(Y, py) be metric spaces, and suppose that f" X-> Y is uniformly continuous. If
px(X(t),XE(t))->O as t->oo, then py(f(xl(t)),f(xE(t)))->O as t->oo. (2) Let R" be
endowed with the Euclidean topology. If C is a compact subset of R" and U is an
open subset of " which contains C, then there exists an open set V with compact
closure V such that C c Vc Vc U.

Recall from 6 that V,(2") consists of all 2n n full rank matrices, and V,(2")
is the compact subset consisting of those matrices whose columns are orthonormal.
Let [IZII denote any of the equivalent norms on the Euclidean space of 2n n real
matrices. Recall that the gap metric on G"(2") is defined by O(SI, $2)- IIP-PII
(operator norm), where P1, P2 are the orthogonal projections onto S, $2. Also,
q" V,(R2")-> G"(2") is defined by q(X)=-Sp X.

LEMMA 19. Let X( t) c:_ V,(2"), let Y( t) V,,(2") (for each e. I), and suppose
that IIx(/)- r(t)ll-0 as t->oo. Then O(q(X(t)), q(Y(t)))->O as t->oo.

Proof V,(2") is a compact subset of R2,,, and V,(2") is an open subset of
[]2nxn which contains V,(2"). Thus, there exists an open set V with compact closure
such that V,(2")c V I) V,(2"). Let t denote the restriction of q to 17’. Since q
is continuous and 17" is compact, t is uniformly continuous. Since V,(2") is compact
and is disjoint from the closed set V (the complement of V in 2,,, there exists e > 0
such that Ilw-zIIl>_-e, vw v.(a2"), Vz v. Since IIx(t)-r(t)lll->0 as t->oo,
there exists T such that if > T, then [IX(t) Y(t)ll, < . Since x(t) v,(R2"), it
follows that Y(t) V, Vt> T1. Then for t> T, we have O(q(X(t)), q(Y(t)))=
O((X(t)), ( Y( t))) -> 0 as t->oo by the uniform continuity of t. Fi
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Remark 13. A simple fact concerning the gap metric which is needed below is
the following: If S1, S2eG"(I2") and AGI(2n, R), then O(A(SI), A(S2))_-<

IIAll IIA-llo(s, s). To prove this fact, let P1, P2 denote the orthogonal projections
onto S, $2 respectively. Then APA-1, AP2A- are projections (not necessarily
orthogonal) onto A(S1), A(S2) respectively. It can be shown [10, p. 361] that this
implies that O(A(S1), A(SE))<-_IIAP1A-I-APEA-III. Hence, O(A(S), A(S2))_-<

IIAII IIA-’ll lIP,- PII--I[A[[ IIA-’llo(S,, S2) as claimed.
The next result describes the asymptotic behavior of every solution of the EPRDE

on the Lagrange-Grassmann manifold. It shows that every solution converges to an
almost periodic solution as o (t -oo), and describes the limiting solution.

THEOREM 13. Suppose that (T, O) has no eigenvalues on the unit circle and is

semisimple. Let So (n ). Then
(a) O(S(t, So, to), S(t, II+(to)(So), to))0 as .
(b) O(S(t, So, to), S(t, ri-(to)(So), to))-> 0 as t-> -.
Proof (a) We can easily reduce to the case where to=O. To see this, let $1--

(0, to)(So). Then S(t, So, to) S(t, S, 0). By Lemma 18(b), it follows that S(t, II+(to)
So), to) S( t, p(O, to)II+(to)(So),O)=S(t, II+(O)(S1),O). Consequently, it suffices to
show that O(S( t, S, O), S(t, II+(O)(S1),O))->O as t-->.

Let 1-= II+(0)(S) and suppose that ; U(l, 0). Let P, V(t), R, , and A be as
defined in the proof of Theorem 10. Using (40) and Remark 13, it follows that

O(S(t, $1,0), S(t, ,, 0))= O(PV(t) eRtp-’(S,), PV(t) eR’p-I(I)
IlPV(t)ll IIV-’(t)P-’llO(e’’P-’(S,), eR’p-’(,)).

Let a, maxtto,2rj IlPV(t)l] and let a2--- max,to.2rj v-’(t)P-’ll. Since v(t)is periodic
with period 2T, we have O(S(t, $1,0), S(t, ,1, O))<=ala20(eR’p-(S), e’’P-’(,)), yr.

Consequently, it suffices to show that O(eRtp-(S), eR’p-I())-->O as t--> oo.
Since H+(0)(S) U(l, 0), it follows from the proof of Lemma 17 that S has a

basis of the form {vii+ wij:j= 1,..., li; i= 1,-.. ,2r} where vj E(0), wj M_I(0),
and {vii} is a basis for II/(0)(S1) 1. E(0) is the sum of the primary components of

(T, 0) which correspond to eigenvalues of modulus/xi, so P-I(E(O)) is the sum of
the primary components of P-dp(T,O)P=A which correspond to eigenvalues of

modulus/xi. From the structure of A, it follows that P-(Ei(O))_LP-(Ek(O)) whenever
iS k. Consequently, P-Vij-I_P-IVkp whenever i# k. However, by using the Gram-
Schmidt process, it is clear that the basis {vj + wj} can be chosen in such a way that

P-vij+/-P-vp and such that P-vj has unit length. Thus, without loss of generality,
we can assume that {P-vo} is an orthonormal basis for P-(I).

From (43) we have eRtx, tI, l/T er’x Ix F- P-(E(O)) Thus, eR’p-(,)
Sp {eRtp-vj} Sp {txl/T e’tP-Iv)} Sp {emP-vj}. Since {P-avi)} is orthornormal
and eRt is an orthogonal matrix, {eRtp-lvij} is an orthonormal basis for eRtp-().
We also have eRtp-l(S) Sp {emP-(vo + wo)} Sp {lt/T etP-avo + eRtp-wj}
Sp{etp-lvi)+l7, tIT eRtp-w)}. NOW, w)_Mi_(O)= EI(O)O)" ") E_I(0), so

i--1 with xP-wij P-(E(O))O)" .P-I(E_I(O)). Let P-wij=,xij+" "+xo
P-(Ek(O)). Then eR’p-wj ,k-= IXtk/r e’x. Since efit is orthogonal and/xk </.t for

-t/T Rtp-1k < i, it follows immediately that /^ e wo0 as t- c. Let X(t) denote the

2n n matrix whose columns are {eRtp-lij}, and let Y(t) denote the 2n xn matrix

whose columns are { e’P- vo + lx’/ r e R’P- w}. Then X V, l2" Y V,(2"),
and IIX(t) r(t)ll -, 0 as . By Lemma 19, O(q(X(t)), q(Y(t))) - 0 as c. Thus,
O(emP-(,), emP-(S))-O as t-, completing the proof of (a).

The proof of (b) is analogous to the proof of (a).
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Remark 14. Given So w(n), the limiting almost periodic solution to which the
solution S(t, So, to) converges as can be computed in 2 different ways. The first
way is to compute the initial condition II+(to)(So) and then compute the solution
S( t, H+(to)(So), to) corresponding to this initial condition. The second way is to compute
the solution S(t, So, to) and then compute its image under the periodically time-varying
mapping H+(t). Since S(t, II+(to)(So),to)=II+(t)(S(t, So, to)) (Remark 12), the 2
methods produce the same limiting solution.

Remark 15. We can now complete the proof of Theorem 10 by proving (b). Let
So W(n) and suppose that So: U(l, to) for any I. Then II+(to)(So) So. By Theorem
13, O(S(t, So, to), S(t, II+(to)(So), to))0 as tc. Since S(t, II+(to)(So), to) is almost
periodic and is not identically equal to S(t, So, to), it follows from AP 6 that S(t, So, to)
is not almost periodic. This completes the proof.

We now describe the asymptotic behavior of every solution of the PRDE on the
space S(n) of symmetric matrices.

THEOREM 14. Suppose that (A(.), B(. )) is controllable and that ( T, O) is semi-
simple and has no eigenvalues on the unit circle.

(a) If Ko:K+(to), then K(t, Ko, to) escapes at a finite time te> to.
(b) If Ko <- K/(to), then K(t, Ko, to) exists for all [to, c) and converges to the

almost periodic solution K(t, y-l(H+(to)(y(Ko))), to) as t-c.
(c) If KoK-(to), then K(t, Ko, to) escapes at a finite time te<.to.
(d) If Ko >- K-(to), then K(t, Ko, to) exists for all (-o, to] and converges to the

almost periodic solution K t, y-l(II-(to)(y(Ko))), to) as t--> -o.
Proof. Theorem 9 establishes all of the assertions concerning the existence and

nonexistence of finite escape times. In fact, these results are valid even if (T, 0) is
not semisimple. Given any KoS(n), II+(to)(y(Ko)) U(l, to) and 1-I-(to)(y(Ko))
U(l’, to) for some and l’. Consequently, Theorem 11 establishes the almost periodicity
of the solutions K(t, y-(II+(to)(y(Ko))), to) and K(t, y-l(H-(to)(y(Ko))), to). Thus,
it remains only to prove the assertions in (b) and (d) concerning convergence.

Suppose that Ko <- K/(to). Let So-- y(Ko) and let S1 H+(to)(y(Ko)). By Theorem
13, O(S(t, So, to), S(t, S, to))- 0 as t- c. Since Ko<- K+( to), S(t, So, to) o(n) for all
t>-to Since K(t, Ko, to)= y-(S(t, So, to)) and K(t, y-(H+(to)(y(Ko))), to)
y-(S(t, S1, to)), we need to show that Ily-l(S(t, So, to))-y-(S(t, S1, to))ll- 0 as- cx.

Let C=-tRU(I, t)-to.r U(l, t). C is compact since it is the image of
U(l, 0) [0, T] under the continuous mapping (S, t)-->(t, 0)(S). By the Corollary to
Lemma 16, C c Wo(n). Since C and (n)- o(n) are disjoint closed sets in the metric
space (n) (which is a normal topological space), there exist disjoint open sets U, V
such that C c U and (n)-o(n) V. In particular, this implies that C c U
o(n). Since C and W(n)- U are nonempty disjoint compact sets, there exists 6 > 0
such that O(S, Sty)>= 6, VS C, VSt (n)- U. Since O(S(t, So, to), S(t, S, to))- 0
as - oo and S(t, S1, to) C, t, there must exist T >= to such that S( t, So, to) U, /t _-> T.
Restricted to the compact set O, the continuous mapping y- is uniformly continuous.
Consequently, the fact that 0(S(t, So, to), S(t, S1, to)) 0 as oo implies that
Ily-(S(t, So, to))- y-l(S( t, St, to))ll- 0 as t-c as required. This completes the proof
of (b). The proof of the convergence asserted in (d) is completely analogous.

Remark 16. We can now complete the proof of Theorem 11 by proving (b). Let
Ko S(n), and suppose that K(t, Ko, to) is not of the form y-l((t, to)(So)) for some
So6 I1 U(l, to). In other words, y(Ko) I U(l, to). By Theorem 14, K(t, Ko, to) either
escapes at a finite time re> to or converges to the almost periodic solution
K(t, y-l(II+(to)(y(Ko))), to) as t. Since y(Ko) I U(l, to), II+(to)(y(Ko))
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y(Ko). Since a pair of distinct almost periodic functions cannot converge (AP 6), we
conclude that in either case, K (t, Ko, to) is not almost periodic. This completes the proof.

Remark 17. Parts (b) and (c) ofTheorem 8 give necessary and sufficient conditions
for K(t, Ko, to) to converge to the periodic equilibrium K/(t) as t-->-co and to the
periodic equilibrium K-(t) as t->co. If one makes the additional assumption that

(T, 0) is semisimple, these results can be recovered as easy consequences of Theorem
14. Let KoS(n). Then by Theorem 14, K(t, Ko, to) converges to K-(t) as t->co if
and only if Ko_-< K/(to) and 3"-l(H+(to)(3’(Ko))) K-(to). From the definition of K-(t),
it follows that {3’(K-(to))} U(l, to) for the case where/= (/1, ",/r) (0, 0). By
Lemma 17, it follows that II+(to)(3"(Ko))=3"(K-(to)) if and only if dim 3’(Ko)f)
M(to) 0, j 1, , r, or equivalently, if and only if dim 3’(Ko) f’) Mr(to) 0. But,
Mr(to) 3’(K+(to)), so this condition can be expressed as 3"(Ko)fq 3’(K+(to)) 0. It is
trivial to check that this condition is satisfied if and only if K/(to)- Ko is nonsingular.
Thus, K(t, Ko, to) converges to K-(t) as t--> o if and only if Ko<= K+(to) and K/(to)
Ko is nonsingular, or equivalently, if and only if Ko < K+(to). This establishes part (c)
of Theorem 8. Part (b) of Theorem 8 can be proved from Theorem 14 by an analogous
argument.

8. Conclusions. In this paper, we have provided a rather complete description of
the phase portrait of the matrix Riccati equation with periodic coefficients. We have
generalized to the periodic case many of the key results in the theory of time-invariant
Riccati equations. As noted in 1, almost all of these results can be extended to the
case of a Riccati equation arising from a periodic control problem with conflicting
objectives.

By generalizing to the periodic case a well-known theorem of J. C. WilIems, we
have classified every periodic equilibrium. In the case where the system is observable,
our results describe the signature of each periodic equilibrium. The stability of each
periodic equilibrium is determined, and necessary and sufficient conditions are given
for convergence to K+(t) as -co and for convergence to K-(t) as co. We also
give necessary and sufficient conditions for a solution to have a finite escape in either
forward or backward time. All of these results are valid even if the monodromy matrix
(T, 0) is nondiagonalizable.

In 6 and 7, we impose the requirement that (T, 0) be diagonalizable, but we
continue to allow multiple eigenvalues. We give an exact description of the oscillating
Grassmannian manifolds on which all of the almost periodic solutions occur. An
arbitrary solution either escapes in finite forward (backward) time or converges to an
almost periodic solution as co (t -co). We give an explicit formula for the limiting
almost periodic solution. Since we have also given necessary and sufficient conditions
for a solution to have a finite escape time, these results describe the asymptotic behavior
of every solution of the PRDE.

Appendix. It is straightforward to show that many of the basic properties of
complex-valued almost periodic functions generalize to the case where the values are
in a complete metric space. (For properties requiring algebraic structure, one takes X
to be a Banach space.) By making obvious changes in the proofs of the corresponding
results for complex-valued almost periodic functions in [9, Chaps. 1, 2], the following
properties can be verified:

AP 1. Let (X, p) be a complete metric space and letf: X be continuous. Then

f is almost periodic if and only if given any e > 0, there exists L L(e) such that given
any s, there exists - Is, s+ L] such that p(f(t), f(t + r)) < e for all .

AP 2. Let (X, p) be a complete metric space and let f:N X be a continuous
periodic function. Then f is almost periodic.
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AP3. Let {(Xi, pi)}7_-i be complete metric spaces and let f:i-->Xi be almost
periodic, i= 1,..., r. Iff: R--> X1 x... Xr is defined byf(t)=(f(t),... ,fr(t)), then
f is almost periodic (relative to the product metric).

AP 4. Let {Xi} 3__1 be Banach spaces, and let a" X1 x X2 --> X3 be a product mapping.
(That is a is bilinear and I[a(x, x2)[[ -< IIxll I/x=[I.) If f :R--> X, (i-- 1, 2) are almost
periodic and if f: i--> X3 is defined by f(t)= a(fl(t),f2(t)), then f is almost periodic.

AP 5. Let (X, p) and (X2, p) be complete metric spaces, and let f:R--> X be
almost periodic. Let l be a subset of X1 which contains the image of f If F" fZ X
is uniformly continuous, then Fof is almost periodic.

AP 6. Let (X, p) be a complete metric space, and let f X be almost periodic,
i= 1,2. If p(fl(t),f2(t))->O as t-> c, then f(t)=f(t), tt.
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ON THE PARAMETRIZATION OF LINEAR CONSTANT SYSTEMS*

L. BARATCHART"

Abstract. This paper introduces special factorizations for the transfer functions of linear constant
systems, and shows that these factorizations allow parametrizations of systems with given cyclic structure
in the state space. This last set is proved to be a submanifold of the manifold of systems of given order,
thereby stressing some links between our approach and the classical construction due to Hazewinkel and
Kalman.

Key words, parametrization of linear systems, transfer function factorization, differential structure

Introduction. Geometric aspects ofthe parametrization problem for linear constant
systems, of given order n, have been first studied by Kalman [19], [20], whose construc-
tion allows one to consider the set S, of such systems as a quasi-projective variety
over an algebraically closed field K, as well as an analytic manifold when K R or
C. These have been further studied by several authors, using techniques of algebraic
geometry (e.g. constructing moduli spaces, geometric quotients [7], [8], 12], 14], [22]),
or of differential geometry and algebraic topology (e.g. looking for continuous sections,
classifying spaces, computing topological invariants [6], [7], [9], [13], [15], [16]). The
fact that (H, F, G) triples form a principal GI,, bundle over Sn is of importance in
many of these works; this may contribute to explain why they are not much concerned
with the external representation of systems (except [6] which deals with the scalar
case). Now, Kalman’s construction gives coordinates on the manifold in terms of
(H, F, G) "canonical forms," and such forms, as well as some external analogues in
terms of D-1N (or ND-1) factorizations of the transfer function, have been examined
from an algebraic point of view by other authors, in particular for identification
purposes [1], [5]. As is well known, a given system admits generally many representa-
tions of this type, in accordance with the fact that charts have to overlap, since the
differential structure is not trivial 13]. Another canonical form, related to the Kronecker
indices of pairs (F, G) (or (H, F)), is due in essence to Kalman in its state-space
formulation [21], and in its external version to Beghelli-Guidorzi [4] (see also [1],
[11]). Its uniqueness, for a given system, makes it algebraically attractive, but it is
geometrically very different from the preceding ones, since it can no longer represent
coordinates on Sn. More precisely, it parametrizes an open subset of S, when the
Kronecker indices are in "generic configuration," and a submanifold of strictly lower
dimension in other cases (these "Kronecker submanifolds," each isomorphic to some
K t, play an essential role in Helmke’s computation of mod-2 Betti numbers of Sn [15]).

In this paper, we deal with another partition of S, into submanifolds which, to
our knowledge, have not been studied before, namely those consisting in systems with
a given cyclic structure in the state-space. Assuming K =R (but nothing is to be
changed if K C), we prove that this set is a submanifold of S, (a related result is
given in [22], cf. 5), and compute its dimension by exhibiting an atlas in terms of
(H, F, G) triples, which is shown to be related to another system of charts, in terms
of certain transfer function factorizations RD-1N (R a scalar matrix). The structure
of D, especially when the number of invariants is small, allows its explicit inversion,
and the parameters appear then in the transfer function itself more explicitly than in

* Received by the editors July 7, 1983, and in revised form March 5, 1984.

" INRIA, Route des Lucioles, Sophia Antipolis, 06560 Valbonne, France.
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the previously mentioned works. In particular, the dense open set of cyclic systems
admits a rather simple description. We point out here that Beghelli-Guidorzi’s factoriz-
ation allows a nice description of Kronecker submanifolds, since the parameters are
just the coefficients of the entries of D and N; however, D has generically no special
structure, so that the expression of D-IN itself is quite complicated.

The existence of our factorization could be proved combining results of this paper
with an algebraic identity given in [1] (cf. 5). However, we derive it here from a
factorization theorem for regular polynomial matrices which is new, and stated in 2;

1 recalls Kalman’s construction and Fuhrmann realization theory, together with some
classical results in linear algebra. Nothing is used in differential geometry beyond the
basic definitions, which are assumed to be familiar to the reader.

1. Preliminaries. We let p, n, m be positive integers, chosen once and for all. By
a system, we shall mean in the sequel an input-output map S u(t) - y(t), which may
be represented by some state-space equations"

(1) 2 Fx + Gu, y Hx

where H, F, G are real matrices in Rpxn, Rnxn, Rnxm respectively. Equivalently, a
system may thus be considered an equivalence class of triples (H, F, G) which induce
the same S. These triples are said to be equivalent, and any ofthem is called a realization
of S. We will restrict our attention to systems of minimal dimension n, and we denote
this set by Sn. It is well known that if we consider the reachability and observability
matrices of any realization (H, F, G) of S,

H
HF

RF G, FG, F-1G), OI4F H---I
then S belongs to S if and only if RFt and O/-/F are of full rank. Triples verifying
this condition will be said canonical, and in that case, (H, F, G) is equivalent to
(H’, F’, G’) if and only if

H’- HP-1, F’= PFP-, G’= PG

for some unique regular matrix P. We then denote

(2) (H’, F’, G’)= (H, F, G) P.

Now if we define L to be the open set, in Rpn+nn+nm, of canonical triples, S
identifies with the equivalence classes of Ln for the preceding relation. Let us denote
by II:L Sn the canonical map. We endow L with its natural topology, and Sn with
the quotient topology, defining O in Sn to be open if and only if II-I(o) is open. We
shall denote by Gl the set of regular matrices in Rn. II is an open mapping, because
if U is open in L., and P Gl,,, UP= {uP; u U} is open, and hence H-I(II(U))=

p UP is also open. Using this we now show that S is Hausdorff. Let (H, F, G) and
(H’, F’, G’) be in L, and consider the linear equations

(3) PRFG RF’G’ OHF OH’F’ P.

It is easily seen that our two systems are equivalent if and only if (3) is solvable. Now
if it is not, extracting a Cramer’s subsystem (e.g. in the first one), we conclude that
the other equations do not depend linearly on that one, or equivalently that some
determinant is nonzero. This will remain so under small changes in the coefficients of
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H, F, G, H’, F’, G’, and therefore there exist two open sets O and O’, containing
(H, F, G) and (H’, F’, G’) respectively, such that H(O) and H(O’) are disjoint. This
means that S, is Hausdorff.

Now that S, has been made into a topological space, the following construction,
due to Hazewinkel and Kalman [13], [20], allows to endow it with an analytic manifold
structure, of dimension n(m +p).

Let (H, F, G) be a realization of S e S,. We denote by gl,"’, gm the columns of
G, so that each column of RF6, is of the form Co=Figj, e{0,.-.,n-1}, j
{1,-.., m}. From the definition of S,, n among these columns are independent. In
fact, it is not difficult to see that these n columns may be chosen so that any time we
select Co, we have already selected Ckj, for k < i. Our selection , of pairs (i, j) is called
nice, meaning that (i,j) v implies (k, j)e , for k < i, and we will say that S admits
, as nice selection, meaning that the submatrix P ofRF corresponding to the indices
of , is regular. Because (2) implies (3), this notion does not depend on our choice of
(H, F, G), but only on S, and so is well defined. Now we define

(4) (H, F, G) (H, F, G) e.;l

and our new realization is easily seen to have the following form,

x x

x 1 x

Gv
X

1 0

0 X 0
0 1
0 0

0 0

where the O’s and l’s occur in G precisely in the place of the columns of G which
have been selected in ,, the l’s being in correspondence with the first row of each
diagonal companion block in F.

If P’ denotes the analogue of P for R,.6,, it is easily checked that (2) implies
P’,. PP,,, and therefore that (H, F, G) does not depend on (H, F, G) but only on
S, and is the only realization of S such that F and G have the preceding form.

Let S 7, be the set of S S, admitting u as a nice selection. This set is open, because
it is the image under II of the open set consisting in triples (H, F, G) such that P is
regular.

We now define O’S,R""/p) such that O(S) is the list, arranged in any
conventional order, of the coefficients of H, and those coefficients of F and G which
were represented by x’s in the preceding diagram. is injective, and its image V is
obviously open. By definition of the quotient topology, it is easy to see that is a
homeomorphism onto V. It remains to prove that if ,, tx are nice selections, the
following map is analytic , ,: ,(s f s) - vbut this follows from the fact that (H,, F,, G,)--> (H,, F,, G,) e: is rational and
therefore analytic. Our charts on S, will then be the (S, ).

Before we go further on, we need some notation and classical results about
polynomial matrices that we merely state. We denote by R[z] and R(z) the set of real
polynomials and rational fractions respectively. If r R[z], deg (r) means the degree
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of r. A fraction p/qR(z) is said to be strictly proper if deg(p)<deg(q), and a
rational matrix if all its entries are. For the sake of brevity, we shall simply say "proper"
instead of "strictly proper." We call a polynomial matrix with constant determinant
unimodular, and two polynomial matrices are equivalent if they differ by right and
left multiplication by a unimodular matrix. Left (right) equivalence allows only left
(right) multiplication in the above definition. Any polynomial matrix N is right
equivalent to a matrix of the following form [18]:

a2 with deg (ai) > deg (other element in the same row).
al

Furthermore if Ai is the g.c.d, of the /-rowed minors constructed with the last
rows of N, then I-Ij= a Ai. In particular, if none of the ai’s is zero, they are uniquely
defined [2]. Such a form is called a Hermite form for N. Of course, we could have
chosen the opposite inclination for the "diagonal," so that the minors would have
been built on the first rows of N. We get dual results with left equivalence. If in addition
N is square and regular (the result can be made more general, but we will not need
it), it is equivalent to a diagonal matrix D diag {dl,. ., dk}, where dld+ (I means
divides). The d’s are uniquely determined by these conditions, and if A is the g.c.d.
of all /-rowed minors in N, then d= Ai/A_ (Ao= 1 conventionally).

Now if we consider the R[z]-module Rk[z] and its submodule NRk[z]
{Nx; x Rk[z]}, the preceding result shows that the quotient module: Rk[z]/NRk[z]
is isomorphic to the following direct sum: R[z]/(d), (d) being the ideal generated
by d in R[z]. In particular, its dimension as a vector space over R is

(5) deg (d,)= deg (det N).

The polynomials d are referred to as the invariants of N.
An essentially equivalent formulation of this result is the following. Let F Rkk.

If r R[z], v Rk, we write r. v for the endomorphism r(F) applied to v. This makes
Rk into an R[z]-module. The period of v will be the monic polynomial r of least degree
such that r. v 0. We denote by {v,. , vs} the submodule spanned by the vi’s. We
have a direct sum: Rk--i {t)i} and if r is the period of )i, then rlr+. The ri’s are
the same in all such decomposition, and are called the invariants of F. They are in
fact the invariants of the polynomial matrix zI- F that are nontrivial (different from
1). Moreover, two matrices are conjugates if and only if they have the same invariants.

Let us go back to our systems. To each S Sn, we associate its transfer function,
that is the proper rational p m matrix: T(z)= H(zI-F)-IG where (H, F, G) is any
realization of S, and it is well-known that distinct systems give rise to distinct transfer
function. Conversely, for every proper rational matrix T(z), we can write

(6) T(z)=H(zI-F)-’G

and all triples satisfying (6) give rise to the same system via (1). However, this system
may not be in Sn. We now examine this point.

Ifwe write T(z) N’D-IN where N’, D, N are polynomial matrices, the following
procedure, due to Fuhrmann, lets us construct a realization of T(z), that is a triple
(H, F, G) such that (6) holds [10]: for any fraction p/q in R(z), (p/q) denotes the
coefficient of z- in the development of p/q as a formal power series" p/q >o aiz-"
If we write p aq + r by Euclidean division, we equivalently have (p/q)l (zr/q)(o).
If N is a matrix, N is the matrix obtained by performing the above operation on its
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entries. If D E Rkk[z] in our factorization of T(z), we call X the quotient module of
D: Rk[z]/DRk[z]. For every x in Rk[z], we denote by _x the class of x in X. We
consider three maps:

F:X -> X, F(x_) zx_ (= zx by definition),

(7) G R --> X, a(u) Nu,

H :X -> Rp, H(x_) N’D-’x)I

(this last map is well defined for any element in the class of x yields the same result).
By (5), dima (X) deg (det D), and fixing a basis in X, we can identify our maps with
their matrices. It is then easy to see that (6) holds. Moreover, it is known that deg (det D)
is minimal in such a factorization, if and only if (D, N), (N’, D) are left and right
coprime respectively, that is if we have two Bezout equations: DA+ NB I, CN’+
ED I where A, B, C, E are polynomial matrices. Since H(zI F)-G is a factorization
of the preceding type, it is clear that T(z) will be associated to some $ E S, if and
only if deg (det D) has minimal value n among all possible factorization. This minimum
is called the McMillan degree of T(z), and what precedes shows that the set of p x m
proper rational matrices of McMillan degree n is in bijection with S,. We can therefore
endow it with the analytic structure described previously. However, this does not give
an explicit parametrization in terms of the entries of T(z), due to the involved character
of (6).

Now all matrices F which occur in realizations of S E S, have the same invariants,
since they are conjugates, hence we may define the cyclic structure of S as the list, l,
arranged in increasing order, of the degrees n,..., n, of its invariants. We have
Y, ni n. We define Sn, as the set of S S, whose cyclic structure is/. The aim of this
paper is to prove that S,,t is a submanifold of S,, and to construct an atlas on it in
terms of certain transfer-function factorizations. This does not lead to a global para-
metrization of S,, but only of submanifolds which partition it. However, it allows a
rather simple description of the open and dense subset of cyclic systems (where there
is only a single invariant). Our construction is based on an algebraic result, proved in
the next section. In 3 we apply it to transfer-function factorization, before finally
proceeding with the above mentioned construction.

2. A factorization theorem. We will prove a result which plays an intermediate
role between the classical reduction theorems for polynomial matrices quoted in the
first paragraph. Everything in this paragraph goes through without change over any
infinite field instead of R [2].

THEOREM 1. Let M be a regular matrix in R[2’]pp. There exist a unimodular
matrix U and R Glp, such that UMR D dij) satisfies:

i) dj 0 if >j D is upper triangular);
ii) di, dk, for k >- and every l;
iii) deg (dig) > deg (di) for <j and every j.

Furthermore, the diagonal elements d,i are the invariants of M.
Before proving Theorem 1, we will need several lemmas.
LEMMA 1. If rl," ", rk have no common divisor in R[z], and rk is nonzero, there

exist A,..., Ak_ ( R such that Ar +... + Ak_lrk_l is prime to rk. Furthermore one of
the A’s may be chosen arbitrarily in R-{0}.

Proof. Let u1,- ., u be the prime factors of rk in R[z]. Let V be the vector space
spanned by the ri’s over R. Let W be the ideal (ui) viewed as a vector space over R,
and V- W f’l V. Were the first assertion not true, there would exist for any q in V an
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such that uilq, hence V U V. Because a vector space over an infinite field cannot
be a finite union of proper subspaces (cf. e.g. [17]), we have V= V for some io, and
us is a common divisor to the ri’s, a contradiction. For the second assertion, it is
sufficient to show that we may choose A1 1. Suppose not, and fix some Ai’s for 1 < i.
For tR, define Q(t)= t(i> 1Airi)+ r; Q(t) is never prime to rk. The Ui’S being finite
in number, one of them divides Q(t) and Q(t’) for distinct t’, and by difference

Yi>l Airi. But by the first part of the proof some combination of the ri’s is prime to rk,

and we see now that A1 can be neither 0 nor 1, a contradiction. Q.E.D.
LEMMA 2. Let D =lad 3] be a 2 2 regular polynomial matrix. There exist uni-

modular matrices U and R Gl2 with det (R)= 1, such that

0 dld3/tz
where/x g.c.d. (dl, d2, d3).

Proofi Let us write

Computing UDR, we find

6 y z

xotd + 2(ad+ d3)UDR
k xiSdl + 2(i$d2 + /d3)

yadl + t(ad2 + fld3) 1.
y6dl + t($d2 + yd3) J

we put d d/z and choose 6 -zd’3, y xd + zd, so that UDR is upper triangular.
By Lemma 1, we may choose x and a nonzero z, such that xd + zd is prime to d.
Then 6 and y are coprime, and we choose ce and/3 such that det (U)= 1. The first
entry of U is now easily computed to be /x. Finally, choosing for example =0,
y 1/z, we have det (R) 1. Q.E.D.

From now on, we shall, for notational simplicity, call a (U, R) transformation a
left multiplication by U (unimodular) and a right multiplication by R (regular).

LEMMA 3. IfD (da) is an upper triangular regular polynomial matrix, and iffor
some di. does not divide all the elements of its row, there exists a U, R) transformation
such that if we write D’ UDR d la), D’ will still be upper triangular, with deg (d ,) <
deg (di.), d ,,k dk.k if k < i. Moreover, if k < i, each d’,t will be a linear combination of
the dka’ S.

Proof Suppose d, does not divide di,k. Exchanging the columns i+ and k, we
can recover a triangular matrix by the Hermite procedure mentioned in 1 (type U
transformation), hence we may suppose i+ 1 k. Applying Lemma 2 to the matrix

di, di,i+l ]0 di+l,i+

we find two matrices U2 and R2. Putting

U 0 U2 and R 0 RE
0 0 0 0

where the I’s are identity matrices of appropriate sizes, we define a U, R) transforma-
tion satisfying our requirements. Q.E.D.

LEMMA 4. Let D be as in Lemma 3, but suppose this time that d,i does not divide
every dja for j > i. The conclusion of Lemma 3 remains valid.
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Proofi Let k be the smallest index > i, such that di, does not divide dk,k. Then by
definition, dk-l,k-1 does not divide dk,k. Treating the matrix

o [ dk-1,k-1 dk-1,k ]0 dk,k

as we did in Lemma 3, we obtain D’ such that dk_l,k_lldk,k, deg(d-l,k-1)<
deg (dk_l,k_l). If k i/ 1, we are done. If not, d’i,i -di, does not divide d_l,k_l, and
we can replace k by k-1. In a finite number of steps we are left to the case
k=i+l. Q.E.D.

LEMMA 5. If O is as before, there exists a (U, R) transformation such that D’=
UDR satisfies d ,l] d Id for every i, j.

Proofi Applying Lemma 3, we may assume dl,ldl, for every l, because the degree
of d, decreases at each step. Applying this lemma to the second row, we may assume
that d2,21d2,1 for every l, and still dl,lldl,l, because the dl, are replaced by linear
combinations of themselves. Continuing that way, we may assume di.ildi, for every
and I. If then d, does not divide di, i, we apply Lemma 4, to get a d,l of lower degree.
The procedure stops in a finite number of steps. Q.E.D.

Proof of Theorem 1. By the Hermite procedure we can assume M- (mid) to be
upper triangular. We use induction on the size p of M. If p 1, there is nothing to
prove. If not, we can assume by Lemma 5 that ml,lmi. We define _M to be the
(p-1,p-1) matrix obtained by deleting the first row and column of M. By the
induction hypothesis we associate with _M two matrices _U and _R. Putting

o _u 08’

we see that all our requirements are satisfied, except possibly condition iii), but it is
an easy consequence of euclidean division (in fact the basis of Hermite procedure),
that we can ensure this by U-type transformation without losing ii). The di,’s are the
invariants of M, because we can write D- diag {di,i} V, with V upper triangular with
l’s on the diagonal, hence unimodular. Q.E.D.

Let us observe that if di,i- 1, then dk,i- 0 for k < by condition iii). A particularly
simple case is the cyclic one (only dp,p may differ from 1). The matrix D has then the
following form

1 a

1 0

0 "’"
with deg (ai) < deg (ap) for <p. Note that D- is then easily computed: it is obtained
by replacing ai by -ai/ap for < p in the above expression of D, and ap by 1/av. More
generally, if D is under the form of the theorem, the element (i,j) of D-1 may be
written P/dj,, with Pid R[z], as follows easily from condition ii) by induction on
the formulae k di,kd 8i0. In the next paragraph, Pi will have the above meaning
(an explicit expression for it can be found in [2] but this is of no use in the sequel).

Let us introduce some notations, that will be of use in the rest of the paper. When
dealing with a matrix D, we will call it special if it is of the preceding type. According
to ii), we will then denote dd qi,d,i, and we will write di instead of
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It is clear that Theorem 1 can be stated in a transposed form, finding U*, R*,
such that D*= R*MU*= (d) is under a form transposed of that of D, that is" D*
is lower triangular, conditions ii) and iii), being replaced by

ii)* d*..Id*,l for > and every k"
iii)* deg (dj) > deg (d.*.)j,, for <j and every j.

These forms will be called t-special and will be denoted with "*" as superscript. We
shall write as above d.*. *,j qiad and d/* for d.*.11

Examples. Consider the matrix

D= 2 4 4--60 z-1 z2-1

If we set

20z+81 -10z-40 20z+69

1-4z- 16 2z + 8 -4z- 14
z2+2z-7 -z2/2-z+7/2 z2+3z/2-6

and

1 0 0

10 1 -2
0 1/2 0

U is unimodular and we have

UDR
1 0 20z-24 ]
0 1 4-4z |
0 0 z2-3z+2_!

and D is cyclic. Since we also have

-z-1 z/2+1/2 -z-1/2 D 0 1 1 z/2-1/2
-2z2+2z+8 z2-z-4 -2z2+3z+6 0 -1 0 z2-3z+2

we see that a special form associated with D is not unique; in fact, it is not difficult
to see that infinitely many such forms exist.

Consider now

z:+3z+2 z2+3z+2 z2+2z+ilz2+3z-1 z2+2z+1 z:z+2z-
z2+2z+4 z+ 1 z2-b 2z-F

Setting

z

z -1 and R 0 1

1 1 -1 0
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U is unimodular, we have

UDR
1 0 2z+4 ]0 z+l -2(z+l)
0 0 (z+l)2

and D has then 2 invariants.

3. Application to transfer function factorization.
A. General case. Among the factorizations described in 1, we consider those of

the type

(8) T=D-1N

where T is the transfer function of some S S,, D, N are left coprime polynomial
matrices It is well-known that for given T, such a thing exists. Applying Theorem 1
to the matrix D allows us to deduce from (8) another factorization: T RD-1N where
D is now in a special form, R being in Glp. Such a factorization will be called special.
The diagonal elements of D are then the invariants of the system, and the list of their
degrees its cyclic structure. Now we take into account the properness of T. Because
R is real, this is equivalent to the properness of D-1N. If we consider that D is given,
this will impose some structure for each column of N. We first introduce two more
notations: if s/q R(z), and s aq+ r is euclidean division, then s/q= a+ r/q. We
define E(s/q)=a, PP(s/q)= r/q, and call them respectively the entire and proper
parts of s/q. Putting now N (nij), Mi.k dk/d for k > (so that M,k is polynomial),
the properness of the product of D-1 by the jth column of N means simply that
(nid+pk=i+l nkdPi,k/Mik)/di, is a proper fraction for all i. Defining f(xi+,’’’, Xp)=
YPk= i+ Xk Pi,k/M,k (fp 0 conventionally), we see that

(9) n,a =-E(fi(n,+,’.’, np))+ ri

where rae R[z] is such that deg (rj)<deg (d) with deg (0)=-. Conversely, given
any set (ra) of polynomials satisfying the above degree conditions, there is a unique
matrix N, defined recursively by (9), such that D-N is proper; we then have the
following proposition

PROPOSITION 1. If D is in special form, with the preceding notation, the set Vo of
p x rn polynomial matrices N such that D-N is proper is a nm-dimensional vector space
over R. If N= (ni) is in V,, the coefficients of the ri’s defined by (9) are coordinates
in Vo, and the jth column ofD-N is

(rid + PP(fl(n2(, ", rtpd)))/dl1(rpa)/dp

Proof Putting ra=6k,61az’ (where 3 is the Kronecker symbol), for l<-k<-_p,
1 <-_ l<_-m, 0<=t< deg (dk) in (9), we define matrices which are easily seen to form a
basis of VD. The coordinates of any matrix in this basis are obviously the coefficients
of its rj’s. The expression for D-N follows from (9). Q.E.D.

If we analyse the causality of a product N*(D*)-1R* where D* is in t-special
form, we get of course transposed results, introducing parameters r.*.,j such that
deg (r) < deg (dr). Such a factorization will be called t-special. The space VD., dual
to Vo, is then pn-dimensional.
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Now, our factorization T RD-N was minimal by definition. Conversely, we
want to know when this is the case for a given special factorization. It is the object of
the next theorem.

THEOREM 2. Let D, N be as above, and r be the number of nontrivial invariants

of D. Let Ai be the g.c.d, of the minors constructed with the last rows of N. D, N are

left coprime if and only if Ai is prime to dp_+ for 1 <= i<= r.

Proof. We first note that N must have at least r columns, for the state module,
isomorphic to the quotient module ofD X RP[z]/DR[z] (cf. 1) cannot be spanned
by less than r elements, so that the assertion, of the theorem makes sense. We make
then two remarks:

1) (D, N left coprime) is equivalent to (D, NU left coprime for some unimodular
matrix U). This is obvious from Bezout equation.

2) If T is an upper triangular unimodular matrix, (so that its diagonal elements
are real numbers), (D, N left coprime) is also equivalent to (D, TN left coprime).

To see this we notema fact that will be sometimes tacitly used in the sequeluthat
DRP[z] is made of those polynomial vectors whose ith component is multiple of d.
This implies easily, according to the form of D, and T, that TD may be written as
DU. Taking determinants, we see that U is unimodular. Multiplying some Bezout
equation between D and N by T on the left and T- on the right yields then the result.

We go back to our theorem, and prove sufficiency. By Remark 1, we may assume
N is in Hermite form (cf. 1):

where glp_i+ Ai/Ai_ for 1 -<_ <- r (Ao ). Given Y R[z], we consider the equation

where X is to be found in Rm[g], the ith equation being in R[z]/(d). If di 1, the
corresponding equation is trivial, so we need only consider the case when i> p-r.
But n is then prime to di by hypothesis, hence invertible in R[z]/(di), and the equation
is solvable, proceeding recursively from the last row up to the first one. Solving
NA I + W (where W has its ith row divisible by d, hence may be written DB for
some polynomial matrix B) yields a Bezout equation.

Suppose conversely D, N left coprime, N as above. If/ g.c.d. (np, dp), we see
that the matrix [o o] is a common left factor to D and N, and therefore/ must be
constant. Hence np, d are coprime, and na + dpb c is solvable in a and b for every
c in R[z]. This implies that by left multiplication by a matrix of the type described in
remark 2, we can make every element of the first column of N (except np) a multiple
of dp. Now if np_ (which has remained unchanged under the preceding operation) is
not prime to dp_, and/ is their g.c.d., the matrix

0

0 0

is again a nontrivial common left factor to D and N. Continuing this procedure yields
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ni prime to di for every i. This shows, by the divisibility conditions d, ld,+l, that Ai is
prime to dp_/ for 1 -< =< r. Q.E.D.

We now study what matrices R can occur in special factorizations of a given T.
For this, the next two propositions will be technical results. From here on, our special
(t-special) factorizations are always assumed to be coprime, and r will always denote
the number of nontrivial invariants under consideration, as in theorem 2. Given a
special factorization D-N, we investigate whether it may be written as a t-special
factorization N*(D*)-1. When it actually is the case, by realization theory ( 1), D
and D* have the same nontrivial invariants (although their numbers of invariants "1"
differ if rn is not equal to p).

PROPOSITION 2. If I is the minor constructed with the last rows and columns of
N, a sufficient condition for
(10) D-N=N*(D*)-1

to be solvable is:

(11) g.c.d. (K,, dp_,+/dp_i)= l for l <=i<-r

where dk 1 if k <- 0 by convention.
(The condition is also necessary [2], but this will not be used here.)
Proof. Equation (10) can be read ND* DN*. Had we found a solution (N*, D*)

where D* satisfies all our requirements except iii)*, right multiplying both matrices
by an appropriate unimodular matrix, as in the end of the proof of Theorem 1, yields
a complete solution. Hence we can forget about the degree conditions. Now (cf. Remark
2) the problem is to find D* such that the ith row of ND* is divisible by d, hence
we may assume p r. We must have d*,,_j dr_j if 0=<j < r, d 1 otherwise, and we
are left to choose the q’s, and necessarily q 0 if i< m- r+ 1. Because d divides
the jth column of ND*, the problem reduces to those elements xj of ND* with
r-i<m-j. We may therefore assume m>l. For 0<_-i<r and 0-<_j<m, we let
k inf (j- 1, r-1), and we have then:

xr-i.,-= d_ n_,,q*,,_+ n_,._

The equations to be solved may be written, as in the proof of Theorem 2, as a linear
system of congruences:

*" d,l _1r,m-k r,m q m,m-j J r m-j

for 1 <=j < m. Note that since d*_= dr-(k+l), the fractions inside the modulo symbol
are actually polynomials. We rewrite the above equation under the more compact form

q*. dr/d*m_j)Nk+ pj mod (dr-k/d*lj,

where the meaning of our new notation is obvious. Since, by hypothesis, det (Nk/)
is prime to d-k/d*m_j (and is therefore a unit in R[z]/(dr_k/d*m_j)), we can find Xk/
such that Nk+Xk+=p mod (d,_k/d*_,’", dr-k/d*m-), but only the first modulo
is then correct. Thus we have Nk+IXk+l =Pj+ Wdr_k/d*m_, where WRk+[z]. If
k 0, we are done. Otherwise, let W be the vector of Rk[z] obtained from W by
deleting the first component. Again by hypothesis, we find Xk such that NkXk
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-W+ W’dr_(k_l)/dr_k; we put

Yk Xkdr-k/ d*_j and X+, X+, + y

Now we see that Nk+lXtk+l--Pj mod (d,_k/d*_j, dr-(k-1)/d*m-j,’", d,-(k-1)/d*m-j);
in other words the second modulo has become correct too. Continuing in this fashion,
we solve the equation, because at each step, thanks to the divisibility conditions between
the di’s, the moduli that are already correct remain so. Q.E.D.

Because (11) remains unchanged under transposition, the condition on N* for
(10) to be solvable (N* and D* being now given) is the same, replacing p by m. In
both cases, it will be referred to as the minors condition.

The next proposition relates the minors condition to an intrinsic property of the
system underlying a special factorization. We introduce one more definition: in a
R[z]-module, we define the period of an element v modulo a submodule M as the
monic polynomial q of smallest degree such that qv M (it is actually the period in
the quotient module, and it exists at least when our module is finite-dimensional over
R).

PROPOSITION 3. Let T be the transfer function of S S,, and Pl,’",P be its
invariants. The following conditions are equivalent:

a) for some realization (H, F, G) ofS, the columns (gl,""", g,,) ofG are such that
in the state module (R" under the action of F cf. 1):

--gin has period p,,

-g,,.-1 has period Pr-1 mod {g,.},

--gm-(r-) has period Pl mod {gm-(r-2), ", g,..}

b) for any realization of S, a) holds;
c) for some special factorization T RD-IN, the minors condition holds;
d) for any special factorization, c) holds.
Proof. a) is obviously equivalent to b), because it does not depend on the basis

chosen in the state space; it is also obvious that d) implies c). Let us prove that a)
implies d): we first note that a) implies by induction

(12) dima{gm_,,’" ",gin} E deg(p,_j) forO<-i=<r-1
j=O

and let us denote the above integer by ki. Let T- RD-1N be a special factorization,
and consider the Fuhrmann triple associated with it, in any R-basis of the state-module
X (the quotient module of Dcf. 1, (7)). The column vectors of G represent then
the equivalence classes, in X, of the corresponding columns of N. Let Mi=
(N,,_i, , N,,) be the matrix made of the last + 1 columns of N, and _M the square
submatrix ofM made of its last + 1 rows. By (12), the columns ofM span a submodule
V of X whose dimension over R is k. Right multiplying M by a unimodular matrix,
we put it under Hermite form ( 1), so that _M now reads:
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Note that neither V, nor det _M,)mup to the multiplication by a nonzero real number--
has changed. Now it is clear (cf. Remark 2, Proof of Theorem 2) that Pr-j, 0=<j =< i, is
an annihilator (i.e. a multiple of the period) for the (j + 1)th column of Mi. But dimR V
is equal at most to the sum of the dimensions of the submodules spanned by each
column of Mi, that is the sum of the degrees of the periods. This last number cannot
therefore be less than k, so that pr-j is actually the period of the (j + 1)th column.

Let/x g.c.d. (t, Pr-i/Pr-(i+)) where, we recall, Po 1 conventionally. Then Pr-/Ix
is an annihilator of the (i+ 1)th column of M, hence by what precedes,/z 1. Now,
using a device already mentioned in the proof of Theorem 2, we can ensure that
Pr-/Pr-(i+) divides every element of the first row of _M, except t,,. Let now =
g.c.d. (tin_l, Pr-(-)/Pr-(+))" Then Pr-(-)/ is an annihilator of the ith column of M,
because it writes Pr-(i+)Pr-(i-)/(t’Pr-(i+)). Therefore 1. Again we can ensure that
Pr-(-)/Pr-(i+) divides every element of the second row of _M, except t,,_. Continuing
in this way, we prove that tm-j is prime to Pr-(i-j)/Pr-(i+). The product I-[!=o t,,_
det (_M) is a fortiori prime to Pr-/Pr-(+). But this is precisely the minors condition.

We now prove that c) implies a). We consider again the Fuhrmann triple associated
with our special factorization, in some basis (over R) of the state module, and write
as usual N =(n), and N for the ith column of N. As before, g represent the
equivalence class of N in X for 1-< _<-m.

Now Pr is an annihilator for g,,, since it annihilates X itself. Let q be the period
of g,, (whence q Pr), and tz Pr/q. Then by definition of q" pr-lqnp-. for 0 -<j -<_ r 1,
or equivalently"

(13) Izlnp-.h,,,(pr/p,.-.).

In particular, tZlnp, but np,,,, is prime to Pr/Pr-1 (minors condition), hence tz is
prime to Pr/Pr- also, and since /zlpr, we see that /zlpr-. If r= 1, then Pr- 1
conventionally, hence/z 1. Otherwise, suppose by induction that/x tlp-k,m for 0 -< k <
j, and that/x is prime to Pr/Pr-, for some j < r. By (13), /x divides np-.m, and with
the notations of Proposition 2, /z divides the minor K+, whence /x is prime to
Pr-j/Pr-(+) by the minors condition. Therefore/x is prime to Pr/P,.-(.+). This shows
by induction that/x is prime to p, hence/x- 1, thereby proving that g,, has period
pr. If r 1, we are done. We now proceed to prove a) in the case of a column gin-i,

where satisfies 1_-< i_--< r-1. Using the notations of the first part of the proof, we
consider the matrix M(_) and its submatrix _M(i_I). Right multiplying as before M(i_I)
by a unimodular matrix V, we get a new matrix Mi_) with _Mi_) under Hermite
form, its diagonal element in the (i-j)th column being, as before, denoted by tm-.
Nowthe product i-I-Ij= tin-j, where 0 _--< k <= 1, is the g.c.d, of the (i k)-rowed minors
built with the last (i-k) rows of _M(_) ( 1), hence divides < for i-k<-s<= i; by the
minors condition, it must be prime to each P-(s-)/P-, and therefore to their product
Pr-(i-k-1)/Pr-i. Then tm-k is a fortiori prime to Pr-(i-k-1)/Pr-i. Using a now standard
procedure, we can add to N,_ a combination of the columns of M_), (hence also
of M(i_)), to get a polynomial vector N’,,_ whose (p-j)th component is a multiple
ofPr-/Pr-, for 0--<--j =< i-- 1. Now, since they are congruent modulo V_, we can replace
N,,_ by N’,,_ in our proof, and it is clear that this does not modify the minors 9.
We observe that Pr-i is now an annihilator for N,,_ let q be its period and tx Pr-/q.
Then, denoting ni.,,- by n for simplicity

(14) pr-lqnp-j for 0--<j<= r- 1,

whence for j <= i, pr-lqnp-j, and divides np_j. We can now use the same argument
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as we did in the proof that gm has period Pr" from (14) we get

(15) Izlnp-jpr-,/Pr-j for i-<_j <- r- 1.

On the other hand, we have seen that/x divides each rlp_j for j -< i, hence divides Ki+l,

and so it is prime to pr-i/P-(+ by the minors condition. Since it divides Pr-i by
definition, it must divide p_(i+l. If r- 1, this implies/z 1. Otherwise, if we suppose
that for some j, i<-j < r-1 we have tzlnp-k for 0 <- k =<j and /z prime to pr_/p_j,
then /zlK/l, hence is prime to P-/Pr-(+I by the minors condition, hence also to
P-/Pr-(/I, and by (15) Ix lnp-(j/. Therefore, by induction, we conclude that/z po,
that is/z 1. Q.E.D.

Considering Proposition 3, it makes sense to say that S e Sn verifies the minors
condition. When working with t-special factorizations, we will say that S verifies the
dual minors condition, that is to say its tranpose verifies the minors condition. The
final result in this section is Theorem 3.

THEOREM 3. If T is the transfer function of S Sn, the set 0 of all P Gl,, such
that TP verifies the minors condition is an open dense subset of R"". A t-special
factorization T N*(D*)-p-i exists if and only if P O.

Proof. Let T- RD-1N be a special factorization. The minors condition between
D and NP can be expressed by saying that some polynomials (the resultants) in the
coefficients of the d’s (the invariants), the coefficients of the n’s, and those of P, are
nonzero. This shows that O is the complement in Gl, of the set of zeroes of some
polynomial, hence is open, and will be dense if nonvoid. To show this, we construct
a matrix P: we consider some realization (H, F, G) of S, and an invariant decomposition
of the state module ( 1) X i-- {vi} where vi has period p. Writing G (g,. ., gin)
in columns, we have g _,k QkVk where Qk R[z]. But the g’s span the state module
too (reachability), whence v=YRig with RR[z]. Substituting g, we get v=
(,iRQT)v+x where x{v,..., v_} (this is interpreted as the null submodule if
r 1). By direct sum we get x 0, and RQ 1 modulo pr. By Lemma 1, 2, we
find (hi)l=<_< in R such that Y AQ, is prime to Pr, and h,, 1. The vector g’ hig
then has period p,., for its component on v is prime to p,. We choose (hi) as ruth
column for P. If r= 1, we put l’s on the diagonal and O’s elsewhere. Otherwise, the

r--1
quotient module Y X/{g’m} is easily seen to be isomorphic to the direct sum Y= {vi},
and generated by the classes of g,..., g,,_. We define _G (gt,""", gm-), and we
may suppose by induction on m (note that when m 1, then r= 1) that we have
constructed a (m- 1)x (m- 1) upper triangular matrix _P, with l’s on the diagonal,
such that the classes of the columns vectors gl of G__P satisfy a) of Proposition 3 in Y
(whose invariants are p,’’’,pr_). Then taking the matrix [] for the m-1 first
columns of P yields an upper triangular matrix, with l’s on the diagonal (hence
regular), such that the matrix G’= GP satisfies condition a) of Proposition 3 in X.
Therefore, TP satisfies the minors condition, and P O.

Now if P O, and if we write T= RD-1N, then D-(NP) satisfies the minors
condition, hence may be written N*(D*)- by Proposition 2. Considering RN* as a
new matrix N* yields the desired t-special factorization of T. Suppose conversely that
TP N*(D*)-. We denote by (ei) the canonical basis of Rm, and by _x the class of
x in Rm[z]/D*Rm[z]. Let p be the period of _e modulo {_ei+l,’’ ",_e,,}. Then pie+

Yk>rkek D*R"[z], for some polynomials rk. It is however obvious from the t-special
form of D* that this implies dlpi. Since d(e+,k> q*k.ek) is a left multiple of D* (it
is its ith column), we see that pld, so p d. This shows that for any Fuhrmann
realization of N*(D*)-1, condition a) of Proposition 3 holds. Therefore, TP satisfies
the minors conditions. Q.E.D.
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Note that proving that O is nonempty, could be done simply by showing that the
resultant polynomial mentioned at the beginning ofthe proof is not the zero polynomial.
The present proof however is constructive, and also shows easily that P may be chosen
triangular as we did, or orthogonal, symmetric etc. By transposition, Theorem 3 gives
conditions on a matrix R to allow a special factorization T, and combining both kind
of factorization we can ensure that two matrices R and R* allow a symmetric factori-
zation T RD-1NR* where D-N N*(D*)- is solvable [2]. This, however, will
not be used here.

Example. Consider the transfer function

T=[(z2+5z+2)/(z+l)3 (z-1)/(z+l)2]z2/(z+ 1)3 1/(z+ 1)z

It admits the special factorization T D-N, where

D=
0 (Z-F1) N=L Z

2 z+l

In accordance with Proposition 1, this may be rewritten as

T= [1/(z+ l) -(z+3)/(z+ l)3]0 1/(z+l)

[1-E(-(z+3)z2/( 1)) 1-E(-(z+3)(Z+z+l 1)/(z+l)U)].
Since det N =-z2- 3z + 2 while Z

2 and z + 1 are coprime, we see from Theorem 2 that
our factorization is minimal. The minors condition is clearly not satisfied, so that by
Theorem 3 a t-special factorization of T with R*= I does not exist. However, it is
easily seen that [ ] belongs to O, and as expected from Theorem 3, we have a t-special
factorization"

T=[2z+2 Z2+5z+l][ z+l 0 ]-1[1 1] -Z zZ+z+l z(z+ 1) (z+l) 0 1

Because the results proved in this section take a simpler form when the system is
cyclic, we rephrase them separately in this special (but generic, cf. 4) case. This is
done in the next subsection.

B. Cyclic ease. We first recall that a cyclic system (resp. matrix) is one with a
single (nontrivial) invariant. A cyclic special form differs from an identity matrix only
by its last column, which will be, as in 1, denoted ’(al,"’, ap); ap is then the
invariant polynomial. In the remainder of this section, D will always stand for a cyclic
special form.

1) If N is a polynomial matrix such that D-IN is proper (that is N Vo),
Proposition 1 shows that N is entirely defined by its last row, and putting rpa bj for
simplicity, we see that its jth column N is given by

E a,j/ ap
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and we get for the jth column of D-1N

PP a. bj/ ap

(D-1N)J [-PP(ap’_ib/ap) with deg(b)<deg(ap)=n.
/

b/ap

2) By Theorem 2, the factorization D-N is minimal if and only if
g.c.d. (b, b,,, ap)- 1.

3) The minors condition reads now: "b,,, ap are coprime." According to Proposi-
tion 3, this means the system can be controlled by its last input.

4) The assertion that O is nonempty in Theorem 3 is then a well-known fact in
system theory that a cyclic system over an infinite field can be controlled by a linear
combination of its inputs. This is equivalent to Lemma 1. Transposing Theorem 3, we
see for instance that cyclic systems of the form D-N are precisely those which are
observable by their last output, i.e. such that an identically zero pth output implies a
zero initial state.

Example. Consider the system S given by the state space realization

H=
0 1

0 1

This triple is easily seen to be canonical, and S is obviously cyclic and observable by
its last output. Its transfer function T may therefore be written D-N, and we have
indeed"

T=[4z+12z+llz+2 2z2--z--3]
_[1 -z2-4z-6 ]-1[ -1 -(z+3)]0 z3+2z2+2z+l z+2 z+z

As expected, we have

-1 E((-z-4z-6)(z+2)/(z3+2z+2z+ 1))

and

-(z+3) E((-z-4z-6)(z+z)/(z3+Zz2+2z+ 1)).

Note that S is not controllable by its last input, in accordance with the fact that z2+ z
and z + 2z2 + 2z + 1 (z + 1)(z2 + z + 1) are not coprime, that is the minors condition
does not hold.

4. An analytic structure for S,,. We first prove that Sn, is a submanifold of S,.
Let P be in Gl,,. We consider the mapping bp :S,--> S, such that if T is the transfer
function of S, dp(S) has transfer function TP. It is easily seen that )p is analytic: if

u,/ are nice selection for S and Ckp(S) respectively, if (H, F, G) and (H’, F’, G’) are
realizations of these two systems and using the notation of 1, we get

(16) (H,, F’, G’)= (H., F., G.P) L,
where L is the submatrix of RF.,.p corresponding to the indices of. In a neighborhood
of S, /z will remain a nice selection for 4p(S), because this just means that some
determinant is nonzero, and will remain locally so. Therefore (16) remains valid locally,
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showing that p is rational, hence analytic. Because 4, is just 6p-, it has analytic
inverse. By what precedes, (th,l(S), 6p) is a chart on S., for every nice selection,. We choose some cyclic structure /-(hi,’’ ", nr), and denote by ’o the following
nice selection {(i,j); m- r+ 1 -<_j<- m, 0 <- < nr-.+j}, where, we recall, this means we
select in the reachability matrix the columns Figj with (i,j) as above. If the gi’s are
as in Proposition 3, ’o is nice for S, because the Fgj with (i, j) ’o are then independent
over R, so that Proposition 3 and Theorem 3 show that every S S.,t belongs to t,l(So)
for some appropriate P and we analyse S.,t locally with the chart (/)l(So), /v00 )p),
denoted by (Vp, Op). Observe that S Vp belongs to S.,t if and only if bp(S) does,
for 4p preserves the cyclic structure. This means that Op(Sn, Vp) Oo(Sj S,) and
to characterize this last set, we shall use the next proposition. Let us first introduce a
definition: according to our previous notations (cf. 1), F is a matrix consisting in
blocks Bj, of size n n respectively, where 1 _-< <_- r, 1 -<_j -<_ r, each diagonal block
B,i being a companion matrix (that is a matrix with l’s under the diagonal, parameters
in the last column, and O’s elsewhere), and each nondiagonal block Bia, i#j, being a
matrix with parameters in the last column and O’s elsewhere. Writing (ao,"" ", a.,_)
for the transpose of the last column of B, we define the associate polynomial of this
block to be

ni--1 ni--1
Z n’- elkZk if i=j and elkZk if i#j

k=0 k=0

(so that the associate polynomial of a diagonal block is its companion polynomial).
In the sequel, P will always denote the associate polynomial of the block B of the
matrix F under consideration.

PROPOSITION 4. A necessary and sufficient condition for F as above to have cyclic
structure is that it satisfies

(17) P =0 /fi <j, P.IP,, ifi>--j, k >--j.

The Pi,’s are then the invariants ofFo.
Proof. We first prove necessity. We denote by (e)5, the vectors of the canonical

basis of R, and for 1 _-<j-<_ r we define t 1 +Yi< n and w et. By hypothesis, we
can write R", viewed as a R[z]-module by means of the action of Fo, as a direct sum
i= {vi} where v has period pg, the p’s being the invariants. Were some Pg, nonzero
for < r, the first n + 1 powers of F applied to Wr would yield independent vectors,
so the period of w would have degree greater than n, which is impossible because p
annihilates the whole module. Now since wr has period P, of maximal degree nr, we
have P,- p, and (17) holds for j r. If r 1, we are done. Suppose by induction that
(17) and the relation Pja pj have been proved for every j > k _-> 1, for some k -< r 1.
We consider the modules V (w,.. , wr} defined for k + 1 _-<i_-< r, and the modules
V’ pkV. For every i< r as above (if any), we have by induction hypothesis" (Pi/Pk)
(pkWi)-’PiWi’-,=i+l P,w, this last sum being in pV+, hence a fortiori in V+
Therefore, the period q of pkWi modulo V+I divides Pi/Pk. But since, by induction
hypothesis, w has period p modulo V+, and qPk is an annihilator for w modulo
V/1, we see that p divides qPk, hence q- Pi/Pk Hence the dimension over R of the
quotient module V/V+I is ni- rig. NOW the dimension over R of V’ is clearly n- rig,

since the period of pkW is P/Pk, and we get by addition dima V+---k+l (n--rig).
This last number is also equal to the dimension of pkRn because this module is the
direct sum of the (PkVi}’S (obvious). By inclusion and equality of dimension over R,
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we conclude that V,+I pkR". Therefore we can write

(18) PkWk QiPkW
i=k+l

with Q R[z], and by what precedes, we may ensure upon euclidean division by Pi/Pk
that deg (Q) < n- n. Now the period Pk,k of Wk modulo {Wl," , Wk-1, Wk+I," ",

has degree n. Hence, by (18), Pk,k =Pk and (17) holds obviously for j= k. Necessity
is thus proved by induction.

We prove sufficiency: by (17) we may write P,k Q,kPk,k and

Pk,kWk Q,kPk,kWi for every k, 1 _-< k <- r,
i=k+l

the above sum being zero if k r. Let w: Wk- Qi,kWi if k < r, and w w. Then
has period Pk,k" this is obvious if k-- r, and otherwise comes from the fact that Pk,k is
an annihilator, while Wk has period Pk,k modulo V+I by hypothesis. Furthermore the
sum {w,} is direct, for if ’, RkW’k--0 with Rk R[z], then Rw V_, whence also
R Wl V2, and therefore P, R1, and Rw --0. By induction we get RkWk 0 for every
k. Because P, Pj for i<-j by (17), this proves that the Pk,k’S are the invariants of Fo,

and since deg (Pk,k)= n, F has cyclic structure I. Q.E.D.
We see from Proposition 4 that for F associated with S S,,t fS, we can write

Pij QijPj for i>j and Pj- QjjP_,_ forj> 1.

This allows us to define a map g’S,,t So-> Rm which to S associates the coefficients
of PI,, of the Qi,j’s defined above, and of the parameters of G and H associated
with S.

We set Op "--Sn, O Vp, and XP =g (#p’Op--> RN. (Op)pGI is an open covering
of S,,/, and we can now prove the already announced result.

THEOREM 4. Sn, is a submanifold of S,, of dimension N=n(m+p)-- (2i + 1)nr_ where r is as usual the number of invariants (if r 1 the above sum is)"
0), ni being the degree ofthe ith invariant. Op, XP)PGI, defined above is an atlasfor

Proof. Using the notation of 1, we let S be in S, and H, F, G be a realization
of S. For simplicity, we write Ho, Fo, Go instead of Ho, Fo, Go. The parameters in
Ho and Go will be denoted by p(Ho), p(Go). The parameters in Fo are, according to
our notations, the coefficients of the Pij’s; o(S) V consists of all parameters in
Ho, Fo, Go, and will be denoted by (p(Ho), p(Go), P,). For every i,j, i>j, we write
by euclidean division

and if j > 1,

Pj QijPj + Rij,

We consider the map f: Vvo--> Rn(m+p) such that f(p(Ho), p(Go), Pij)
(p(Ho),p(Go), (P)<, P,, (Q)>__, (R,)>__j). In other words, we choose as para-
meters, instead of the coefficients of the P’s with i>j or i=j> 1, the coefficients of
their quotients and rests upon division by P if i>j, and by P-I- if i=j. Since Pj
is monic, the coefficients of the Qi’s and R,j’s are given by universal polynomial
formulae in those of the P’s. Therefore f is analytic. It is also injective, since f- is
readily computed. By invariance of the domain [24], f is open, and its image W is an
open set. Finally, f-I is obviously analytic, and this shows that (Vp, f Op) is a chart
on S, for every P Glm. By Proposition 4, f Oe( Vp f")S,,t) consists in those elements
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of W such that all Rij’s, and Pij for <j, are zero, hence our chart splits, and Sn, is
a submanifold of S,, of dimension n(m+p)-k where k is the number of parameters
contained in the Ri’s and the Pi’s that are zero. For fixed j, this number is equal to
<j n + nj-1 + n(r-j) where no 0 conventionally. Hence the coefficient of n in k is
2(r-i)+ 1 if < r and 0 if i= r. This yields the desired value for N. It is moreover
obvious from the proof that (Oe, XP) is a system of charts for S,,t. Q.E.D.

We observe that the only case when N n(m +p) is that of cyclic systems, when
r 1. The fact that cyclic systems form a submanifold of maximal dimension implies
it is an open set. However, it is straightforward that it is an open and dense subset of
S, from the two following facts: first S,o, which is open by definition, consists entirely
in cyclic systems in that case; and second, any system with distincts poles (eigenvalues
of F) in C is cyclic, while it is possible to approach arbitrarily a given polynomial
with a simple rooted one.

We now perform another construction to endow S,,/with an analytic structure.
Let S be in S,o f-)S,,l. By Propositions 3 and 4, S satisfies the minors condition, whence,
denoting by T its transfer function, we may write by Theorem 3 a t-special factorization:
T N*(D*)-1. We want to take as parameters the "independent" coefficients in N*
and D*, that is, with the notation of 2, 3, the coefficients of d*,,_/, of d/d_l for
j m-r+ 1, of the q’s, and of the r’s. To do this, we must prove, among other
things, that N* and D* are unique. A direct proof of this fact can be found in [2];
however, we shall derive it here from the uniqueness of Ho, Fo, G associated with
S. This is contained in the following and final result.

THEOREM 5. To every S (S,o (q S,), with transferfunction T, is associated a unique
pair N*, D* such that T- N*(D*)-1 is a t-special factorization. Ifo’" S,ofq S,- Rv is
the map such that tr( S) is the list, arranged in any conventional order, of the coefficients
of d*m_/, of d/d_ for m r / 1 j < m (if any), of the q’s and the r.*.’s then
Op, tro bp), for P in Gl, is a system of charts for S,, and endows it with its analytic

structure of submanifold of S.
Proof. We have already seen that a t-special factorization exists for T, say

N*(D*)-. Associating with S its realization (Ho, Fo, Go)-notation of the proof of
Theorem 4we know by realization theory and Proposition 4 that P- dm-/ for
1 <_-j-<_ r, while dk 1 for 1 _-< k_-< m r (if any). We can write by definition D*
U diag (d where U is a lower triangular matrix with l’s on its diagonal (hence
unimodular), whose element (i,j) is q. We put U-- (sia). It is still lower triangular
with l’s on the diagonal, and we have

(19) T= N*M-1U-1 with M=diag {d,}.

From the formulae Sj=--t>_k>jS,kq*kd, it is readily seen that deg(si)<
deg (d)- deg (d) if i> j, because this is true for q. We denote by Ci the ith column
of U-1, and we associate with (19) its Fuhrmann realization (H, F, G), by choosing
as a basis of the state module R"[z]/MR"[z] the classes of the zC’s, for m r < <= m
and 0<-j < deg (d). Note that these constitute indeed a basis because S So. Further-
more, (H, F, G) and (Ho, Fo, Go) coincide by uniqueness of the latter. With the
notations of 1 to denote equivalence classes in the quotient module of M, we see
from Proposition 4 that _C has period d modulo {_Ci/l, , _Cm} if m-r <i -< m, and
that we may write with the notations introduced in the proof of Theorem 4

d,_C,= E Qk,,d,C_k.
k=i+l

Because U- is triangular with l’s on the diagonal, this yields in particular dS+l,
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diQi+,i mod di+, whence Si+l, Q+l,i by comparison of the degrees. Suppose induc-
tively that Sg, has been computed from the Qu,o’s and dj’s, if < k < + and m r < <=

i+l
m; we then have disi+t,i g=i+ Qg,diS+l,g modulo d+l, and all the s+l.g s are known
in the above sum. Now the degree of si+l, allows us to determine it upon euclidean
division of the sum by di+l (we assume i+ l--<_ m, but otherwise there is no need to
compute si+l.). This shows by induction that sj is uniquely and rationally determined
from Fo, provided m r <j. If 1 <=j <= m r (if any), we have _Cj Yg=m-r+ Tg_Cg where
the Tg’s are known polynomials, whose coefficients are to be read in Go. Therefore
sj Y Tgs.k modulo d, and the s,k’s are known in this sum. Upon euclidean division
by d, s is again uniquely and rationally determined. This gives U-1, hence U, hence
D*, and N*= TD*. The map r is thus well defined, rational, and obviously injective.
We now count the number of parameters in N* and D*. N* provides pn coefficients
for the r’s, while D* provides n, coefficients for the di’s, (m-r)n coefficients for the

r--1q’s with j < m-r+ 1, and Ys= Yr_->g>s (n--n,) for the other q’s. This last sum is
equal to =o nr_i (r-2i- 1). The total number of parameters is now easily seen to be
N (cf. Theorem 4), showing that the image B of tr is a subset of RN. B is easily seen
to be open (it must be so anyway by invariance of the domain), and the above
considerations show that the map tr bp X o" g-1. Xp(Op) -’> B, is rational, hence
analytic. It remains to prove that its inverse is also analytic, but this is easily seen,
because for S S ,o (q Sn.i, as we have seen above, Ho, Fo, Go are precisely the matrices
of the Fuhrmann maps associated with our t-special factorization N*(D*)-, with
basis zJ_C in the state space, showing that oOO"- is rational, hence also
g tr-. Q.E.D.

As mentioned in 3, we might choose our parameters in special factorizations
D-1N, and even impose that D-1N N*(D*)- is solvable, i.e. both minors condition
and its dual are satisfied. The analytic structure thus obtained is similar to the present
one [2].

5. Relation to other works.
A. About special factorizations. The existence of the factorizations introduced in

this paper depends on Theorem 1, which is used in 3 to analyse the external
representation of a given system. They are related later only with state-space description,
through Propositions 3 and 4. An alternative proof of this existence, proceeding in
some sense in reverse order, may be sketched as follows. We start with an algebraic
identity given in [1, (5.5a)]

zI F)-G WE-,
where , is a nice selection, W, E polynomial matrices, E being built with the
associate polynomials P of F..If is some cyclic structure and , the associated nice
selection (denoted by ’o in 4), Proposition 4 shows at once that when F has cyclic
structure l, E is under t-special form. Applying Theorem 3 and Proposition 3 then
yields the existence of t-special factorizations.

B. About the submanifolds S,. The set W.,t consisting in those elements of S.
whose invariant polynomials have simple roots is clearly an open (dense) subset of
S.,l, hence a submanifold of S., of dimension N. This fact can also be deduced from
a result of Kanewsky [22, (1.5), (1.6)], asserting that systems (over C) with given Jordan
structure in the state space form a smooth subvariety (hence a submanifold) of S., of
dimension N-n. One might for instance choose the roots of the rth invariant as rl

supplementary parameters, and the product structure thus obtained yields the desired
result for W..! (over C). However, the analysis near a multiple root is more difficult,
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since the Jordan structure is locally subject to change, and the parametrization of the
various branches is not helpful if we do not know on which one we are.

C. Application to L2 approximation. The results obtained here in the cyclic case
have been used in [2] to approach the problem of approximating a (possibly non-
rational) L2 sequence of matrices, F, by a stable rational cyclic one of given state space
dimension, T, the error in the L2 norm being minimal.

The technique consists merely in differentiating ]IF-T[I 2 with respect to the
parameters introduced in this paper. Identifying the vector space spanned by the
derivatives with some space related to VD and V* (cf. Proposition 1), one obtains a
necessary condition on T in terms of orthogonality between certain spaces, which
generalizes the equation obtained in [23] to treat the scalar case.

This, together with a heuristic algorithm, has been specialized in [3] to the case
when F is almost rational, for identification purposes.

6. Conclusion. In this paper, we present an attempt to parametrize systems by
means of special factorizations RD-1N of their transfer functions. Roughly speaking,
we want D to be triangular, so that we can control deg (det D), that is the dimension
of the state space. We then need another matrix R to get divisibility conditions in D,
that allow us in turn to find free parameters in N. But we restrict R to be scalar,
because we also want to take causality into account, which is easier to analyse when
we have only two factors in the product. It turns out that once R is chosen, D and N
are uniquely determined, just as the choice of some nice selection v makes (H, F, G)
unique. However, imposing the divisibility conditions prevents us from parametrizing
topologically the whole manifold. Instead, we have to limit ourselves to certain
submanifolds, namely the S,,’s. The parametrization in the cyclic case is by far the
simplest one, in spite of its maximum number of parameters.
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STOCHASTIC APPROXIMATION IN HILBERT SPACE:
IDENTIFICATION AND OPTIMIZATION OF LINEAR

CONTINUOUS PARAMETER SYSTEMS*

H. J. KUSHNER" AND A. SHWARTZf

Abstract. We treat a class of stochastic approximations (with small constant gain e), with values in a

Hilbert space. The problem and algorithm arise, e.g., when one seeks to iteratively identify the transfer
function of a linear system (continuous parameter) or to adaptively optimize the transfer function of a

stochastic linear system. Weak convergence methods are used to prove convergence of the interpolated
sequence as e 0, and to characterize the equations satisfied by the limit.

Projected and unprojected cases are dealt with. In one important case, convergence to a constrained
optimum is proved when en-> oo as -> 0. The normalized error sequence is analyzed. It is shown that the
limit (as e-> 0) of the interpolated normalized error sequence satisfies a linear integral equation driven by
a Hilbert space Wiener process. Many of the calculations and results are useful for approximation problems
for distributed systems with nonwhite noise inputs.

Key words, stochastic approximation, optimization in Hilbert space, recursive estimation, system
identification, adaptive stochastic centrol

1. Introduction. consider a system with transfer function K (.), input z(. ), samp-
ling interval A and output (at sampling time nA)

y,, K(’r)z(nA-’r) d’r+ q,,,

where {q,,} is a stationary (observation noise) sequence with mean zero, and indepen-
dent of z(. ). For notational convenience (w.l.o.g.), we set T 1 henceforth. We prove
a number of results concerning the recursive algorithm (1.1) and its "projected" form
(1.3) for estimation of the transfer function K(. ): convergence, rate of convergence
and behavior of the estimates for large times. As will be pointed out below, the
techniques and ideas are useful in many other cases.

The basic algorithm (1.1) is an obvious distributed parameter analogue of an
algorithmic form which is commonly used in the finite dimensional case. K,(. is the
nth recursive estimate of K(. ).

(1.1) g,+(u)= g,(u)-e(nA-u) K,(s)z(nA-s) ds-y,, e>0,

As in the finite-dimensional case, (1.1) can be viewed either as an algorithm for
identifying K or for optimizing the transfer function of a linear system. Define
H L[0, 1], with inner product {x, y} and norm Ixlo

Throughout we assume the following (although they are not always needed). The
process z(. is stationary, mean zero, Elz(t)l4+ < for some a > 0 and E[q,lz+ < o
for some a >0. Let R(u)= Ez(u+s)z(s) be continuous and define the operator R
from H to H by Rf=g, where g(u)=1o R(u-s)f(s) ds, u[0, 1]. Assume that R has
a complete orthonormal set {e} of eigenfunctions with eigenvalues {h}. If not, then
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supported in part by the Air Force Office of Scientific ReSearch under contract AF-AFOSR 81-0116, by the
National Science Foundation under contract ECS82-11476 and by the Office of Naval Research under
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we augment the set of eigenfunctions in order to complete them, and all the results,
except possibly those in 4 continue to hold. Note R(0) i hi <. Define 8K(u)
K(u)-K(u), and let K,, 6K,, K and Z, denote the H-valued random variables
whose point values are K,(u), 6K,(u), K(u) and z(nA-u), resp.

Rewrite (1.1) in the Hilbert space form

(1.2) K ,+, K eZ,((BK Z,)- 0,), Ko Ko.
Define the piecewise constant interpolations K(.) and K(.) by K(t)= K and
8K(t) K,, resp., on the time interval [ne, ne + e). We also discuss the projected
algorithm (1.3), where zrl projection onto the unit ball in H (any size ball will do
just as well).

(1.3) K,+=’n’[K-eZ,,((6K,Z,,)-q,,)], K= Ko.
The purpose of (1.3) is to obtain the estimate/ which minimizes in

min E y,,- (s)z(nZ-s) ds min E [/(s)-K(s)]z(-s) ds
till<=1 o Il--<l

(1.4)
=2 min J(/)+var ,.

Il_-<l

2

+ var

The asymptotic analysis is based on "weak convergence" techniques, and the
parts of this theory which we use are stated in 2. The limits of {K(. )} are discussed
in 3, together with those for (1.3). It will be shown (under some additional conditions)
that for (1.2), K( ):=>K(. (an H-valued function on [0, ) with value K(t) at time
t, and point values K(t, u),0 -< u <- 1, at time t), where

(.5)
dg t, u) Iod-=- R(u-s)[K(t,s)-K(s)]ds, K(O,u)=Ko(u).

Equivalently,

dK(t)
dt

--R(K(t)-K).

In 4, we study the asymptotic behavior of K(t +. where t o as e 0, in order
to get a better understanding of the large time behavior.

The rate of convergence is discussed in 5 and 6. Section 5 treats some preliminary
problems concerning weak convergence of a sequence of processes to an H-valued
Wiener process, and the full rate of convergence problem is treated in 6. The rate of
convergence, as dealt with here, concerns the behavior of the normalized sequence
{(K-g(en))//-}, analogous to a usual procedure in the finite-dimensional case.
We also comment on the relationship between (1.1) and its finite-dimensional "time-
discretized" version.

Remarks and applications. There are few works on stochastic approximation in
Hilbert (or in any abstract) space, and these seem to be entirely devoted to the case

2where e is replaced by e,, > 0 and, e,, o, , e, < c ([ 1 ]-[4]). Even with this change,
these works do not allow us to treat (1.1) or (1.3), owing to the correlation among the
{z,, 0,}. Also, there are no results (known to the authors) on rates of convergence,
constrained algorithms or on the properties as en as e 0. The general ideas and
techniques which are developed for our special case serve as a guide to the treatment
of the more general nonlinear cases.

The applications of (1.1) or (1.3) in adaptive signal detection or identification are
the same as those for the finite-dimensional ease [5], [6]. We use the language of
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"identification" here, but in the adaptive detection problem, one wants to iteratively
adjust K (.) so as to have 1o K (1 s)z(nA s) ds "best" fit a given sequence {y,}, but
the mathematical development is the same as for (1.1). There are many other applica-
tions which involve natural extensions of the ideas here. Consider the problem of an
adaptive matched filter, where we wish to recursively adjust K(. so as to maximize
the signal to noise ratio in the scalar system output 1o K(1 u)[s(u)+ sC(u)] du, where
s( )(=signal, l" =noise. Two formulationsare: (1) Constrain K(" suchthat [lo K(1-
u) u) du= 1 [-<constant and min E[ K(1-u)(u) du]2; (2) Hold IKI’= 1 and
minimize E[jlo K(1- u)(s(u)+ (.u)) du]2. For either form there is an appropriate form
of the "projected" algorithm (1.3) which can be used.

The time parameter u in (1.1) or (1..3) can be vector-valued, so that one can use
an extension or (1.1) of (1.3) to, e.g., iteratively find KI(’), K2(’) which minimize in
the Volterra form

E y,- K(u)z(u) du- K2(u, v)z(u)-z(v) du dv

For this example, the covariance operator R is replaced by a two parameter covariance
operator, but the general ideas are the same.

An additional motivation for the present work is that it allows treatment (in a
relatively simple context) of problems arising in the modelling and approximation of
distributed parameter systems. For example, the convergence and rate of convergence
results seem to be useful for the problem of obtaining the correct stochastic PDE’s
which model distributed parameter systems where there are "nonwhite" noise processes
(in analogy to the methods used in [7], [8], [9] to obtain the proper It6 equation
approximation to systems with wide bandwidth inputs). Currently available work (e.g.,
10], 11 ]) on distributed system approximation uses a completely Markovian structure,
where the state of interest is Markovian. This will be pursued in a future work.

2. Weak convergence--preliminaries. All the material in the first part of this section
is taken from Kurtz [12], although with slightly altered terminology. Let S denote a
metric space with metric d. Define the space Ds[O, ) of functions from [0, ) to S
where lims,tf(s)=f(t) and limstf(s) exists. The natural and commonly used topology
(which we use) on Ds[O, o) is the Skorokhod topology (see [12] or [13]). If (S, d) is
complete and separable, the the Skorokhod topology can be metrized so that it is
complete and separable also. Iff, (.)-f(. in Ds[O, c) under the Skorokhod topology,
where f(. is continuous, then

(2.1) sup d(f,(t),f(t))O foreach T<c.

Define Ds(-O, o),. in the same way as Ds[O, o) was defined, except that (-, c).
The discussion below is restricted to Ds[O, o), but exactly the same facts apply to
Ds(-, o).

Let {P,} and P denote measures on Ds[O, )--corresponding to the set { Y,(.)}
and Y(. of S-valued random processes with paths in Ds[O, c). We say that P, :=> P
or, equivalently, that Y,(.)=:> Y(.) (converges weakly) if for each bounded and
continuous real-valued function F(.) on Ds[O, c),

I F(y) dP,(Y) I F(y) dp(y).

Equivalently, EF( Y,(. ))- EF(Y(. )). If Yn(" )3 Y(. and Y(. is a (nonrandom)
continuous function, then supt<=rd(Y,(t), Y(t))O in probability for each T>O.
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Tightness. The sequences {P,} or (equivalently) { Y,(. )} above are said to be tight
if for each 8 > 0, there is a compact F Ds[0, ) such that

infP(Y,(.) F)>= 1- .
If S is complete and separable, then Prokhorov’s theorem states that { Y,(. )} is tight
if and only if each subsequence of {Y(.)} contains a further subsequence which
converges weakly.

Criteria for tightness. Define dl (x, y) min 1, d (x, y)].
THEOREM 2.1 [12, Thm. 2.7]. Let { Y,(. )} have paths in Ds[O, oo), where (S, d) is

complete and separable. Suppose thatfor each > 0 and 8 > 0 there is a compact Ft, such
that inf, P{Y,(t)F,,}>= 1-8. Let ’;=cr(Yn(s), s<= t). Then if (2.2) holds for each
T>0, we have tightness of {Yn(.)} in Ds[0, c). The sup__<r is over all {’, <- T}
stopping times

(2.2) lim lim sup EdI(Y,(r+ 8), Y,(r)) 0.
,0 .r_<T

The symbol r will always denote such a stopping time. The criteria of Theorem
2.1 will be readily verified in our case.

Skorokhod representation. Let Y, (.)=> Y(. and let (S, d) be complete and separ-
able. Since weak rather than w.p.1, convergence is of interest, the underlying probability
space is unimportant, and we can choose it in any convenient manner as long as the
distributions of each Y,(.) and of Y(.) remains the same. B,y Skorokhod [14, Thm.
3.1.1], there is~ a prob,ability space (,/,/3) with processes (Y,(.), I7"(.)) defined on
it such that Y,(.) Y(.) w.p.l, in the topology of Ds[0, c) and for each Borel set
F Ds[0, e),

P{ Y,(. e F} P{ Y,(. e F}, P{ Y(. e F} P{ Y(. e F}.

This extremely useful technique of turning weak convergence into w.p.1, convergence
via a particular choice of the probability space is often called Skorokhod representation,
but we prefer the term Skorokhod i,mbedding for this. We will use it often and without
the tilde affix for simplicity. The { Y, (.)} will be referred to as the imbedded sequence.

Weak convergence in the weak L2-topology. Let Hw denote the unit ball in L2[0, 1]
with the weak topology. Let {/1,’" "} denote a countable set whose finite linear
combinations are dense in H, with li[ 1. Then Hw can be metrized with the invariant
metric

d (f) d (f 0) L 2-" I(f,/.)1/[ 1 + I(f/,)1]-

Tightness in DHw[O, oo). The closure of a set F in Hw is compact if supxr ]xl <.
Thus to use Theorem 2.1 on D,,,.[0, c) it is enough that (recall that r is a stopping time)

(2.3) sup EIYn(t)[<oo foreach t,

(2.4) lim lim sup Ed Y, (r + 8) Y, (-)) 0 for each T> 0.
,1,0 ,r=<T

Criterion (2.4) is equivalent to (for each T> 0 and l H)

(2.5) lim lim sup E mini1, [(/, Y,(r+)- Y,(r))[] 0.
,0 .r_<_T

The same criterion is used for tightness in DH(--, c), except that Ir]_-< T replaces
r_<_T.

For notational convenience, we sometimes write P{ Y.(. ) F} for P,{F}.
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If Y,(.)=> Y(’) in DH (-03, 03) then for the associated Skorokhod imbedded
sequences { Y,(. ), I7"( )}, Y,(. )- I7"( w.p.1, in the Skorokhod topology. We will
always drop the tilde affix. Doing this and letting Y(.) be continuous, there is a
sequence T, 03 such that for each H (and under weak convergence and using the
Skorokhod imbedding technique),

(2.6) sup I(/, Y,(t) Y(t)) - 0 w.p.1.
Itl<=r.

as n-. Similarly for weak convergence in Ds[0, ).
Tightness in D,[0, 03). Let {f) denote any orthonormal basis in H. A bounded

set F in H is compact if for each rt > 0 there is an N, < 03 such that

(2.7) sup I(x,f)l2-<
xr N

Thus to use Theorem 2.1 in Dn[0, 03), it is enough if for each t>=0 and

(2.8) lim su,p P E I( Y, (t), f)l 2 _-> r/ 0,
N N

(2.9) limli"--sup E min[1,1Y,(’+6)- Y,,(’)I]=0 foreach T>0.
8 T

The same criterion holds for DH(--, ), except that ] T and ]t are used.
A more convenient form of (2.8) is the following: Fix 0. For each 0 and

p 0 there is an N such that

(2.10) P 2 (Y,(t),f)2 e n P, n Non.

To see that (2.10) implies (2.8), assume (2.10) and fix > 0, p > 0. Note that for each
m

limP 2{Y(t),}en =0.
N N

By this and (2.10), there are N;n < m such that

This and the arbitrariness of 0 and imply (2.8).
Finally, if Y(.) Y(.) in D[0, m), where Y(.) is continuous, then (use the

Skorokhod imbedding technique as done in connection with (2.6)) there are rm
such that

(2.11) sup IY,(t)- Y(t)l0 w.p. 1.
t T.

Let X, be a random variable taking values in H. We say that {X.) is tight in H
if for each )0, there is a compact (strongly) set A," P(X A,) 1- for all n.
Similarly for tightness in Hw, but then we use weakly compact sets A,. Also, XX
in H (resp., in Hw) if EF(X,) EF(X) for all strongly (resp., weakly) continuous
bounded F(. ).

3. Weak convergence of {K( .)}. First, in Theorem 3.1, we deal with algorithm
(1.1); then we discuss the few changes which are required to deal with the projected

is tight and
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case (1.3). The proof of Theorem 3.1 divides into three parts. The first part simply
defines a useful truncation device, which allows us to treat the {K,} as though they
were bounded. Then the tightness (in OH[0 c3)) of the interpolated truncated sequence
is proved. Finally, we show that the limit of the truncated K (.) satisfies a "truncated"
form of (1.5). Owing to the nature of the truncation, this convergence is enough to
give the desired result.

Notation. Let Ej denote conditioning on {Zk, clk, k <j, Ko} or on {I]/k, Z(S), k <
j, s-< kA-A, Ko}. Let E denote conditioning on {Zk, 0k, k < t e, Ko} or on {k, k <
t/e, z(s), s <= t/e A, Ko}, where for t/e we always take the integer part.

The following assumptions will be used.
Assumption 3.1. EjOk-O in the mean, as k-jc; E[z(t+s)lz(u), u<-t]O in

the mean uniformly in t, as s .
Assumption 3.2. E[z(t+s)z(t+s-v)-R(v)lz(tr),cr<-t]O in the mean, uni-

formly in and in v [0, 1] as s .
THEOREM 3.1. Under the assumptions of 1 and Assumptions 3.1 and 3.2, K( ):=>

K (.) in DH[O, ), where K (.) satisfies (1.5).
Remark. When {en} is complete, then K is the only stationary solution of (1.5)

and K (t) K (strongly) as o.
Proof. Part 1. Since the proof is simpler if the {K,} are bounded, we use a

truncation device, and first prove weak convergence for a "truncated" sequence. For
each N, let qN(’) be a Lipschitz continuous function (called the trunction function)
from H to [0, 1] where ql(X)= 1 for Ixl-< N and qs(x)= 0 for Ixl--> N + 1. For each
N, define the sequence {K,’} by

(3.1)
K’ K’ Z,,) eZ,,d,,)q(K’),,+ eZ,,(SK ,;

Ko-e Z(SK;", Z)q(K;’N)+ e Zq(K;")
o o

’s= K until first escape from the N-sphere andwhere K,.rv K ,,v K. Clearly, K
K’ remains constant after first exiting the N + 1 -sphere. Define the piecewise constant

interpolation K’v(.) (the paths are in DH[O, )) as K(.) was defined, but using
{K,’s}. Define qvn q(K’N).

To slightly simplify the problem, let Ko be bounded uniformly in to. In Part 2 of
the proof, it is proved that {K’N (.), e > 0} is tight in DH[0, ), and in Part 3 that the
limits of this sequence satisfy (3.2). Assume these facts now. Let e index a weakly
convergent subsequence with limit /(s(. ). We now show that those facts imply the
theorem.

We will show that K’(.):=>//v (.) in DH[0, (X3), where / (.) satisfies

dg(t, u) ft(3.2)
dt Jo

R(u-s)[gv(t’s)-K(s)]qv(g(s))ds’ /(t(0) K
for large N.

There is an N such that 1/ (t)[-< N1 and [g (t)l--< N1 for all N, t. Thus for large
N,/ (.) =/(.), and also K’N(.)/(.) in DH[0, ). Consequently, via the weak
convergence and (2.11), for each T>0 and large N

(3.3) sup [K’(t)-/(t)[.-0 in distribution

(use Skorokhod imbedding if Ko is random; otherwise it is not needed). But this
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implies that for each T> 0 and r/> 0

lim li-- P{sup [K’N(t)-K(t)I > r/} O,
N

which, together with (3.3), is equivalent to the theorem assertion. Thus we need only
show that K’N(.)=>/ v (.) in Dn[0, c) and that {K’(.), e > 0} is tight for each
N. This is done in the following two parts.

Part 2. Tightness of{K’(.)} in Dn[0, oo). We apply Theorem 2.1. Bythe remarks
at the end of 2, in order to satisfy the first condition of Theorem 2.1, it is sufficient
that for each T> 0 and r/> 0,

(3.4) limsu.p P Y. (K’ e,)2>--r/ --0.
M i=M

Henceforth T is fixed and Cs and C denote constants (not depending on e or n),
whose values might change from usage to. usage.

Define/L Itlzjl>-r and I= 1-/.
In the argument below, it is implicitly assumed that all [K,’N[ are bounded for

each N. This is not necessarily true, since the last jump before leaving the N + 1-ball
(if this occurs) might not be bounded. But this causes no problems since for each p > 0
and N < o, our assumptions on {0,} and z(. imply that

P{ sup ’ ’[K,,+ K, _->p}O
nT/e

as ne-0. So, for convenience, we assume boundedness of the IK;’I.
First, we treat the first sum in (3.1), which we split as follows:

8K )qNI H, + H2,.
o o

We have

(3.5)
E, E(H,, e,)-<= E[H,,I: e: f E(Z, Zk)(Zk, 8K’)(Zj, 8K;’N)qjqkIj.I.

j,k =0

j,k=0

where at-) 0 as L oo (since EIZ]4+" < for some a > 0).
Next, evaluating E(ei, H2.)2 yields (using E(ei, Z)2= hi and the Schwarz inequality

to get the next to last inequality)

E e (e,,Zj)(Zj, SK;’n)qjIt.
j=O

(3.6)

e,N\lte2 E(e,, Z)(ei, Zk)qNjqNk(Zj, 8K;’N)(Zk, 8K k /’jL’kLlt
j,k =0

<- eC Y, El(e,, Z)(e,, Z)IL2

<_- (n + 1 )2e 2 CNAiL2 <= 2 T2L2 CNAi.

Since hi < oo, (3.5) and (3.6) imply that the first condition of Theorem 2.1 holds for
the interpolation of H,".
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We now need to verify the first condition of Theorem 2.1 for the second sum of
(3.1), namely, e Zflg. But, owing to the independence of {9) and z(.), this is
straightforward and the proof is omitted.

To complete the proof oftightness, only (2.2) needs to be shown. We have (possibly
modulo an end term in the sum)

(+)/

’/e

Criterion (2.2) ceainly holds if the and are bounded. The general proof follows
from this and the fact that E*<,E <, since for each T<

T/e

(1 1 = + 0
0

for each L <.
Thus {K’( )} is tight in Dz[0, ). Also, any weak limit is strongly continuous

w.p.1, if {6, Z(. )} is bounded. But, by a truncation argument such as the one used
just above, we still have strong continuity under our conditions.

Part . e limit (.). Fix a weakly convergent subsequence of {K’( .)} in
Dn[0, ), indexed also by e and with limit R (.). By taking a subsequence if necessary,
suppose (w.l.o.g.) that the processes defined by the continuous parameter interpolation
of the two sums in (.1) also converge weakly in Dn[0, ), and also to strongly
continuous limits. The form of the limit process will not depend on the paicular
chosen subsequence. In order to show that R (.) satisfies (.2), it is sucient to show
that for each f H, the weak convergence in (.7), (.8) holds for the processes
{S;’(.),S’(.)} defined there. Recall that (K’(t))=(Ko)+S;’(t)-S’(t)
and write R (t) R (t) K (t).

t/

(3.7) S’N(t) e ,(f, Z>qv=#zero process,
j=0

(3.8)

tie

E <f, Z)(SKj ,Z3)qN
j=0

==> du f(v) ,(u,s)qc(gC(u))R(v-s) dvds S)V(t).

The sequence {s’N( .)} is tight in Dn[0, oo). Then to get (3.7), we only need to
show that S’N(t) 0 for each (Billingsley [13, Thm. 15.1]). But, by the hypotheses,
E(S’rv(t)):O as e-0. Thus (3.8) holds.

The weak convergence of {K’N( )} and the hypotheses on z(. imply tightness
of {S’N( )} in DR[0, ), and that the limits are strongly continuous. Thus, to obtain
(3.8), we need only to show that

t/e D
(3.9) e Y’. (f, Z)(SK", Z)q(K’N) S(t)

o

for each > 0. To complete the proof a Skorokhod imbedding procedure will be used.
Choose and imbed a weakly convergent subsequence of {K.v (.), S,(. )}. Owing to
the nature of the imbedding the random variables Z which are used to represent
S’( depends on e, although their distributions do not, and we rewrite the left side
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of (3.9) as

t/e
(3.9’) e

o

By the Skorokhod imbedding

suplK’l(t)-gm(t)l-O w.p. 1.
(3.10)

Thus the limits of (3.9’) remain the same ifK’ and K’rq are replaced by (ej)
and (ej), respectively. So, we need only show

(3.9") e
o

where Z is obtained from a process z(.), just as Z was obtained from z(.), and
z( and z(. have the same distributions.

If K (ej) were replaced by a constant in (3.9"), then (3.9") would hold by the law
of large numbers for stationary processes [15]. We get the same result, owing to the
strong continuity of/v(.). Q.E.D.

The projected algorithm (1.3). By the nature of the projection, there are c _-> 0
such that ec_-< 1 and algorithm (1.3) can be rewritten in the form

K,+, [K,- eZ. (<Z., SK ,>- q.)](1
(3.11)

K, eZ,,((Z,,, SK,>- 4’.)- ec,K + 0.
In fact, we have (write A, Z((Z, 8K)-$)),

(3.12) ec, <= elA,/(1
T/eThus o E[OI 0, and we can (and will) ignore the O terms. For future use, note

that by the conditions on the noise in 1 and for any sequence T -+ oo and tx > 0,
L/

P{ sup ec>-a} <- P{ec,>-}=O(e/a)T.
n<= T/ n=0

Thus, we can (and will) suppose (by altering the algorithm on a set of arbitrarily small
probability) that there is a sequence T - c such that ec, < 1/2 for n <- T/e.

THEOREM 3.2. (algorithm (1.3)). Let IK(0)I-IKoI< 1. Under the assumptions of
Theorem 3.1, K(.)K(.) in DH[0, oO), where (SK(t)=K(t)-K)

(3.13) dK(t)_ 7Y[-RS/(t)], /(0) 7r(Ko),
dt

and the operator2 r projects the dynamics onto the unit ball in H. Equivalently, there is
a real valued function (. >- 0 such that

(3.14)
dK t) g t) ( t). t),

dt

where e(t) =0/f I/((t)J < 1. C’(. is just large enough to keep ,.(. from leaving the unit

ball

That is, if I/(t)l < 1, then rt identity. If I/(t)l-- and d/dt(,(t),/(t))> 0, then 7r projects the
derivative on to the tangent plane to the unit ball at the point/(t), so that/(. cannot leave the unit ball.
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Remarks on the proof. Write (dropping the O terms)
n+l

(3.15) K,+,= H (1-ec;)Ko-E (1-ec)eZ((Z,
0 0 j+l

Fix T> 0. Using ec -< 1 and the representation (3.15), the tightness proof in Theorem
3.1 carries over with only minor modifications. The rest of the details are also about
the same as for Theorem 3.1, and we make only a few comments. Define the interpolated
process C(t) e o c). Then, by the conditions on z(. and ,, {C (.)} is tight in
D[0, ) and all weak limits C(. are Lipschitz continuous. This follows from (t > s)

t/e

(3.16) (t) (s) weak limit of
s/e

and the fact that the weak limit of the function defined on the right of (3.16) is of the
form Cot.

Fix a weakly convergent subsequence of {K( ), C( )} with limit K(. ), C(. ),
and write (t)=o g(s)ds. We have ](t)] 1. By a Skorokhod imbedding and the
consequent uniform convergence (as in (3.7) for the problem of Theorem 3.1), g(t)= 0
on any inteal on which lK(t)l < 1. It follows that (. must be just large enough to
keep K(. from leaving the unit sphere. With this g(. ), the solution to (3.14) is unique,
hence the chosen subsequence is unimpoant and the original sequence converges
weakly to the solution to (3.14).

Discretization. For application, it is impoant to understand the behavior of a
discretized algorithm. Let a (e, fl), where fl > 0. Define Z (t) t_ Z(S) ds/ on

Zl4+ < E [ <, and Assumptionst [l,
3.1 and 3.2 imply that, if m(. is the modulus of continuity of R(. ),

(3.17) liE[E[z"(t+s)z(t+s-v)lz(u),ut]-R(v)[m(2H)
s

and the limit is uniform in and v [-1, 1]. Define

(3.18) K+(u)= K(u)-zO(nA-u) K(s)z(nA-s) as-y, Kg(u)= Ko(u).

This gives a discretized version in that, as u ranges over [0, 1], K+(u) takes a finite
number of values. Define K(t, u) and K"(t) as before. Let a (e, fi) (0, 0). Theorem
3.3 shows that K( )K(. satisfying (1.5).

THEOREM 3.3. Under the assumptions of
g (.) in Dn[0, ), where (.) satisfies (1.5).

Proo The proof is very similar to the proof of Theorem 3.1, and we only make
some remarks on the tightness (Pa 2 of Theorem 3.1). Define 6 l{iZllL as before.
Then the estimate for H, holds, bythe uniform integrability of I@]4 and the integrability
of ]Z]4. To get an estimate for H,, note that (cf. (3.6))

2C El(e,,Z)(e,,Z)lL2

i=M j,l=O

A straightforward computation shows that

This and the argument in (3.6) gives the desired estimate. Q.E.D.
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4. Asymptotic behavior, e0 and ne oo for algorithm (1.3). The behavior of
(1.3) as ne-> o and e-> 0 cannot be ascertained directly from the weak convergence
results of Theorems 3.1 and 3.2. In this section, we show that if IK[> 1, then K==K
in H, where K is the unique minimizer in (1.4). From this and the arguments of
Theorems 3.1 and 3.2, we have K(t +.)==>constant function K, if t->. So far,
we have not been able to obtain the analogous result when IKI < 1 (mainly because
we have not been ab to prove tightness of {K, e > 0, n <} in H for that case).

Write J(/)=1/2(K- K, R(K- K). Just as in the finite-dimensional case, the strict
convexity and continuity of J(. and the convexity of the unit sphere imply that J(.
has a unique minimizer on the unit sphere and also that: if there is a K[ < 1 such at
R(/ K) 0, or a (/, ) such that >= 0, I/1 1 and R(/ K) +/ 0, then K is
a global constrained minimum. Thus, there is a unique solution (on the boundary of
the unit sphere) to (4.2) below. The in (4.2b) is determined by (K, R(K- K))+

0, and using Ig l : 1.
The Fr6chet derivative of J(/) is R(/- K). The steepest descent algorithm for

the constrain.ed minimization of J(. takes the form/ -R(/ K) for Igl < 1. When
I/[ 1, it is/ R(/ K) /, where is just large enough to keep/ from leaving
the unit sphere. Thus the steepest descent path obeys (3.13), (3.14). These facts will
be heavily used in the proof of Theorem 4.1.

THEOREM 4.1. Assume algorithm (1.3) and the conditions of Theorem 3.2, but let
IKI > 1. Then, if t -> c as e --> O, K t -> K, the stationary solution to (3.13) or (3.14),
where K minimizes in

(4.1)

and is the unique solution to

(4.2a)

(4.2b)

min J(K)
I1_-<1

oo=(R+)-’RK,

c- -(K- K, RK).

Proof Part 1. Let t --> . Define the interpolation K (t +. as usual for t + -> 0,
and set K(t) Ko for t + t-<0. If there is a random variable K(0) such that K(t)
K(0) in H, then the argument of Theorem 3.1 implies that K(t+.)K(.), in
DH(-c, ), with initial condition/((0). In any case, since Igl < 1, {K} is tight in
Hw. Let (choose a subsequence, if necessary) K:=> K(0) in Hw. Then by the arguments
of Theorems 3.1 and 3.2, K(t+.)K(.) in DHw(-O, o), and also K(.) satisfies
(3.13), (3.14). Actually, to prove (3.9) in Theorem 3.1, norm convergence of {K’N( )}
was used. But convergence in DHw[O 0(3) is enough. To see this drop the q..v,j which
do not appear in the current case and note that the summands in (3.9) are uniformly
(in j, e) integrable. Then, it is enough to show that for each 8 < 0

P K;,E ze, > 0
i=N

as N , uniformly in e and j, where z (e, ). But this follows from the norm
boundedness of {K} and

E 2 ze,, E ze, =EA,0.
i=N i=N N

In Pa 3 below, it is prove that {K, e > 0, n 0} is tight in H. This result implies
that {K(t+.)} is tight in DH(--,), and also that the set {K(t),ltl<} of all
possible weak limits in H (over all subsequences e and sequences {t}) is tight in H.
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Until Part 3, suppose that {K,, small e > 0, n >- 0} is tight in H. Fix t c and a
subsequence (indexed by e) such that {K(t. +.), C(t +.)} conve.rges weakly in
DH(-, o)x DR(--o, ) to the pair (K(.), C(. )), and write 6(t)= C(t). This pair
satisfies (3.13), (3.14) on (-, c).

By the weak convergence and the continuity of the limit processes, there are a 0
and T such that

limP{sup IK(t+ t)-K(t)l>-a}=O,
Itl<=T

(4.3)
lim P{ sup IC(t+ t)-(t)l>=ot}=O.

Itl<=T

Equation (4.3) (and the fact that c, =0 if [K+I < 1) implies that e(t)=0 on any
interval on which 1/ (t)[ < 1. Also, as in Theorem 3.2, if [/ (t)[ 1 on an interval, then
C’(t) must be just large enough to keep K(t) from leaving the unit sphere on that
interval. These properties imply that the solution to (3.14) is a steepest descent path
for the constrained minimization of J(. ). We now proceed to show that K(t)= Koo,
the unique stationary point. The analysis uses only the assertion that {/ (t), tl <} is
in a strongly compact set (to be proved below), and the steepest descent property of
(3.13), (3.14).

For IK (t)l < 1 (hence 6(t) 0),

(4.4) ((t))=-(g((t)-K),g(I(t)-K))<-_O,

which is bounded away from zero, uniformly in IK(t)l < 1. This implies that K(.)
eventually stays on the surface of the unit sphere, and that the total time during which
I/((t) < 1 is bounded uniformly in the initial condition/((0). Define/i(" and k, by the
expansions

K (t) E k,(t)e,, K E k,e,.

If g (t) is on the boundary I/ (t)l 1 on some interval, then (on that interval) obviously

0 I/ (t)l z -2(g (t), R(/ (t) K) + ’(t)/ (t)),

which yields the value

(4.5) (t) -(RK (t), K(t) K) -(K(t), R(K (t) K )).

By a similar direct calculation on the boundary and use of (4.5)

(4.6a) )(g(t))=-(R(g(t)-K),R(I(t)-K))+(R(g(t)-K),g(t))Z<-O.

In terms of components,

(4.6b) j(/(t))=- ,(/i(t)-k,)+ A,(k(t)-k,)k-(t) NO.

Expression (4.6) is <_-0 because it is the derivative along a steepest descent path. It is
also <0 if K(t) K and it is strongly continuous on each strongly compact set.

Since {/(t), Itl<m} is assumed to be in a strongly compact set (see below for
proof) the comments in the last paragraph imply that for each > 0, there is a (strong)
neighborhood N of/ such that for g(t) N, .(g) -< -& This implies that the path
/ (.) can only spend a finite total time out of N, and that this total time is bounded
uniformly in the chosen convergent subsequence. The strong compactness and the
decreasing property of (-K, R(I-K)) along paths of (3.13), (3.14) imply that
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eventually (the required time T, say, being independent of the chosen subsequence)
K(.) will remain in N. The above argument actually implies that K (t)= Ko, by the
following reasoning" Let K (t +. =>K (.). Then K (t) . N for >_- T. Also for any
T>0, {K(t-T-T+.)=C,KT(.)=K(.-T-T) and K(t)=KT(T+ T+t)N
for all -T by the above argument.

It only remains to prove the tightness of {K, small e > 0, n 0} and the strong
compactness assumption made above (4.4).

For arbitrary T>0, let K(. and KT(" be limits (in DHw(--, )) of {K(t +. )}
and {K (t T+. )}, respectively. Write

K t) k( t)e, Kr( t) kT,( t)e, K ke.
By (3.14), [kr,(t)l 1 and

since c(t) 0. Since T is arbitrary, [(t)l Ik, for all and t. This implies the strong
compactness.

(t+s)/ePart 2. In preparation for Pa 3, we now get an estimate for ,/ (1- ec) as
e 0, . Let {} be a sequence which might tend to . As noted above Theorem
3.2, we can suppose, for T slowly enough, that ecf 1/2 for ej T, + T].
By the hypotheses, the weak convergence of C(.) to C(.) in D(-, ), and the

(+t)/e 2weak convergence/ ]ec 0, there are T such that

(%+t)le fosup (1 ec;)/exp- (u) du 1.(4.7)

A similar result holds when (_,/ and exp (u) du are used.
We now estimate (.). Order {e} such that the A are nonincreasing. Since

IKI2= k>l, we can find >0 and m< such that

E ei, x) and set

K, ={kl,..., k,}’,

Then, by (3.13), (3.14),

Rm -AmRm egm +AK,

(l-(sl=- ((u- u- e(u(u au,

where (t) N 1, KI e 1 + . Thus

This implies I c(s)ds(t-s)-2, for I, a bound which is independent of
the chosen convergent subsequence.

Combining this last result and (4.7) yields that for some Tm (and also for
-r t0),

(4.8) li sup/ (1 ec) < 1.2
,r (exp-t)e

Part 3. We now show tightness in H of {K, small e>0, t<m}. For each
T> 0, {K(t), tN T, e > 0} is tight in H. Hence, we need only show thatfor each sequence
s m, the set {K(s)} is tight in H. Let Sm such that S N T (the T used in Pa
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2) and se => Se. We have (possibly moduly an "end" term in each sum and product)

K(se) rl (1-ec)Ke(se-Se) + X (1- ec)Zj((Zj, Kf)-)
(se-Se)/e j=(se-Se)/e i--j+l

(4.9)
I+A2.

By (4.8), IAI:=>0. The estimate (4.8) and the eigenfunction expansions used in Theorem
3.1 yield that for each 8 > 0, there is an M < oo such that

supP E(e,,A)2-->8 -<8.
M

The last two sentences and the argument used to show that (2.10) implies (2.8) yield
the tightness of {K (se)} in H. Q.E.D.

5. Weak convergence to an H-valued Wiener process. In this section we develop
some technical results which will be used in the analysis of the normalized processes
introduced in 6. That analysis requires the weak convergence in DH[0, c) of a certain
sequence { We( ), e(. )} to H-valued Wiener processes W(. ), if(. ), resp., and the
proofs are given here.

DEFINITIONS [16], [17]. The covariance Q of an H-valued random variable Y is
an operator from H to H defined by

Qf EY(f, Y)=- E[ y y]f.

Let /(.,.) be a continuous function and define the operator / on H by /f(t)=
o (t,s)f(s)ds, and let (i, } denote its eigenfunctions and eigenvalues. Then by
Mercer’s theorem [17], [18] (the convergence is uniform on [0, 1]2)

N

(5.1) /(t, s) liNrn E ,Y(t)q(s).

A process W(. is a zero mean (stationary increment) H-valued Wiener process
if there are mutually independent real valued, zero mean, Wiener processes { W(. )}
with covariances tpi such that pi < c and

(5.2) , Wi(t)qi W(t)

where {qi} is orthonormal [16], [17]. The covariance operator of W(t) is defined by
E(W(t),f)(W(t), g)= t(g, Qf)= ,, p,(q,,f)(q,, g).

Convergence with {,} i.i.d. Define o- E.
THEOREM 5.1. Under the assumptions of 1 and {n} i.i.d., the sequence ofinterpola-

tions defined by We(t)= x/- ,to/e OnZ, converges weakly in DH[O, oo) to the zero mean
Wiener process W(. with covariance operator tQ, where

(Qf, g)= try, R(u- s)f(u)g(s) duds.

Proof. Tightness of { We( )}. We use Theorem 2.1. To verify the first condition
of that theorem, evaluate (let t! e integer)

E ei, We(t))2"- tcr2 ei s ei u R u s ds du hito’.

Since Y ’i < O0, the first condition ofTheorem 2.1 holds. To check (2.2) or (2.9), evaluate
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(use the i.i.d, of {q,} and its independence of z(. ))
(’r+)/e 2 (-r+)/e

This and the assumption EIZ,]4< yield (2.9). (See an analogous argument at the
end of Paa 2 of the proof of Theorem 3.1.) Thus { W( )} is tight in DH[O, ).

Weak convergence. Now fix a weakly convergent subsequence, indexed by e and
with limit W(-). By the tightness and the definition (5.2) of an H-valued Wiener
process, it is sucient to show that for each m, {(e, W(. )), m} { (. ), m} are

Thenmutually independent zero mean Wiener processes, with cov (t)= tA.
W(. )= (. )e is an H-valued Wiener process with covariance operator Qt.

Define Wf(t)=(e, W(t)). By the weak convergence of W(.)W(.) in
DH[0,), we have the weak convergence {Wf(.),im}{(.),im} in
De[0, ). The weak convergence of { (. ), m} is also a standard problem in weak
convergence of Euclidean space valued processes. The peurbed test function method
of [9], [20] can readily be used to obtain that { (.), i m} is the desired Wiener
process with covariance t. diag (A,..., Am), under our hypotheses. Since the limit
distributions do not depend on the chosen subsequence, W(.) converges weakly in
Dn[0,) to a Wiener process E e(.), where {(.)} are zero mean mutally
independent Wiener processes with EWe(t) At. We now obviously have the covari-
ance operator defined by (see Mercer’s theorem, equation (5.1))

(X W(t))(g, W(t)) e(s)e(u)f(s)g(u) ds du

tr2,t,t R(u s)f(s)g(u) ds du.

Non i.i.d. (q,,}. We now drop the i.i.d, assumption on {q,). In order to keep the
exposition simple, we use Assumption 5.1, which is much stronger than needed. Let
{z,} denote a real valued process, and set 07 o’{zi, n -< i-< m}. The process is called
b-mixing [13] with rate {b,} if for each m and A "--oo and B

[P{ACI B}- P{A}P{B}[ <= b,.P{A}, for all n.

An ergodic finite state Markov chain is 4-mixing and b,--> 0 geometrically. A similar
definition of 4-mixing applies to a continuous parameter process z(.).

1/2Assumption 5.1. {4’,} is bounded, stationary and b-mixing with bi < oo. z(.)
is either Gaussian and stationary and with R(s)--> 0 exponentially, or it is bounded,
stationary and &-mixing with rate Io cbl/2(u) du

We will use the fact that if {z,} is b-mixing and bounded by, say, L, then [19]
[E[z,+,,,-Ez,+m[gT"__o]I<--2Lck,,, (and similarly for a continuous parameter 4-mixing
process z(. )).

Define R,(j) Ed/,d/,+. Note that if Iq,.I--< A, then under b-mixing R+(j) <- 2A249.
TIaEOREM 5.2. Theorem 5.1 holds if Assumption 5.1 replaces the i.i.d, condition on

{tO,} and the covariance operator Q is replaced by Q, where

(Qf g)= R(u s)f(u)g(s) duds

and

/(s)= E Rq,(j)R(jA+s), [sl<_-l.



STOCHASTIC APPROXIMATION IN HILBERT SPACE 789

Proof. Tightness of { W (.)}. Theorem 2.1 will be used. For each t, let W (t, s), s
[0, 1], denote the point values of the H-valued random variable We(t). For each fixed
e and (t is a parameter here--not a time variable of the covariance function), define
the covariance function (time parameter s),

Re’t(& u)= EWe(t, u) We(t, s)

e ZZ R(j- k)R(jA- kA + s u) e’t(s u, 0).
j,k =0

By Assumption 5.1,

(5.3) Re"(s, 0)--> tR(s) as e-->0,

uniformly in Isl_-< 1 and on each bounded interval. Thus R(.) is a continuous
covariance function, since it is a uniform limit of a sequence of continuous covariance
functions.

Let {’i, ,,, > 1} and {-e.,e i-> 1} denote the eigenfunctions and values of the
operators (on H) / and R resp., (corresponding to the covariances /(.) and
Re’t(., .), resp.). We first prove an approximation and convergence result for these
eigenfunctions and values. By Mercer’s theorem [17], [18],

(5.4) e’t(s, s)= e’t(O, O)= . ,e.t, (,.t(s)e )2.

Also,

(5.5) " --’ thi, ’ --, C’ in H, as e --> 0.

Equation (5.5) follows from the general method of construction of the eigenfunctions
and values of a covariance operator, and is proved roughly as follows. Wong [18, p.
83-85] gives a detailed outline of a method for the construction of the eigenfunctions
and values of a covariance operator. By the method of construction there, -t

e,tas e -. O. Suppose that Aj -. tj, j <- and ej - j, j < (true for 1). The operator
is strongly compact on H, and all function convergences below are in H. Use the
compactness of R to get a function d, (choose a subsequence, if necessary, but the
argument below implies that the original sequence itself converges) /’- d. Then

tR ge")e - 0,

lim (t] e lim (t/,’ " t,e," ).e lim(tci

e,t i. These calculations imply that e - . This, in turn, impliesThus b lime h’,
(by the method of construction of the eigenvalues outlined in [18]) that h+ --> tX. Thus
(5.5) follows by an induction argument.

Equations (5.3) to (5.5) imply that

(5.6) /e’t(0, 0) =Z . e’t, ->tZ., t/(0).

Also,

(5.7)

and

(5.8)

E ’. (e, (t))2 E Z (, We(t))2 EIW(t)I)- tR(O)

lim E(C,’t, We(t))2=lim,’t=lim E(C,,, We(t))2= ti.
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We are now prepared to verify (2.10). By (5.3) to (5.8), for each r/> 0, there are
N, < o and e, > 0 such that for e -<_ e,,

N,-1
E [E(’", W(t))2-E(.,, W(t))2] ,

(5.9)

(5.9) and the arbitrariness of implies (2.10).
To verify the second condition of Theorem 2.1 (e.g., in the form (2.9)), let z T

be a stopping time and evaluate

1 j

By Assumption 5.1, the right-hand side goes to zero as 8- 0 and e 0, uniformly in
r -< T due to either: (a) the boundedness and mixing of {Pn} and boundedness of z(. ),
or (b) EIz(t)14<oo and boundedness and mixing of {p,}. Thus {We(.)} is tight in
DH[0, c).

Weak convergence. Fix a weakly convergent subsequence, indexed also by e, and
with limit W(.).

Since { We( )} is tight and converges weakly in DH[0, oo), to complete the proof,
we need only show that for each m,

{( We( ), ’), i:< m}:=>{ W(. ), <_- m},

an R"-valued Wiener process with mean zero, mutually independent components and
covariance

EW2i(t) t(.i, P.i).

This is a problem of weak convergence in a finite-dimensional Euclidean space and,
as in Theorem 5.1, the perturbed test function method [9], [20], [21] yields this result
under our hypotheses, and we omit the details. Q.E.D.

Weak convergence of { W(. )}. To obtain the result in 6, we need to know that
the sequence determined by the centering of the interpolated process

t/
/- 2 Zj<Zj,

converges to a Wiener process. We now proceed to set this up.
Fix k H. Define

:,k(s) R(s-u)k(u) du-z(nA-s) z(nA-u)k(u) du,

k Rk- Z,(Z, k).

For each e, t, define the H-valued random variable W(t) with point values W(t, s)
(for s [0, 1]) by

t/e

W(t, s) x/- E n(S).
o

The H-valued process W,(. is constant on each [he, ne + e).
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We will use the following assumption.
Assumption 5.2. The sum

u)

converges absolutely and uniformly in (s, u) in bounded intervals, and each summand
is continuous. The convergence is uniform in k in any strongly compact set.

Remark. The absolute and uniform convergence follows from the conditions of
Assumption 5.1 and so does the continuity, if R(. is continuous and z(.) Gaussian.

THEOREM 5.3. Under Assumptions 5.1 and 5.2, and the conditions of 1, Wk(" )=:>
k(" in OH[0, 3), where Wk(" is a zero mean Wiener process with covariance operator

tRk defined by

du.

If { We( ), I(. )}=( W(. ), i/k(" )) in D[0, oo), then W(. is independent of
Wk(" ), We( is defined in Theorem 5.2).

COROLLARY. Let F(. be an H-valued strongly continuous function defined on

[0, oe). Define

p,(s) R(s-u)F(en, u) du-z(nA-s) z(nA-u)F(en, u) du

and

t/

o

Then I2W(.)= I2V(. in Dz[0, oe), where I2V( is a (nonstationary) zero mean Wiener

process with

E(ff(t),f)(ff(t),g)= dv f(u)g(S)F(v)(S, U) dsdu.

The last sentence ofthe theorem holds ifl and V( replace Vk( and lk( ), resp.
Comments on the proof. The proof closely follows that of Theorem 5.2. For each

e, t, we can view (. as a nonstationary process on [0, 1]. As e 0, the covariance
,tR k (’, of this process converges uniformly and smoothly to tk(’, ). The eigenfunc-

tion expansion,s used in Theorem 5.2 are also used here in the same way--except that
/:,t(.,. and Rk(’, are nonstationary. The eigenfunction and eigenvalue approxima-
tions also carry over; approximate the eigenfunctions and values of/’(.,. by those
of tf-k(, ). Once this method is used to prove tightness of { ,t(. )} in DH[0, c)), the
limit Wk(’) is identified as it would be in Theorem 5.2: we simply work with
{(’k,,, lVk(,," )), -< m}, where ,,{e"k.,} are the eigenfunctions of/k.

If W(" ), We( ))=>( Wk(" ), W(" )), then if’k(" and W(. are mutually indepen-
dent, since they are Gaussian and

E( Wk( t),J)( W( t), g)= O for allf, g H,

since {,} is independent of z(.), and {0n} does not appear in {W(.)}. The details
are omitted.

The corollary is proved in the same way.
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6. Convergence of a normalized error process. Define U,=(K,-R(en))/e,
where K, is defined by (1.1) and K(. is the limit in Theorem 3.1. Let U( denote
the H-valued process with paths in D,[0, oo) and values U(t) U, on [ne, he+e).
Under the conditions of Theorem 3.1, we have / =-R6g and for each T < oo

g(n+)= g(en)-eRg(en)+o;,,[al=O(e), en<= T.

Then, using

K

we have

(6.1)

where

(6.2) se,(s) R(K(en)-K)-Z,(Z,, K(en)-K).

THEOREM 6.1. Under the conditions of 1 and Assumptions 5.1 and 5.2, U’(.)
converges weakly in DH[O, o) to U(" satisfying

(6.3) O(t) dv RO(v)+ W(t)+ lv’(t),

where W(. and lv’(. are the (mutually independent) Wiener processes defined in
Theorems 5.2 and the corollary to Theorem 5.3, where F K- K is to be used.

Comments on the proof Almost all the details have been worked out in Theorems
3.1, 5.2 and 5.3. As in Theorem 3.1, it is convenient to start with the "truncated"
algorithm (6.4)"

(6.4) U,+’N U,’ +x/eZ,q, +/-, eZ,(Z,, U’)q(U"N), Uo= O.

By the method of Theorem 3.1, the sequence of processes { Y(. )}

(6.5) e _. Z,<Z,, U,’N>qs(U,’s) =- Y(t)
o

is tight in Dn[0, o0), and all limits are (s..trongly) continuous. By Theorems 5.2 and 5.3
(and its Corollary), the We(.) and We(.) (replace the F(.) in the Corollary by
K(.)-K) converge in DH[0, o0) to H-valued Wiener (hence strongly continuous)
processes. Thus { U’S( )} (the piecewise constant interpolation of { U,’}) is tight in
DH[0, c). Fix a convergent subsequence, indexed by e, and with limit t)(.). The
limit is (strongly) continuous. By the method in Theorem 3.1, the sequence (6.5)
converges to

Thus

dV RON(v)q(ON(v)) in DH[0, oo).

(6.6) 0N(t) dv RON(v)q( ON(v))+ W(t)+ lv’(t),

which has a unique solution and equals O(t) up until the time of first escape of 0N (.)
from the N-sphere in H. Since for each T>0, P{ON(t) O(t), t=< T}--> 1 as N--> oo,
the theorem is proved. Q.E.D.
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ON SINGULAR EXTREMALS IN THE TIME MINIMAL
CONTROL PROBLEM IN

BERNARD BONNARD"

Abstract. In the time minimal control problem of a single input system in R3: dv/dt X(v)+ uY(v),
where X, Y are analytic, the singular controls are defined by a feedback of the form u(v)= A’(v)/A(v).
The purpose of this article is to classify the local behaviors of singular trajectories near the points v such
that A(v)=0 for a generic system with X, Y respectively quadratic and constant.

Key words, time optimal control, singular extremals, polynomial systems

Introduction. In the investigation of the time minimal control problem for single
input analytic systems in 3, a logical but difficult continuation of the work in [9], we
have to take into account the existence of singular trajectories. These trajectories are
solutions of a differential equation, analytic outside an analytic set. The behavior of
the trajectories near this set is crucial in the analysis of the time minimal control
problem and has to be studied. In this article this behavior is classified for a specific
class of systems which contain the important Euler equation of the rigid body control
problem.

The analysis of the behaviors of singular trajectories is only a step in the time
optimal synthesis. Two other problems (at least), not discussed in this article, have to
be considered. The first one is the optimality problem of singular trajectories. This
problem, extensively studied in the literature, can be divided into two parts: necessary
optimality conditions, see for instance [4], [5], and sufficient conditions [7], [8], [10].
The second problem is the classification of the behaviors of nonsingular trajectories
near the switching surface [6]. All these additional problems shall be discussed in a
forthcoming article dealing with the time minimal synthesis in the Euler equation.

1. Singular extremals. In this section we give some definitions and basic results
on singular extremals in the time minimal control problem for single input systems.

DEFINITION 1.1. A singular extremal is an absolutely continuous curve (x(t), p(t))
on " "-{0} which satisfies for almost all => 0 the equations

(1)
dx( t)

X(x( t)) + u(t) Y(x( t)),
dt

(2)
dp(t) _(OX( "x )at \--x x(t))+u(t) (x(t)) p(t),

(3) (p(t), Y(x(t)))=O,

where X, Y are analytic, x(t) is the singular trajectory, p(t) the adjoint vector and
u(t) a singular control.

DEFINrrION 1.2. Let (x(t), p(t)) a singular extremal and set A (t) (p(t), Y(x(t)).
The order of the extremal is the first integer k such that dkA(t)/dtk can be written as
a(x(t), p(t)) + u(t)b(x(t), p(t)) with t-> b(x(t), p(t)) not identically zero.

* Received by the editors March 16, 1984, and in revised form August 1, 1984. This work was supported
in part by the Office of Naval Research under JSEP contract N00014-75-C-0648.

" Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138.
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38402 Saint-Martin-d’Hres, France.
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DEFINITION 1.3. Let Z: " ->i", f: i" -> be analytic maps. By solution of the
equation dy/dt Z(y)/f(y) we mean an absolutely continuous curve y(t), a solution
almost everywhere of the above equation, such that f(y(0))# 0 and with no arc y(t),

tl, t2], t2 > tl, contained in the set f 0.
DEFINITION" 1.4. Let Z, Z2: ’ -->R" analytic. The Lie bracket [Z, Z2] is the map

defined by

oZ2 oZ[z,, z,l(x) =-x(XlZ(x) -T;x(Xlz(x).
An easy computation gives the following result.

LEMMA 1.5. Let (x(t), p(t)) be a singular extrernal. Then for almost all >-0 the
equations below are satisfied:

A (t) (p(t), Y(x(t))) O,

dA
d---(t) (p(t), [X, Y](x(t))) O,

d2A
dt2 (t) (p(t), IX, IX, Y]](x(t)) + u(t)[ Y, IX, Y]](x(t))) 0.

PROPOSITION 1.6. Let (x( t), p( t)) be a singular extremal oforder 2. Then a singular
control is defined by u(t)= u(x(t), p(t)) with u(x, p) given by

(p, [X, Y, X]](x))
(4) u(x,p)=

(p, Y, [X, Y]](x))"

The singular extrernals oforder 2 are the solutions of the system (1), (2), where u is given
by (4) whose initial conditions satisfy the relation

(5) (p(0), Y(x(0))) (p(0), [X, Y](x(0))) 0.

Proof Apply Lemma 1.5.
COROLLARY 1.7. Consider the case ofa system (1) in 3. Let us denote respectively

A(v) and A’(v) the determinant of the vectors {Y(v),[X, Y](v),[Y,[X, Y]](v)} and
{Y(v),[X, Y](v),[X,[Y, X]](v)}. Then (v(t),p(t)) is a singular extrernal of order 2 if
and only if v( t), >= O, is a solution of the equation in 3

av a’(v(t)) (v(t))(6) -(t) X(v(t))+
A(v(t))

and p( t) is a solution of (2) satisfying (5).
Proof Since p(t) # 0 t, the relation A (t) dA (t)/dt dA (t)/dt2 0 implies that

-A’(v)+ uA(v)=0. Therefore singular controls of order 2 can be expressed as the
feedback u(v) A’( v)/ A( v).

Remark 1.8. For generic systems (1) there are then as many singular extremals
of order 2 as solutions of an analytic differential equation with initial conditions in a
subset of codimension 2. Therefore, these extremals have to be considered in each
time minimal control problem. On the other hand, for reasons not discussed here one
may conjecture that for generic systems (1) there is no singular extrernal of order > 2,
the study of singular extremals being therefore equivalent to the analysis of a unique
differential equation given by Proposition 1.6. This equation is analytic outside an
analytic set. A priori this set may cause a junction between extremals, complicated
behaviors or a blowing-up phenomenon. Therefore the behaviors of the solutions near
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this set has to be studied. Such equations also occur in the disturbance decoupling
problem and beyond the restrictive study of this article a theory of these equations
has to be done.

2. The local behaviour of singular trajectories for quadratic systems in R3. Now we
will only consider systems (1) in R3 where X is a map whose components are quadratic
forms and Y is a constant vector. We will classify in this section the local behaviors
of singular trajectories of order 2, solutions of the equation (6), near the set A 0, for
an open dense set S of systems (in the topology induced by the coefficients) and
conclude by noticing that there exist no singular extremals of order > 2.

Notation 2.1. We note el, e2, e3 the canonical basis of [13. To save indices note
(x, y, z) the coordinates of a vector v3, (X1, X2, X3) the ones of X with X(v)-
alx

2 / aEy
2 / a3z2 / a4xy + asxz + a6yz, X2 and X3 being respectively defined by turning

in Xai into bi and ci. Observe that the map [X, Y][v] is linear and set[X, Y](v)=-Av.
Denote ad A, the classical coadjoint of A. If A-1 exists we have (det A)A-1- ad A.
Set w (ad A)Y and notice that [X, Y](w)=-(det A)Y. Define the two lines L1, L2
by L1 p Y, L2-" pW.

We will now compute (6) in an adapted basis and define S.
PROPOSITION 2.2. If Y and w are linearly independent then A =0 is the plane

generated by Y and w; A 0 is equal to 3 if and only if Y and w are collinear.
Assume Y= el. Then we have w= e3 ifand only ifb5 c5=0 and 2(blc4-b,,cl) 1.

In this case we have
(a) A(v) -y;
(b) the restriction of A’ to A 0 is the polynomial

P(x, z) blx3-2dx2z b3xz2;

with d 2[bl(b6cl- blc6)/ 2c(b3cl- blC3)];
(c) A’(v) P(x, z) + a3y2

2 + other monomials having degree >-_2 in y.
Proof Let Y 0; then we can assume that Y el. Computations give

IX, el](v)=-((2alx+ a4y+ asz), (2blx + b4y+ bsZ), (2clx + c4y+ csz));

w ((b4c5- b5c4), 2(b5Cl- blcs), 2( blC4 b4Cl))

A(v) 2y(b4cl- blc4) + 2z(bscl- blc5).

Therefore A el A(w) 0; A is zero if and only if w is collinear to e1. Clearly [X, e1](Ca)
is collinear to el if and only if b5 c5 0 and w e implies that 2(blc- b4cl) 1. The
computation of A’(v) is straightforward with Y- el and w e3 and yields (b) and (c).

Notation 2.3. Assume that Y and w are linearly independent, i.e., L1 and L2

distinct. Then the solutions of 4’- A 0 are the line L2 and eventually two lines noted
L3, L4. If we assume that Y el and w e3 then L3, L are given by pv, v el / ze3,
z being real solutions of the second order equation P(1, z)--0.

DEFINITION 2.4. We define S as the set of pairs (X, Y) such that the lines
L2, L3, L (if the two last exist) are distinct. Notice that by Proposition 2.2, S is an
open dense set.

DEFINITION 2.5. Let x ", x 0, A conic neighborhood of the line px is the set
of points y 0 such that one of the two points +Y/lYl are in a given polydisk (on the
sphere) of center x/Ixl.

THEOREM 2.6. Consider apair (X, Y) in S. The onlypoints where singular trajectories
can cross the plane A 0 at finite distance are on the lines L2, Z3, L4 (if L3, L4 exist).
This is done transversally, with continuous controls and in the following manner
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(a) Let v 0 on the line L2. Then there exists near v an analytic manifold Vv of
dimension 2, tranverse to L2, and invariant for the singular trajectories. If X(v) points
towards A > 0 (A < 0 resp.) each singular trajectory in Vv and A < 0 (A > 0 resp.) cross
the plane A = 0 at v, the singular controls and the adjoint vectors being all distinct.

(b) Let vO on the line L3 or L4. Then there there exists exactly one singular
trajectory crossing A 0 at v.

We have thefollowing blowing-up phenomenon. IfX(Y) points towards A> 0 (A < 0
resp.) there exists a conic neighborhood U of L1 such that each singular trajectory with
initial condition in U and A < 0 (A > 0 resp.) hits in finite time and with an infinite control
the plane A 0 at infinite distance and on a line parallel to L1.

There exists no singular extremal of order > 2.
The last part of this section is devoted to explaining and proving the above theorem.
A trick to cope with the peculiarity of (6) is to introduce the new time variable

(7) dr
dt

A(v(t))"

By setting v(z)= v(t), (6) is then turned into the ordinary differential equation

(8) dv(z)ldz= A(v(z))X(v(z))+ A’(v(z)) Y.

Reversing the orientation of the solutions of (8) if A < 0, we obtain the behavior of
the singular trajectories.

Before investigating the properties of the solutions of (8) near A 0, which are
indeed very special, we have to recall a few results. First wehave the following
proposition.

PROPOSITION 2.7 (see [2]). Consider a real analytic system in ". dx/db=
Mx+o(Ixl) where M---diag(A1,.. ",An), 0>AI "/no Then there exists a local
real analytic change of coordinates y x / o(Ixl) which reduces the system to the form
dyi/db= Aiyi+g(y,"’, y-), where gi is a polynomial containing solely terms in
ylml, ,y_’fl_ir’such that there exists a resonant relation Ai mA1 +’" "+ m_A_.

This is just a weak version of Dulac’s theorem, but sufficient for our purpose.
Notice that by integrating the second system in cascade we obtain y(b)- eX,bK(b)
where K is a polynomial. The solution x(b), b >-_ 0, x(0) small enough, can then be
computed via the inversion of the change of coordinates. If A > 0 /i, the result is still
valid by turning b into -b. And more generally we can evaluate for each analytic
system the solution near a nondegenerate singular point in the stable and unstable
manifold.

Below we give a few definitions and basic results about homogeneous systems
necessary in the study of (8).

Homogeneous systems 2.8. Consider the system in n

(9) H(x) (9)
dr

where all the components of H are homogeneous polynomials of the same degree k.
Note x(r, Xo) the solution such that x(0, Xo)=Xo. Then x(-,pXo)=

lax(pk-z, Xo)la. Then y(b)= x()/Ix()l, with db=lx(z)lk-1 dr, are the solutions
of a ditterential equation on the sphere called the projected system.

The singular points of this equation are the points Y/lYl, Y n, y O, such that
H(y) is colinear to y. If H(y) 0 the line lay is a set of singular points of (9), otherwise
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the line is supporting a solution of (9) which is a ray to or from the origin if (H(y), y) < 0
or (H(y), y) > 0, respectively.

Let y # 0, such that H(y) is colinear to y. Note (el,""", en} the canonical basis
of Rn. We may suppose that y- en. The system (9) can be written as

dz -/+/(x),Xndr
(10)

dxn_ AnXk + Rn(x),
dr

where g is the (column) vector of Rn-I(x, Xn-), /r is a (n-l)(n-l) matrix,
R is a polynomic mapping whose components are of degree =<k-2 in xn. Rn is a
polynomial having degree =< k-1 in xn, An--0 if and only if v is a singular point.

Assume M---diag(A1,... ,An_) with A--A2’’’Ap<0<Ap+I ’" "An-1.
One may suppose that in (10) M is diagonal. By setting

Xi k-(11) ui=--, # n, db xn
Xn

the system (10) is transformed into

(12) dui
db

(13) dx"- x,,(A,, + K,,(u)),
db

where Ki(u)=o(lu[) for iS n and Kn(0)=0. Clearly (12) is the projected system
expressed in the chart

The numbers hi have in fact an intrinsic significance, hi- An, n, which shall be
called the transverse eigenvalues and An the eigenvalue of the line py.

Suppose that An 0, i.e., y en is a singular point. For xn > 0, set v Xny and

V= {Xo s.t. x(’, Xo) v as

V= {Xo s.t. x(r, Xo)" v as

By the analytic version of [3, p. 243, 6.2] the invariant sets V and V are near v
analytic manifolds of dimension p and n-p-1 respectively called the stable and
unstable manifold of v. Moreover the linear parts of the restriction of (10) to V, V

k-1are respectively defined by the matrices xn diag (hi,. , hp) and
xk-n diag (,p+,. hn-1). Since the system is homogeneous, we have Vov pVv and

We can summarize in a few words all these results. The behavior of the solutions
near a line which is a set of singular points or two rays solutions is described completely
by a set of numbers hi. These numbers can be read in the system written as (10). Each
nonzero singular point generates two families of homothetic integral manifolds. The
behavior of the solutions near this point is entirely described by the projected system.
Near a ray, the behavior of the solutions is also given by the projected system except
the loss of information in the projection when the solutions are at infinite distance.
We can now carry through the analysis of the solutions of (8) near A 0.

Hypothesis 2.9. It is not a restriction to suppose that Y e and w e3. and A’
are given by Proposition 2.2, in particular A 0 is the plane y 0..
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LEMMA 2.10. The equation (8) is a homogeneous polynomial equation of degree 3.
The plane y 0 is an invariant in which the restriction of the system is given by the vector

field P(x, z)el. The singular points of (8) in y 0 are the points on the lines L2, L3, L4
(if the two last exist.). In such a point el is eigenvector of the linearized system. The line
L1 pel is supporting a ray solution of (8) in y O.

These assertions are direct consequence of the definition of (8) and Proposition
2.2. From this lemma we can deduce at once that singular trajectories can cross y 0
at finite distance only at points on the line L2, L3, L4. Since the line L in y 0 is
supporting a ray solution of (8), singular trajectories could eventually hit y 0 near

L at infinite distance. Let us study the behaviour of the solutions of (8) near these lines.
Behavior near the line L22.11. The line L2 is the set x y 0. The system (8) can

be written as dv/dr= z2Mv+R(v), where R is a polynomic mapping whose com-
ponents are of degree <-1 in z and M is computed using Proposition 2.2:

-b 0 0

M -b 0

-Ca 0

Hence M---diag (-b3,-b3, 0). Since (X, Y)e S, b330, therefore X is transverse to
y- 0 on L2. We can assume that b > 0. Let v e L2 and set Vv stable manifold of v,
then by Homogeneous systems 2.8 Vv is near v a two-dimensional analytic manifold,
with tangent space at v given by the equation --c3yq- b3z -’0. All trajectories of (8) in

Vv are hitting the plane y 0 transversally and with different slopes because if v
(0, 0, Zo) the matrix defining the linear part at v of the restriction of (8) to Vv is

z diag (b3, b3).
Since the plane y 0 is hit transversally and Y el is contained in this plane, the

singular controls are finite at v. In fact these controls can be evaluated using Dulac’s
theorem. We can suppose that Ca 0, i.e., e2 eigenvector of M. Express the system
(8) and the singular controls A’/A in the variables introduced in 2.8 u x/z, u= y/z,
z and db= z: dr. Then A’(x, y, z)= z3Q(u, u2) where Q is a polynomial of degree 3
without constant term, and A(x, y, z) -zu. Using Proposition 2.7 we can express for
ui(0) small enough, b >= O, ui(b) as series ,,,>__ A,, e-’b3b, A2 0 if and only if u2(0) 0,
i.e., y(0) 0, each term of the series being uniformly convergent for b => 0. Therefore
Q(Ul, U2) can be written as "n>_l Bn e-nbab and A’/A->-zB1/A12 as b-+.

The behavior near L2 ofthe adjoint vector along a singular trajectory going towards
L: can be evaluated in the following manner. Notice that we can express (2) in the
u, b variables as an equation

(14) dP- u2B(u,)p,
db

where B(ui) is a matrix whose coefficients are polynomials of degree one. Set C(b)=
UE(b)B(u(b)). The solution of (14) can be expressed using Chen’s expansion theorem
[1] as p(b)- D(b)p(O), with D(b)= I+bo C(s) ds+’". Using Proposition 2.7, D(b)
can be computed along solution u(b), b>-_O, u(O) small enough and in particular
D(+) lim D(b) as b-+ can be written as I+u:(O)E(ui(O)) where E is a power
series. Set p (p, P2, P3). The initial conditions of p(0) of the adjoint vector can be
computed as a function of u(0) using the relations (p, Y) (p, IX, Y]) 0. By Proposi-
tion 2.2 we get: p(0)-0,

(2Cl Ul(0) - C4U2(0))
p2(0) -p3(0) if 2blu(0) + b4u(0) 0,

(2b, u,(O) + b4u2(O))
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pl(0)---p3(0)--0 otherwise. Note that only initial conditions ui(0) on the same lines
through 0 yield the same p(0). As [Y,[X, Y]]=-2(al, b, Cl) and 2(blc4-b4Cl) 1,
clearly (p(0), [ Y, IX, Y]]) # 0 if and only if u2(0) # 0, i.e., y(0) 0. The value of the
adjoint variable when the plane y=0 is crossed is p(+o)= D(+)p(0). For ui(0)
small enough (p(+o), Y, IX, Y]]) (p(0), Y, IX, Y]]) which is S0 if y(0) # 0.

This shows that the singular extremals remain in the set (p, Y, IX, Y]])# 0 when
the plane y 0 is crossed by the singular trajectories through L2. Singular extremals
being therefore solutions of an analytic differential equation, no junction between
singular extremals is possible. In fact this result was more and less obvious because
L2 is the set where Y and IX, Y] are colinear. Therefore the relations (p, Y)=
(p, IX, Y]) 0 and (p, Y, IX, Y]]) 0 are compatible on L2. However, the labored
proof above is done on purpose to show how to evaluate the adjoint vector. More
generally in our problem all is computable.

Behavior near the linears L3, L4 2.12. By Proposition 2.2 and 2.3, the lines L3, L4
are pv with v (1, 0, z), z -(d + ex/d2+ blba)/b3, dE> =blb3, e :i:l. Let us denote
(, 37, ) the coordinates of 0 t in the basis e, e2, v, i.e., x )7 + , y )7 and z z.
To see the behavior of the solutions of (8) near L3, L4 we have, by 2.8, to write the
system as dO/d’r= 2M3+ R(O), where R is a polynomic mapping whose components
are of degree <= 1 in . Clearly M has the form

the eigenvalues of M being A, A2, 0. A straightforward computation yields

)tl 3b-4 dz b322,

A2=-bl-b3z2.
LEMMA. For each pair (X, Y) in S we have A 1/.2 < 0.
Proof Set u blb, a -Ab3, a2 -AEb3. Then sign (AA2) =sign (aa2) and we

have a2 u+(d+ ex/d2+u), a1=-46+ a2 with 6= u+d(d+ ex/dE+u). Notice that
if we change d into -d and e into -e we get the same values, then we can assume
e + 1. Clearly a2 0: U -dE or u 0 and d < 0. Moreover, a 0:> a2 0. Fix d,
the variation of ai as a function of u can be studied. Note a’= dai/du, we have
a=(d+2/d2+u)/x/d+u, a=-a and a=Oceu=-3d2/4 and d <0. Therefore
we have two cases. If d > 0, a2 > 0, al < 0 for u > -dE. If d < 0, ce 0, a > 0 for
u]-d2, 0[ and c2 > 0, a <Oforu>O. In conclusion if blba -d2, 0, wehave AA2< 0.
Otherwise the system is not in S.

Since AA2 0, by 2.8 there is for each v L3, L4 only one singular trajectory
crossing y- 0 at v. This is done transversally; the singular control then remains finite.
In fact it can be evaluated in the following manner. Use [3, 5.1, p. 235] to linearize
by a nonlinear change of coordinates the invariant manifold of (8) transverse to y 0
at v. Then use Proposition 2.7 to compute the solution of (8) in this manifold.

Behaviour near the line L1 2.13. The line L1 is the set y-z =0. By Proposition
2.2 the system (8) can be written

d-- b,x3+ RI(V), d.__. x2/rt+ R2(v)
dr
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where

R is a polynomial having degree <=2 in x and R2 a polynomic mapping whose
components are of degree <= 1 in x. Note that since (X, Y) S, b # 0. One may assume
that b > 0. M---diag (-b, 0) and the transverse eigenvalues are -261, -bl. Therefore
the line L produces a stable node for the projected system of (8).

The behavior near L of the trajectories of (8) is the following. One may assume
that c 0. The system written in the variables u y/x, u2 z/x, x-1 and db x2 dr
is by 2.8, (12) and (13)"

dUl
d--if -2bl it, + o(Ittl)

du2

db -b,x-’ + o(l(u x-’)[).

The point u =//2 x-1 --0 is a singular point and the matrix of the linearized system
is diag (-2bl, -b, -b). We can apply Proposition 2.7 to evaluate the solutions. There
are three resonant relations and the solutions can be expressed as: x-l(b)
A e-bib + O(e-2bib), UE(b) B e-bb + O(e-2blb), u(b)= e-Eblbp(b)+ o(e-Ebb), where
P is a polynomial. Back to the original coordinates we get, that as b-- /oo, x(b) -oo,
y(b)--O and z(b)- B/A. The set of initial conditions such that x(b)--+oo (or -c)
and z(b)- p fixed as b-+oo is an invariant analytic manifold of dimension 2 for
x-l(0), u(0), u2(0) small enough and we have a family of such manifolds when p
varies which are homothetic (in the original coordinates).

Finally notice that clearly when x(b)-oo as b- +oo, the real time variable t(b)
tends to a finite limit.

Remarks 2.14. A straightforward computation shows that to produce such a
behavior in the neighborhood of the line p Y, X has to be only a homogeneous
polynomial of degree _->2.

An interesting question is to study the contact between the two families of invariant
sets generated by the lines L and L2 respectively.

Proposition 2.15. For each pair (X, Y) in S there exists no singular extremals of
order > 2.

Proof. By Lemma 1.5 a singular trajectory of order >2 has to stay in A A’= 0,
i.e., on L2, L3, or L4. This is not possible because at each point of LiX is transverse
and Y tangent to the plane y- 0. Therefore a control cannot force the system to track
one of the lines L2, L3, or L4.

3. Conclusion. The remaining cases, i.e., pairs (X, Y) not in S, can be understood
as collisions between the lines Li when (X, Y) varies. In particular if we fix X, they
are bifurcations between different types of global behaviors of singular trajectories
when Y varies.

We have focused our work on a special class of systems connected with the rigid
body control problem but the same techniques can be applied to classify the behaviors
of singular trajectories near the singular set for generic control systems in R3.
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This article is only a piece of a puzzle call the time minimal control problem in
R3. Additional results concerning the optimality problem of singular extremals and
the global behaviors of singular trajectories in Euler’s equation shall appear before long.

Finally we must emphasize the fact that singular trajectories of the time minimal
control problem are due to singularities of the input-output mapping and are then an
important invariant of a control system. These trajectories are somehow connected
with the controllability properties of the system and have to be taken into account in
each control problem.
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ADDENDUM: STABLE AND REGULAR REACHABILITY OF RELAXED
HEREDITARY DIFFERENTIAL SYSTEMS*

FRITZ COLONIUSf

Abstract. This paper characterizes regular reachability of relaxed hereditary differential systems as a

positive controllability property of an associated linear system in the Sobolev space W’2. Thus the results
of F. Colonius [SIAM J. Control Optim., 20 (1982), pp. 675-694] are improved. Regular teachability is
relevant as a regularity condition in the proof of a maximum principle for fixed final state optimal control
problems.

The paper [2] considered optimal control problems for relaxed hereditary differen-
tial systems of the form

(1) Xto dp, X(t)=f(xt, v(t), t) a.a. t T:=[to,

For problems with a fixed final state x,x b Wa’([-r, 0], $"), a maximum principle
was proved, provided that the optimal solution (x, v) satisfies the following regularity
condition for some 6 > 0:

(2) (t- q) int co f(xt, I)(t), t) a.a. T1 := [t r, tl]

(the abbreviations T and T introduced above will be used throughout this note).
The paper [3] was devoted to the problem of understanding the regularity condition

(2). However, no complete characterization in terms of controllability properties of a
linearized system could be given. The present note solves this problem. This gives
deeper insight into the relations between optimal control and structure theory of
hereditary differential systems and provides the missing link between the special
situation of [2] and the general Banach space setting of [4].

In the following, we assume that b is continuously differentiable and that f and
the set fl do not depend on time t. This is in order not to overburden this note with
technical details.

Furthermore, we suppose that the assumptions (1.1), (1.2), and (1.4) of [3] are
satisfied, and define for an interval I = T and p 2 or p

o vO(t)) for a.a. I};Ut,(I):={uLp(I;R )" u(t)P(t):=R+(co f(xt, fl)-f(xt,

here + is the set of all nonnegative reals.
Along with (1) we consider the following linearized system (p 2 or p ):

(3) x=0, Yc(t)=lf(x, v(t))x,+u(t) a.a. t T,

(4) u allp( T).

The present analysis differs in two essential points from the previous one in [3]. (a)
We consider the final states x,, of the linearized system in Wl’2([-r, 0], "), instead of
W’([-r, 0],"). (b) In [3, Lemma 1.5], the control values u(t) of the linearized

o vO(t)), while (4) above allows thesystem were required to lie in co f(xt, f)-f(xt,
control values to lie in the closed convex cone (with vertex at 0) generated by this set.
Thus the admittance of L2-controls instead of Loo-controls significantly changes the
situation as we will see in a moment.

* This Journal, 20 (1982), pp. 675-694. Addendum received by the editors March 12, 1984, and in

revised form October 15, 1984.
Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912. Part of this

research was performed during a visit to the Institut fiir Mathematik der Universitit Graz supported by
Deutsche Forschungsgemeinschaft.
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THEOREM 1. The following two conditions are equivalent:
(i) {(2),,: x solves (3) for some u e ll( T)} L([-r, 0], N").
(ii) P(t) N" for a.a. e Ta.
Furthermore iffor a.a. e T the cone P(t) is a subspace of ", the following two

conditions are equivalent:
o a)_/(xo,, vo(t))(iii) lloo( T) {Au" e +, u e L( T, ") with u( t) e co f(xt,

(iv) For some > 0

Oerelint co f(x,a)-f(x, v(t)) fora.a, t6 T.

Here relint Q of Q c R" denotes the interior of Q with respect to the smallest linear
subspace containing Q.

The proof of these results will be postponed until after Theorem 2. First we discuss
their significance.

It is immediate from the proof of Theorem 1 that the set at the left-hand side of
the equation in (i) does not change, if u I[to, tl-t] is required to lie in Loo. The cone

o 1))-f(x, v(t)) a.e.} corresponds to the{Au" h R+, u L( T, R’) with u(t) co f(x,,
cone of admissible directions for the control constraint in L in the fixed final state
optimal control problem. By [4, Example 1.1], the Lz-closure of //o(T1) coincides with
//2(T1). Hence, taken together, the regularity condition (2) (being equivalent to (ii),
(iv)) means by (i) and (iii) that the L2-closure of the cone of admissible directions in
L is mapped onto Lz([-r 0], n) under the linearized control-to-final-state-velocity-
map. Thus the assumptions of [4, Thm. 1.2] can be verified and Lagrange multipliers
in W’([-r, 0], R") can be identified with functions in W’2([-r, 0], ") (observe that
the finite dimensional part x(tl- r)= b(-r) does not pose any problem here).

Furthermore, Theorem 1 shows very clearly, where the uniformity condition (that
is the &bound) in (2) comes in: It guarantees that the cone defined by pointwise
restrictions is not bigger than the cone of admissible directions (on the relevant interval
7",).

Thus Theorem 1 clarifies the relation between the regularity condition (2) and the
required controllability condition for a linearized system and embeds the special
situation of [2] into the general Banach space setting of [4].

Remark 1. The role of the uniformity condition as interpreted above shows that
the regularity condition might be weakened somewhat, since we are only interested in

o f) f(x, v(t))"shrinksthe Lz-closure ofthe cone of admissible directions" If co f(x,,
fast enough" around zero for some point ? T and (ii) is satisfied, 2(T) will still
coincide with this Lz-closure and the surjectivity condition is satisfied.

For a proof of the result above, we consider the following slightly more general
problem of controllability under positivity constraints for the control"

(5) x =0, ( t) L( t)xt + B( t)u( t) a.a. e T,

(6) u(t) e P(t) a.a. 6 T

where L: T(C([-r,O],"),") with t--L(t)b measurable for all &
C([- r, 0], ") and ess sup [1L(t)[I <, B L( T, "m) and P(t) c m is a closed
convex cone with vertex at zero and t-.P(t) measurable (see [1, p. 68]) ( denotes
the space of bounded linear maps).
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We say that (5), (6) is completely controllable to Wl"2([-r, 0], R") if the reachable
set defined by

:= {x,," x solves (5) for some control u L2(T, ’) satisfying (6)},

coincides with this space.
Define the multiplication operator B: L2( T1, Rm) L2( T1, n) by

(Bu)(t):= B(t)u(t) a.a. t T,

and define the closed convex cone P c L2(T1, ") by

P:= {u L2(T,[")" u(t) P(t) a.e.}.

LEMMA. Suppose that the generalized inverse B( t)+ ofB( t) has essentially bounded
norm on T1. Then BP-L2(T1, ") iff B(t)P(t)= a.e. on T1.

Proof One direction is trivial. Conversely,, suppose that B(t)P(t)=" a.e. on T1.
By [5, Lemma 3] our hypothesis means that B has a closed range. Consider the set

{u L2( T, m). u(t) Pl(t) a.e.}

where Pl(t) is the projection of P(t) to [Ker B(t)]1. This set is a closed linear subspace
which is mapped onto a closed linear subspace X of LE(T,"), since
L2( T, ")" u(t) [ker B(t)]+/- a.e.} is a homeomorphism onto the image of/. Thus the
space X BP is a closed linear subspace of L2 which naturally is also dense. This
proves the assertion.

We obtain the following result.
THEOREM 2. Suppose that the generalized inverse B( t)+ of B( t) has an essentially

bounded norm on T. Then system (5), (6) is completely controllable to wl’E([-r, 0],
iff the following two conditions are satisfied"

(i) f:= {X(tl-r)" x solves (5) for some control u /3} =-;
(ii) B(t)P(t)=" a.e. on T1.
Proof By the lemma above conditions (i) and (ii) imply - wl’E([-r, 0], ").

Conversely, condition (i) follows trivially. Suppose that condition (ii) is violated, i.e.
there is a subset T2 c T of positive Lebesgue measure such that

here O denotes the boundary.
Equivalently,

OOB(t)P(t), t T2;

OO{B(t)P(t)fq }

where g’ := {y ": lyl 1}.
Define for T2

r(t):= {y": y g and (y, B( t)p) <= O for all peP(t)},

Then F has compact values and is measurable. Hence there is a measurable selection
y of F satisfying

I’(t)l-1 and y( t), B( t)p) <- O

for a.a. T2 and all p P(t).
By Lusin’s theorem there exists a closed subset T3 of T2 of positive Lebesgue

measure such that 3’1 T3 and the components of L(.) considered as maps on T3 with
values in the dual of W’2([-r, 0], ") are continuous.
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Let ct be an arbitrary element of L2( T3, ) and define " L2(T1, ") by

(t)={(t)y(t) for T3,
otherwise.

Define x W1’2( T, ") on to, t- r] by

(7) x(t) := 0

and on T as the unique solution of

(8) (t) L(t)x7 + (t).

Since we assume that w’Z([-r, 0], "), there is an admissible u" such that the
corresponding trajectory y" satisfies y, xt. Hence on T

Yc(t) y(t)= L(t)y7 + B(t)u(t)

and

0 L(t)(x7 y’]) + (t) B(t)u(t).

Taking inner products with y(t) in R" yields for T3
0 (V(t), L(t)(xT-yT))+a(t)(V(t), V(t))-(r(t), B(t)u(t))

or

a(t) =-(r(t), L(t)(xT- yT))+(V(t), B(t)u(t)).

The first term at the right-hand side is continuous, and the second one is negative.
This contradicts the choice of a as an arbitrary element in L2 and proves (ii).

Remark 2. The assertion of Theorem 2 is not valid for controllability to
W’([-r, 0], R") with L-controls. In fact, controllability to W’ only implies that
the interior of B(t)P(t) is nonempty for a.a. T. This follows from [3, Thm. 3.3 and
Example 3.1], and is a remarkable difference between controllability to W1’ and W1’2.
Taking up the line of argument in [3, Remark 3.3], Theorem 2 shows that one cannot
prepare the reaching of an arbitrary W’2-function 4’ by a special way of reaching
b(-r) at t-r. The reason is that in each neighbourhood of b there is an element :
such that ,- is unbounded.

Remark 3. In some sense the result of Theorem 2 is negative" Controllability to
W1’2 can only be achieved if not only the well-known and strong rank condition on
B(t) is satisfied, but also the "positivity cone" P(t) is the whole space R" on the final
interval. However, the rank condition is irrelevant for the relaxed optimal control
problem (if the control appears nonlinearly). Here B(t) is the identity matrix and

o vO(t)) - 7. Furthermore, the condition P(t) m ongenerically, int P(t) int co f(x,,
T means for the optimal control problem that the control constraint is not active on
the final interval. Theorem 2 explains why this strong assumption has to be made.

Proof of Theorem 1. The equivalence of (i) and (ii) is immediate from the proof
of Theorem 2. Furthermore, it is clear that (iv) implies (iii). Conversely, suppose that
(ii) is violated. Due to our continuity assumption on (b(t- q)=f(x, v(t)), T, this
means that there is ? T with

f(xr, v( )) 6 o co f(xt-, f)

in the linear subspace spanned by P(t-). Thus there exists fi 0 in the linear subspace
spanned by P(t) such that

fft, p) <= O for all p e P( ).
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Then there exists a function t(. in (T1) with

t(t)- t for a.a. in a neighbourhood of t.

However, there is no A => 0 such that

1 o vO(t)) a.e.-- co f(x, ) f(x,,

This proves the equivalence of (iii) and (iv).
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Abstract. This paper collects in one place a comprehensive theory of stochastic realization for con-
tinuous-time stationary Gaussian vector processes which in various pieces has appeared in a number of our
earlier papers. It begins with an abstract state space theory, based on the concept of splitting subspace. These
results are then carried over to the spectral domain and described in terms of Hardy functions. Finally,
differential-equations type stochastic realizations are constructed. The theory is coordinate-free, and it
accommodates infinite-dimensional representations, minimality and other systems-theoretical concepts being
defined by subspace inclusion rather than by dimension. We have strived for conceptual completeness rather
than generality, and the same framework can be used for other types of stochastic realization problems.
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1. Introduction. The following inverse problem is of central importance in stochas-
tic systems theory. Given a stationary Gaussian vector process {y(t); }, find a
vector-valued stationary Gaussian Markov process {x(t); } of smallest possible
dimension so that

(1.1) y(t) Cx(t)

for some matrix C, and determine a stochastic differential equation for x. This is the
stochastic realization problem and the representation is called a minimal stochastic
realization.

This problem, first formulated by Kalman [21] in 1965, has generated a rather
extensive literature. Most notable among the early contributions are the papers by
Anderson [2] and Faurre [11], the main focus of which is the realization of spectral
factors and the Yakubovich-Kalman-Popov lemma. The more recent work by
Ruckebusch [39], Lindquist and Picci [25], and Pavon [36] is geared toward the
characterization of Markovian representations in terms of the information carried by
the given process. During the last decade, the bulk ofthe papers on stochastic realization
theory have been concerned with geometric state space construction in Hilbdrt space.
Here the forerunners are Akaike [1] and Picci [37], whereas the most comprehensive
contributions are due to Lindquist and Picci [26]-[32] and Ruckebusch [40]-[44]. A
more extensive bibliography can be found in our survey paper [24].
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There are both conceptual and practical reasons why this problem is important.
On the conceptual side, a theory of stochastic realization should give a firm foundation
of the idea of state and state space models. Clearly this is of central importance in
setting stochastic systems theory on a sound mathematical basis. The purpose of this
paper is to present such a theory in which the idea of state is defined through a
fundamental property of conditional independence (splitting), a natural generalization
of the property of state in the deterministic theory. This point of view provides a
general framework for stochastic modeling in which problems of stochastic systems
theory can be set.

Important areas for potential application of this theory include identification,
stochastic model reduction, and stochastic control, and there is preliminary evidence
that the basic ideas presented here will prove to be fruitful. Moreover, there are already
problems in estimation theory which have been successfully tackled by such an
approach. Some cases in point are smoothing [49], interpolation [51], and, in general,
problems with a noncausal information flow. Possible extensions ofthe theory presented
here to the nonlinear (non-Gaussian) case will provide solution to even wider areas
of important applications. For example, realization theory of finite-state processes
would provide powerful technics to solve important problems in communication theory.

Stochastic realization theory is not a generalization of deterministic input-output
realization theory. Characteristic of the stochastic problem is the fact that there are
many different (minimal) causality structures which describe the same external
behavior, the basic problem being to classify all of them. Note that a similar problem
is encountered in J. C. Willems’ deterministic realization theory [52] for "signals", a
theory which has many points of contact with ours.

This invited paper collects in one place a reasonably self-contained treatment of
the geometric theory of stochastic realization which in various pieces has appeared in
a number of our previous papers [26]-[32], some of which are published in volumes
of limited availability. We have strived for conceptual completeness rather than general-
ity. Consequently, many of the results presented here have generalizations in various
directions, some straightforward and others more nontrivial. The basic conceptual
framework, however, is the same.

The need for a geometric theory of stochastic realization is illustrated by the
problem formulation above. As it stands, the problem may not be meaningful unless
the given process has a rational spectral density and hence a finite-dimensional
representation is possible. In the general case, a representation of type (1.1) exists
only under certain technical conditions (which we do not want to introduce at the
beginning). Moreover, the concept of minimality needs a natural dimension-free formu-
lation which also covers the infinite-dimensional situation. Finally, a geometric theory
is coordinate-free and hence allows us to factor out, in the first analysis, the properties
of the realizations which depend only on the choice of coordinates and may unduly
complicate the picture.

To this end, let us reformulate the above problem in terms of Hilbert space
geometry. Let {y(t); R} be a stationary Gaussian stochastic vector process which is
mean-square continuous and centered. Consider the space H of all finite linear
combinations of the random variables {yk(t); R, k-1, 2,’’’, m}. Endowed with
the inner product (, r/):= E{:r/}, where E{. } denotes mathematical expectation, is
a pre-Hilbert space. Let H be the Hilbert space obtained by taking the closure of H;
this is known as the Gaussian space of y [35]. A standard argument [38, p. 15] shows
that there is a group { U, 6 } of unitary operators on H such that U,y,(s) y(s + t)
for all s, E and k 1, 2,..., m. Since y is mean-square continuous, the group
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{Ut; tR} is strongly continuous. We shall use the notation EXh to denote the
orthogonal projection of h H onto a subspace X of H. This notation is motivated
by the fact that EXh coincides with the conditional expectation E{A [f} where is
the g-field generated by the random variables in X [9].

Consider the class of subspaces X of H with the properties
(i) yk(O) e X fork=l,2,...,m;
(ii) X is Markovian in the sense that

(h EXh, I EX/) =0 for h X-,/z X+

where X- and X+ are the closed linear hulls of { UtX; <-_ 0} and { UtX; >- 0}
respectively;

(iii) X is minimal in the sense that if X1 is a subspace of X and X satisfies (i)
and (ii), then X X.

The term Markovian is motivated by the fact, as we shall see below (Proposition
2.1), that (ii) is equivalent to each of the two conditions

(1.2a) EX-h EXh for h X+,
(1.2b) EX/h EXh for h X-.

For reasons to be reported in 3 (Proposition 3.1), a subspace X satisfying (i) and
(ii) will be called a Markovian splitting subspace.

What is then the connection between such subspaces and the stochastic realization
problem stated above? Let us for the moment assume that X has finite dimension n,
and let {x, x2, , x,} be a basis in X. Then, in view of property (i), there is an m n
matrix C {co} such that yi(0)= Y9=1 cijx for i= 1, 2,..., m. Consequently,

(1.3) y(t)- Cx(t)

where {x(t); R} is the n-dimensional stationary stochastic process defined by setting
Xk(t) := UXk for k 1, 2,’.., n. Under suitable geometric conditions on X .(to be
introduced in 3) this process is purely nondeterministic [38]; for the sake of this
example, we shall assume that this is the case. Since

(1.4) span {x,(t), x2(t),’"., x,(t)},

condition (1.2a), shifted by U,, is equivalent to

(1.5) E{x,(s)l-/}=E{Xk(S)]t} fors>_-t, k=l,2,..-,n

where - and , are the o--fields generated by {Xk(’/’); T t, k= 1,2,’.’, m} and
{Xk (t); k 1, 2, , n } respectively. Consequently x is a vector Markovprocess. Finally,
as we shall see below, condition (iii) insures that the dimension n is as small as possible.
The condition X c H is not implied by the original problem formulation, but it is not
unnatural since the process y is the only thing given. Such realizations are called
internal [25]. However, several of the applications mentioned above require that we
consider the noninternal situation when H is imbedded in a larger Hilbert space.
Although many of our results remain valid in the noninternal setting and others can
be generalized [43], [44], we shall restrict ourselves here to a simple prototype problem.

It is well known that a vector Markov process of the type described above has a
representation

(1.6) x(t) I eA(t-)Bdu(cr)

In this paper a subspace is assumed to be closed.
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where A and B are matrices, u is a vector-valued orthogonal increment process with
components in H, and the integral is defined in quadratic mean [11]. Together with
(1.3) this yields a forward stochastic realization

dx Ax dt + B du,
(1.7)

y= Cx.

The forward property is characterized by X c H-(du), where H-(du) is the
subspace generated by the components of the past increments {u(t)-u(s); t,s<=O}.
By symmetry and (1.2b), there is also a representation

(1.8) x(t) e(-t) dfi(cr)

which corresponds to a backward stochastic realization

dx -Ax dt + B df,
(1.9)

y Cx.

This realization is backward because Xc H+(da), the subspace generated by the
components of the future increments {a(t) a(s); t, s >= 0}. Characterizing Markovian
representations in terms of pairs of realizations, one evolving forward and one back-
ward, is one of the key ideas in [25] and in the present work. It is well known and
easy to show that the transfer functions

(1.10a) W(s) C(sI-A)-IB,

(1.10b) ff’(s) C(sI + )-1/
are rational spectral factors of y, W having all its poles in the left and W all its poles
in the right half plane.

It follows from finite-dimensional stochastic realization theory [2], 11 ], 12] that
(1.7) is a minimal stochastic realization if and only if (a) it is reachable, i.e.
[B, AB, A2B, .] is full rank, (b) it is observable, i.e. [C’, (CA)’, (CA2)’, .] is full
rank (where prime denotes transpose), and (c) W has minimal degree (among spectral
factors). Likewise (1.9) is minimal if and only if (a)’ it is controllable, i.e.
[B-, B-, fi.2/,...] is full rank, (b)’ it is constructible, i.e. [C’, (Crib)’, (Crib2)’, .] is full
rank2, and (c)’ if" has minimal degree. As can be easily checked, x(0) being a basis
in X automatically takes care of conditions (a) and (a)’, and hence they will not occur
in the geometric theory. Conditions (b), (c), (b)’ and (c)’ will be given natural geometric
and function theoretic characterizations below which hold also in the infinite-
dimensional case. We shall see, for example, that minimality is equivalent not only to
(b) + (c) or to (b)’+ (c)’ but also to (b) + (b)’.

This paper divides naturally into three parts. The first part, consisting of 3-5,
is devoted to a characterization of the class of Markovian splitting subspaces and an
analysis of their systems-theoretical properties. Section 2 is a preliminary in which we
define the concept of perpendicular intersection, introduced in [29].

In the second part, consisting of 6 and 7, the geometry is described in terms
of Hardy spaces, and the Markovian splitting subspaces are characterized by pairs
(W, W) of spectral factors. This part of the theory has some connections with Lax-
Phillips scattering theory [23].

Using the terms controllable and constructible instead of reachable and observable when referring to
a system evolving backwards is in agreement with accepted terminology in systems theory [22].
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Finally, in 8-10, we assign to each Markovian splitting subspace X two stochas-
tic realizations, a forward one with transfer function W and a backward one with
transfer function W, having their systems-theoretical properties prescribed by X.
Moreover, we study the relationships between realizations corresponding to different
splitting subspaces.

2. Perpendicular intersection. Let A, B and X be subspaces of a real Hilbert space
H. We shall say that A and B are conditionally orthogonal given X if

(2.1) (a-EXa, fl-EXfl)=O foraA, flB.
This will be denoted A_LBIX. When X is the trivial subspace, i.e. X 0, this reduces
to the usual orthogonality A3-B. Conditional orthogonality is orthogonality after
subtracting the components in X. We write A v B to denote the vector sum, i.e. the
closure of {a 4- flla A, fl B} and AB to denote orthogonal direct sum; A) B is
the subspace C c A such that B c A; B is the orthogonal complement of B in
H, i.e. B+/-=HB. Finally, EAB {EArl fl B}. This space may not be closed, and
we shall write ff, AB to denote the closure.

PROPOSITION 2.1. The following statements are equivalent.
(i) A+/-B X.
(ii) B+/-AIX.
(iii) (A v X)+/-BIX.
(iv) for 
(v) (A v X)X+/-B.

(vi) EArl EAEXfl for fl B.
Proof. The equivalence between (i), (ii) and (iii) follows directly from the defini-

tion. Since (fl-EXfl)3-X, relation (2.1) may be written (a,-EXfl)=O. Therefore,
(iii) is equivalent to (fl Ex)_LA v X, i.e. EAX( EXfl) 0, which is precisely (iv).
Moreover, (i) is equivalent to (fl-EX)3-A, i.e. EA(fl-EX[3)=O, which is the same
as (vi). Finally, set Z:=(AvX))X; then AvX=X@Z, i.e. EAvXfl=EX+EZfl.
Hence (iv) is equivalent to EZfl =0 for/3 B, i.e. Z3-B. This is (v).

PROPOSITION 2.2. Let A 3- BIX. Then

(2.2) A B c X.

Proof. Let A A n B. Then A 3_A[X, i.e.
PROPOSITION 2.3. Let A and B be subspaces of H. Then

(2.3) A3_ BI.AB.
Moreover, any X A such that A 3_ BIX contains AB.

To prove this we need the following decomposition.
LEMMA 2.1. Let A and B be subspaces of H. Then

(2.4) A= ffAB@(An B-).

Proof. Let a A and /3 B. Then (a, EArl) (a, fl). Consequently, if a 3_ ff.AB,
then a B+/-.

ProofofProposition 2.3. IfX A, AA_BIX is equivalent to A)X 3_ B (Proposition
2.1). In particular, this is satisfied by X ffAB (Lemma 2.1). In general, AX
B+/-, i.e., X ff,AB (Lemma 2.1).

Suppose A 3_ BIX. Then it follows trivially from the definition that, if A A and
B1 B, then A13_ BIlX. A more interesting question is how far A and B can be expanded
while remaining conditionally orthogonal given X.
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THEOREM 2.1. Let Ao and Bo be subspaces such that Ao v Bo- H, and suppose that
Ao,L BolX. Let A Ao and B Bo. Then A,L BIX if and only if

Ac Aov X,
(.5)

B Boy X.

If the upper bounds are attained, i.e. A Ao v X and B Bov X, then X A B.
Proof. By Proposition 2.1, (Ao v X)_L (Bov X)IX. Therefore, A-L BIX whenever

(2.5) holds, Conversely, assume that A+/-BIX. Then (A v x)+/-nolX, and therefore
ZA_BolX when Z:= (Av X))(Aov X), i.e. Z,L(Bov X)X (Proposition 2.1). But,
by definition, Z-L (Ao v X) and therefore Z,L Ao v Bo H, i.e. Z 0. Consequently
Av X Aov X, i.e. the first of relations (2.5) must hold. The second follows by
symmetry. If A Ao v X and B Bov X, then X A B. But by Proposition 2.2,
ABX. HenceX=AB.

The following proposition describes the geometry of the maximal spaces in
Theorem 2.1.

PROPOSITION 2.4. The following conditions are equivalent.
(i) A_L BIA c B.
(ii) EAB A B.
(iii) E BA A B.
(iv) EAB EBA.
Proof. First, suppose that (i) holds. Then, by Proposition 2.1 (iv), EAB EAnB

A B, which is (ii). Condition (iii) follows by symmetry, exchanging A and B. Hence
(iv) follows. Conversely, (ii) or (iii) and Proposition 2.3 imply (i). (Note that (ii)
implies that EAB is closed and therefore ffAB EAB.) Finally, if (iv) holds, EAB,
and hence AB, is contained in A B. But, by Propositions 2.2 and 2.3, A B ff AB.
Hence A B ff, AB. Consequently (i) holds (Proposition 2.3).

We shall say that two subspaces A and B satisfying the conditions of Proposition
2.4 intersect perpendicularly. As we have seen, perpendicular intersection corresponds
to maximal A and B in Theorem 2.1. The upper bound is also attained in the inclusion
ABX of Proposition 2.2. Note that, for any pair (A, B) of perpendicularly
intersecting subspaces, EAB is closed.

THEOREM 2.2. Let A and B be subspaces such that A v B H. Then the following
conditions are equivalent.

(i) A and B intersect perpendicularly.
(ii) B +/- A.
(iii) H A-O)(A B)B+/-.
(iv) EA and E commute.

Proof. Set X:=AcB. If (i) holds, X=ff,AB, and hence AX,LB (Lemma 2.1).
But, since X B and A v B H, (AX)B H, and therefore AX B-, i.e.
A X 03 B. Hence both (ii) and (iii) follow. Each of the conditions (ii) and (iii) implies
the existence of a subspace X with the property H A+/-O)XB+/-, so that if A e H,

(2.6)

and

(2.7)

EAEBA EXEA + EBEBA ExA

EBEAA EXEAA + EAIEAA ExA

and therefore (iv) follows. It just remains to prove that (iv) implies (i). But, EAEnH--
EEAH yields EAB--EnA, i.e. A and B intersect perpendicularly (Proposition
2.4). [1



REALIZATION THEORY FOR GAUSSIAN PROCESSES 815

3. The geometry of splitting subspaces. Let H be a real separable Hilbert space,
let { Ut; } be a strongly continuous group of unitary operators on H, and let H-
and H+ be subspaces enjoying the invariance properties

(3.1a) UtH-c H- for t-<_0,

(3.1b) UtH+ C H+ for t_->0

and together spanning H, i.e. H-v H+= H.
Although these are the only assumptions needed for the geometric theory of 3-5,

the situation we have in mind is the one delineated in the Introduction: H is the
Gaussian space of an m-dimensional stationary Gaussian vector process, which is
mean-square continuous and centered, and { U R} is the group of shifts: Uyk(S)
yk(S + t). Moreover,

(3.2)
H-:= span {Yk (t); _--< 0, k 1, 2," , m},

H+:= span {yk(t); t_-->0, k= 1, 2,’ , m}

where span {. } denotes closed linear hull. Hence we shall refer to H- and H+ as the
past space and the future space respectively.

We shall say that X is a splitting subspace if H- and H/ are conditionally
orthogonal given X, i.e. H-_t_ H+Ix. According to Proposition 2.1, this is equivalent
to each of the two conditions

EH-vXA ExA for A H-,
(3.3)

E+vxA=EXA forAH+.
Consequently, a splitting subspace X can be thought of as a "memory" or a "sufficient
statistic" containing all information about the past needed in predicting the future,
or, equivalently, all the information about the future required to estimate the past.
Splitting subspace is a concept originally introduced by McKean [34] in a somewhat
more restricted sense. A splitting subspace is said to be minimal if it contains no proper
subspace which is also a splitting subspace. The spaces H, H- and H+ are splitting
subspaces, but in general they are not minimal.

A subspace X is said to be Markovian if the subspaces X- and X+ generated by
{ UtX <= 0} and { U,X -> 0} are conditionally orthogonal given X, i.e. X-_t_ x/lx.
This is condition (ii) in 1, and, as mentioned there, it is equivalent to each of the
conditions (1.2) (Proposition 2.1).

We shall now reformulate the geometric problem of 1, justifying the name
Markovian splitting subspace introduced there.

PROPOSITION 3.1. The subspace X satisfies the conditions
(i) yk(O) X, k 1, 2,’", m,
(ii) X is Markovian

if and only ifX is a Markovian splitting subspace.
Proof (if): Since X is a splitting subspace, it follows from Proposition 2.2 that

H- H/ X. But yk(O) H- H/ for k= 1, 2, , m, and therefore (i) follows.
Condition (ii) is part of the assumption. (only if): Condition (i) implies that H-= X-
and H+= X/. Hence the splitting property of X follows from the Markovian
property.

The following characterization of the class of splitting subspaces will be of central
importance in what follows.
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THEOREM 3.1. [28], [29]. A subspace X is a splitting subspace if and only if
(3.4) X=S&S

for some pair (S, S) of perpendicularly intersecting subspaces such that S H- and
H+. The correspondence X (S, ) is one-one, S and being given by

S=H-vX,
(3.5) = H+vX.

Proof. (if)" Suppose that S and intersect perpendicularly. Then S_I_ ;IX where
X=S (Proposition 2.4). But, since SH- and H/, this implies that
H-_t_ H+IX, i.e. X is a splitting subspace. (only if)" Suppose H-_t_ H+IX. Let S and
be defined by (3.5). Then, by Theorem 2.1, S_I_ IX and X S $. This implies that

S and S intersect perpendicularly (Proposition 2.4).
(one-one)" Suppose that S and S are perpendicularly intersecting subspaces such

that S H- and H/. Then X S is a splitting subspace, i.e. H-_L H/IX. We
need to show that S= H-v X and = H/v X. But S contains H- and X, and
contains H/ and X; hence S H- v X and H/ v X. On the other hand, S_I_

(Proposition 2.4), and therefore S H-v X and H/v X (Theorem 2.1), establish-
ing the required equalities.

COROLLARY 3.1. [28]. In Theorem 3.1, (3.4) can be exchanged for X Es or
X=ES.

Proof. Follows immediately from Proposition 2.4.
We shall write X---(S, $) to exhibit the unique pair (S, S) corresponding to X.

The geometry of Theorem 3.1 can be illustrated as in Fig. 1. It also illustrates
COROLLARY 3.2. [28]. A subspace X is a splitting subspace if and only if there are

subspaces S H- and H/ such that

(3.6) H= S+/-O)X+/-.

The pair (S, S) is the same as in Theorem 3.1, i.e. X .--(S, S).
Proof. (if): Relation (3.6) implies that +/- S, and therefore S and intersect

perpendicularly (Theorem 2.2). Also, by Theorem 2.2 (iii), X--S $. Then the rest
follows from Theorem 3.1.

FIG.
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(only if)" In view of Theorem 3.1, it only remains to show that, if S and S intersect
perpendicularly, (3.6) holds with X--S c S. But this follows from Theorem 2.2.

Equation (3.6) is analogous to the decomposition in terms of incoming and
outgoing subspaces in Lax-Phillips scattering theory [23]. Adding the invariance
conditions of Theorem 3.2 below, +/- corresponds to the incoming and S+/- to the
outgoing subspace. The parallels will be more apparent in 7, as we turn to Hardy
space representation.

The splitting subspace X---(S, g) is said to be proper if both S+/- and g+/- are full
range. Since S+/- and gl are the pieces of H in (3.6) which we discard, properness is
to a certain extent an indication that the splitting subspace X offers nontrivial data
reduction; H, H- and H+ are not proper.

THEOREM 3.2. [28]. Let X--.(S, S) be a splitting subspace. Then X is Markovian

if and only if

(3.7a) UtSc S fort<=O,

(3.7b) UtS c S for >- O.

Proof. (if)" Since X c S, (3.7a) implies that UtX S for t_-< 0, i.e. X- S. In the
same way, (3.7b) implies that X+c q. Therefore, since S 3_ glX, we have X-3-
(only if)" Suppose that X---(S, S) is a Markovian splitting subspace. Then yk(O) E X
for k 1, 2, , m (Proposition 3.1), and therefore X- H- and X/ H/. Moreover,
X- 3_ X+IX, and consequently X X- c X/ (Theorem 2.1). Hence X- and X/ intersect
perpendicularly (Proposition 2.4). Then, by Theorem 3.1, X---(X-, X/) is a splitting
subspace. But then, in view of the one-one correspondence X <-> (S, S), we must have
S- X- and X+, which clearly have the required invariance properties.

From Theorems 3.1 and 3.2 we see that H---(H, H), H---(H-, H) and H+-
(H, H/) are Markovian splitting subspaces, but they are not in general minimal.

Given an arbitrary splitting subspace X- (S, S), how do we find a minimal one
contained in it?

LEMMA 3.1. Let X.--(S, S) and Xo’--(So, So) be splitting subspaces. Then Xo X
if and only if So S and So S.

Proof. The if-part follows from (3.4) and the only-if part from (3.5).
To obtain a minimal splitting subspace, then, we would need to reduce S and S

as far as possible, while preserving the splitting geometry of Theorem 3.1. By Theorem
2.2, S and , intersect perpendicularly if and only if g+/- S or, equivalently, Sx
Therefore, in order that S D H-, H/, and S and intersect perpendicularly, we
must have

(3.8a) S D H- v ,+/-,
(3.8b) q H/v S+/-.

We must therefore reduce S and S without violating these conditions. The following
theorem describes one procedure to do this.

THEOREM 3.3. [29]. Let X’-.(S, ) be a splitting subspace. Set S-o := H+v S+/- and
--3_So := H-v So. Then Xo" (So, o) is a minimal splitting subspace such that Xo X. IfX

is Markovian, then so is Xo.
Proof. By definition, So D H-, S-o D H/, and c So, i.e. So and o intersect

perpendicularly (Theorem 2.2). Hence Xo’--(So, So) is a splitting subspace (Theorem

A subspace M of H is full range if the closed linear hull of the shifted spaces UtM" } is all of H.
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3.1). Also, S+/- c o, i.e. - c S, and H- c S, and therefore So c S. Moreover, (3.8b) may
be written So S. Consequently Xo X (Lemma 3.1).

Next, we show that Xo is minimal. To this end, suppose that XI-’-($1, $1) is a
splitting subspace such that X Xo. Then, by Lemma 3.1, S So and S So. However,
from the splitting geometry (3.8) we have

(3.9a) Sl H-v

(3.9b) 1 H+ v S-.
Since S-o, :i = -, and therefore (3.9a) yields S = So. Hence S So. Further-

more, X Xo c X implies that S S (Lemma 3.1), i.e. Si = S-, which together with
(3.9b) yields $1 So. Thus S1 So. Consequently X Xo, establishing the minimality
of Xo.

It remains to shown that if X is Markovian then so is Xo. In view of Theorem
3.2, this amounts to showing that

(3.10a) U,So So for <= 0,

(3.10b) UtSo So for >_- 0

follows from (3.7). It is well known and easy to show that if a subspace M is invariant
under an operator T, i.e. TM M, then the orthogonal complement M+/- is invariant
under the adjoint T*, i.e. T*M- M+/-. Then, noting that U,* U_t, we see that (3.7a)
can be written UtS+/- S- for >=0, which together with (3.1b) yields (3.10b). In the
same way, (3.10b) and (3.1a) yields (3.10a).

From this we see, as we could expect, that for minimality we must have equality
in (3.8a) and in (3.8b).

COROLLARY 3.3. [28]. A splitting subspace X-.-. (S, S) is minimal if and only if
(3.1 la) q H+ v S-,
(3.11b) S H- v -.

Given S, (3.11a) is the smallest subspace containing H+ and intersecting S
perpendicularly. Likewise, given S, (3.11b) is the smallest subspace containing H- and
intersecting +/- perpendicularly. It follows from Theorem 3.3 that these minimality
conditions remain the same if we restrict our analysis to Markovian splitting subspaces.
Therefore the properties "minimal" and "Markovian" can be studied separately.

COROLLARY 3.4. [29]. A Markovian splitting subspace which contains no Markovian
splitting subspace as a proper subspace is a minimal splitting subspace.

The existence of minimal splitting subspaces, finally, is insured by Theorem 3.3.
COROLLARY3.5. Each (Markovian) splitting subspace contains a minimal

Markovian splitting subspace.
Applying Theorem 3.3 to the Markovian splitting subspaces H----(H-, H) and

H+ H, H+), we obtain4 the minimal Markovian splitting subspaces H+/----

(H-, H+ v (H-)-) and H-/+.(H-v (H+)-, H+). Introducing

(3.12a) N-:= H-c (H+)1,

(3.12b) N+ := H+ c (H-)1,

we may write4 H-/+.--(H-, (N-)-) and H+/-.-. (( N+)+/-, H+). Moreover, by Corollary

4 Recall that, for any subspaces A and B, (A v B) A+/-c B+/-.
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3.2, H-= H//-O) N- and H/= H-//)N/, i.e., in view of Lemma 2.1, we have

(3.13a) H+/-= ff, H-H+,
(3.13b) H-/+=H/H-.

Consequently H//- and H-// are the forward and backward predictor spaces.
From Proposition 2.3 we see that H//- is the only minimal splitting subspace contained
in H-, and H-// is the only one contained in H/.

Hence we have identified two minimal splitting subspaces, but where do we look
for the others? To answer this question, first note that, since H-= H+/-03 N- and
H+ H-/+ O) N+,
(3.14) H N-0) H[]03 N/

where H[] is the frame space

(3.15) H[] H+/- v H-/+.

Since (N/)- H- and (N-)Z H/, H[] is a splitting subspace (Corollary 3.2), which
is Markovian (Theorem 3.2), but in general nonminimal.

THEOREM 3.4. [26]. The frame space H[] is the closed linear hull of all minimal
splitting subspaces. IfX is a minimal splitting subspace, then

(3.16) H- H+ c X c H[].

Proof. Let X---(S, S) be a minimal splitting subspace. Then it satisfies (3.11). But,
S D H- and H/, or, equivalently, $1 (H-)- and - (H/) +/-, which together
with (3.11) yields c (N-)- and Sc(N+)-. Hence X H. In view of (3.15), the
minimal splitting subspaces span H. The relation H- c H/ X follows from Proposi-
tion 2.2.

Consequently, as far as minimal splitting subspace construction is concerned, only
the frame space H[] is of interest; the spaces N- and N/ in the decomposition (3.14)
may be discarded. This observation is of importance in many applications, such as,
for example, smoothing [4]. The point here is that, whenever y has a rational spectral
density, H[] is finite-dimensional while of course H is not.

In the event that the past space H- and future space H/ intersect perpendicularly,
H=H-H/, and hence, by Theorem 3.4, there is a unique minimal splitting
subspace. In the finite-dimensional case, this happens if and only if y has a rational
spectral density the numerator polynomial of which is constant.

The special role played by the minimal splitting subspaces H//- and H-// is
further underlined by the following result. In 4 and 7 we shall identify H//- and
H-// as the minimum and maximum elements in a certain lattice of splitting subspaces.

THEOREM 3.5. [30]. Let X (S, ) be a splitting subspace. Then H-X H//- if
and only ifX _L N- and ff H/X H-/+ if and only ifX _L N+.

Proof. Applying the projection EH- to X--ES (Corollary 3.1) and noting that
H-c S, we obtain//-X =//-. But H+, and hence/H-X H+/-. Conversely,
suppose that : X. Then, since H- H+/- N-, EH- EH+/- E-. But, since
X +/- N-, the last term is zero, and consequently En- H+/- Hence ffS-x H+/-.
This establishes the first part. The second follows by symmetry.

4. Observalility, constructilfility, and minimality. Let X be a splitting subspace,
and consider the orthogonal decomposition

(4.1) X ff,XH+O)[X c (H+)+/-]
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given by Lemma 2.1. An element in the subspace X (H/) +/- cannot be distinguished
from zero by observing the future {y(t); t->_ 0} and is therefore called unobservable, in
analogy with deterministic systems theory [22, p. 52]. The splitting subspace X is said
to be observable if the unobservable subspace is trivial, i.e. X (H/)-= 0. Likewise,

(4.2) X ff_.XH-[X (H-)+/-]

and we call X constructible if the unconstructible subspace X c (H-)+/-= 0.
The above definitions of observability and constructibility, introduced by

Ruckebusch in [42], are in complete agreement with the corresponding concepts in
deterministic systems theory. To illustrate this point, let us consider the finite-
dimensional stochastic system (1.7), which can be solved to yield

(4.3) y(t) C eAtx(O)+ C eA(’-)B du(r).

Now, X is observable if and only if/XH/ X, i.e.

(4.4) Xk(0) span {33,(t); >-- 0, 1, 2,. ., m}

for k= 1,2,..., n, where yk(t):= EXyk(t). For t>=O, (t)=CeAtx(O), since then the
components of the second term in (4.3) are orthogonal to X. Therefore {93(t); t->0} is
the output of the linear dynamic system

Az, z(O) x(O),
(4.5)

=Cz, t>--O.

The question of observability of X is thus reduced to determining if x(0) can be solved
in terms of {)3(t); >-0} which happens if and only if (4.5) is observable in the usual
sense of deterministic systems theory [22]. Similarly, X is constructible if and only if
x(0) can be solved in terms of {)3(t); <-0}. But, from the backward system (1.9), we
see that {(t); t<-0} is the output of

-,, (0) x(0),
(4.6)

39=C, t-<_0

and therefore X is constructible if and only if (4.6) is.
In the general setting, observability and constructibility can be characterized as

follows.
THEOREM 4.1. [28]. Let X--.(S, S) be a splitting subspace. Then X is observable if

and only if
(4.7) = H+ v S+/-

and constructible if and only if
(4.8) S H- v

Proof. The observability condition X (H/)+/-=0 is equivalent to X-v H/= H,
which, in view of Corollary 3.2, can be written (S+/- ,+/-) v H/ H. Since H/

this is equivalent to (H/ v S+/-) +/-= H, which is the same as (4.7). The proof of the
constructibility part is analogous.

The following result, first presented in [42] in a somewhat different formulation,
is an immediate consequence of Corollary 3.3 and Theorem 4.1.

COROLLARY 4.1. (Ruckebusch). A splitting subspace is minimal if and only if it is
both observable and constructible.
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This statement may at first sight seem analogous to the central result in classical
deterministic realization theory that a realization is minimal if and only if it is both
observable and reachable. However, as we shall see below, it is in fact of quite a
different nature, involving both the forward and the backward realization. This was
indicated in 1. In terms of the discussion there, Corollary 4.1 states that X is minimal
if and only if conditions (b) and (b)’ both hold.

Defining the observability map :X H/ to be : EH/:, the decomposition
(4.1) of X into an observable and an unobservable subspace is seen to be identical to
the well-known relation

(4.9) X range * ker

[48, p. 205], where *: H/X is the adjoint operator *A ExA, and ker denotes
null space. Consequently X is observable if and only if is one-one or, equivalently,

* maps onto a dense subset of X. The splitting subspace X is said to be exactly
observable if * is onto.

Similarly (4.2) can be written

(4.10) X =range fig*q)ker fig

where fig:X H- is the constructibility map fig EH-. The splitting subspace X is
constructible if and only if fig is one-one or, equivalently, fig*" H-X maps densely
onto; it is exactly constructible if fig* is onto.

According to Proposition 2.1 (vi), the splitting property H-_L H/IX is equivalent
to G fig*, where, G: H- H+ is the map G EH+. This can be described by the
commutative diagram

G
H- H+

X

Such a factorization is said to be canonical if the first map (here fig*) has a range which
is dense in X and the second map (here ) is one-one. In view of Corollary 4.1, we
can summarize this in

PROPOSITION 4.1. Let G: H- H/ be the map GA EH/A. Then a subspace X is
a splitting subspace if and only if the diagram (4.11) commutes. This splitting subspace
is minimal if and only if the factorization is canonical.

A splitting subspace X is exactly canonical if it is both exactly observable and
exactly constructible. These conditions are technical and do not occur in the minimality
criteria. However, certain results are much easier to prove in the finite-dimensional
case (Theorem 4.3 is a case in point), and the reason for this is that the attribute
"exact" is redundant in this case. Thus the technical difficulties are due to the lack of
exactness rather than to infinite dimensions. The following lemma, found in [43, p. 28],
relates exact canonicity to G having a closed range.

LEMMA 4.1. (Ruckebusch). If G has a closed range, then all minimal splitting
subspaces are exactly canonical. If one splitting subspace is exactly canonical, the G has
a closed range.

Proof. Recall that if a map has a closed range, then so does its adjoint [48, p. 205];
this will be used several times in the proof. Let X be a minimal splitting subspace.
Then G--fig*, and CO*H- is dense in X (Proposition 4.1). Clearly GH-=
qg*H-c X. We want to show that, if GH- is closed, then GH-=X so that ,
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and hence *, has a closed range, i.e. X is exactly observable. To this end, let : X
be arbitrary. Then there is a sequence {:n} in *H- such that Cn . But GH-,
and, since is continuous, ,- tg: GH-. Hence X GH- as required. In the
same way, we use the adjoint factorization G* *, which is also canonical, to prove
that X is exactly constructible. Conversely, assume that X is exactly canonical. Then
CO.H-= X, and therefore, since X is closed, GH-= *H- is closed. [3

The following theorem ties together the geometric concept of minimality with that
based on dimension.

THEOREM 4.2. All minimal splitting subspaces have the same dimension.

Proof. Let us first assume that G has a closed range. Let X1 and X2 be any two
minimal splitting subspaces. Then there are two canonical factorizations G 1*22* (Proposition 4.1) which are in fact exactly canonical (Lemma 4.1). Consider the
commutative diagram

Xl

in which * and 2" are onto and 1 and 2 are one-one. Then, using the argument
of Kalman [22, pp. 256-258], we see that there is a bijective map from X to X2 (dotted
arrow). Consequently X and X2 are isomorphic vector spaces, and therefore they
have the same dimension. It remains to consider the case in which G does not have
a closed range. But then, by Lemma 4.1, no minimal splitting subspace is exactly
canonical, and consequently all are infinite-dimensional. Therefore, since H is a
separable Hilbert space, all X have dimension No.

Next we shall give an alternative characterization of the class of minimal
Markovian splitting subspaces which involves only the space S [or the space S], and
consequently, as we shall see below, only the forward [or the backward] realization.
As a preliminary, first note that Theorem 4.1 has the following corollary.

COROLLARY 4.2. The subspace X is an observable splitting subspace if and only if
there is a subspace S D H- such that

(4.12) X ffSH+.

It is a constructible splitting subspace if and only if there is a subspace H/ such that

(4.13) X= ff,H

The subspaces S and S are those of Theorem 3.1, i.e. X .--(S, $).
Proof. Suppose that X---(S, ) is an observable splitting subspace. Then X ES

(Corollary 3.1), which together with the observability condition (4.7) yields (4.12).
Conversely, suppose there is an S H- such that (4.12) holds. Define q:= H/v S+/-.
Then S and q intersect perpendicularly (Theorem 2.2) and X ESq. Hence X
is a splitting subspace (Corollary 3.1) which is observable (Theorem 4.2). The rest
follows from the symmetric argument.

There are now two representations for the class of minimal Markovian splitting
subspaces, one based on (4.12), the other on (4.13). We shall only state the first, the
second being the symmetric one. Phrased in terms of the finite-dimensional analysis
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of 1, Theorem 4.3 states that minimality is equivalent to conditions (b)/ (c); this we
shall see in 7.

THEOREM 4.3. [31]. Assume that N- and N+ are full range. Then X is a minimal
Markovian splitting subspace if and only if
(4.14) X= ffSH+

for some S satisfying the invariance condition (3.7a) and

(4.15) H-cSc(N+)-.
The correspondence X- S is one-one, S being given by S H-v X.

Consequently, the class of minimal Markovian splitting subspaces forms a lattice,
induced by the subspaces S" the greatest lower bound ofX and X2 is the X correspond-
ing to S 71 $2; the least upper bound corresponds to S v $2. Hence X < X_ if and
only if S c S. This lattice has the minimum element H+/-, corresponding to S- H-,
and the maximum element H-//, corresponding to S (N+)z.

To establish Theorem 4.3 it just remains to prove that an observable splitting
subspace X---(S, ) is minimal if and only if S (N+) +/-. Then the rest follows from
Corollary 4.2 and Theorem 3.2. The only-if part of this statement is immediate. In fact,
since S H- v X (Theorem 3.1), it follows from Theorem 3.4. The proof of the if-part,
however, is more difficult. It can be found in [31]; also see Theorem 7.3 below. (Note
that the proof in [28] is incorrect.)

However, in the special case that the map G has a closed range, the proof is easy.
Then G maps onto H-//. Moreover, since X S_t.N/, X H-// (Theorem 3.5).
Consequently, we may without restriction replace (4.11) by

G
H- H-/+

X

In this diagram, G is onto. Furthermore, since from the diagram X GH-, is
onto. By observability, ff is one-one and therefore the inverse if-1. H-/+ X is well
defined and onto. Consequently, *=-G is onto, i.e. X is constructible; hence X
is minimal (Corollary 4.1).

5. Reconciliation with systems theory. We wish to pinpoint the similarities and the
differences between the state space constructions in deterministic and stochastic realiz-
ation theory from an abstract systems-theoretical point of view. To this end, let us first
briefly review some basic concepts of the standard state space construction in deter-
ministic systems theory [22], [15].

Consider an external description of a continuous-time, constant, linear dynamical
system ;, which we illustrate as a "black box"

with input u and output y. Let U be a space of input functions u which are identically
zero for > 0, and let Y be a space of output functions y which are identically zero
for <0. Let F: U- Y be the (linear) restricted input-output map defined by E.
(Consequently, we apply the inputs up to time zero and observe the outputs from time
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zero on.) The input space U is invariant under the operation (o-,u)(r)= u(r+ t) of
shifting the function a distance t-> 0 to the left, i.e. o-,U c U for => 0.

Two inputs ul, u2 U are (Nerode) equivalent if the corresponding outputs FUl
and Fu2 coincide, i.e. Ul u2 ker F. Then a minimal state space is obtained by forming
the quotient space X U/ker F. If R is the projection onto the quotient space, there
is an injective map O so that the diagram

F
U Y

X
commutes [46, p. 23]. Hence we have a canonical factorization off through the minimal
state space X. (A noncanonical factorization will yield a nonminimal realization [22].)
The semigroup { eat >= 0}, determining the dynamics of the realization, is then isomor-
phic to the family of maps making the diagrams

R

U >X
commute.

In the stochastic realization problem only the output process is given, and therefore
the choice of input space is somewhat arbitrary. While the minimal state space in the
deterministic theory is essentially unique, there are many solutions to the stochastic
problem, each minimal Markovian splitting subspace X (S, S) giving rise to a minimal
state space. As it turns out, each such state space is best described by two realizations,
one evolving forward in time having S as input space and H+ as output space, and
another evolving backward with S as input space and H- as output space. In 6 we
shall see that (under suitable conditions) there are two orthogonal increment processes
u and t7 such that S H-(du) and g H+(d). These processes, called the generating
processes of X, will be the input processes of respectively the forward and the backward
realization of X.

THEOREM 5.1. Let X be a subspace of H, and set S := H-v X and := H/v X.
Then X-- (S, S) is a splitting subspace if an.d only if the diagrams

r+ H+
r_

S H-

X X

commute, the maps being defined as F+A EH+/, F_/ E/-/-A, A ExA, ’{A ExA,
TA EH/A, and cCA EH-A with domains as indicated. If one diagram commutes, then
so does the other. The left factorization is canonical if and only if X is observable, the
right one if and only ifX is constructible, and both if and only ifX is minimal. The maps

and are always onto. Moreover,

(5.1a) X Sker F/,

(5.1b) X Sker F_

with equality in (5.1a) if and only if the left factorization is canonical and equality in
(5.1b) if and only if the right factorization is canonical.
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Note that and c are the observability and constructibility maps defined in 4.
Following standard terminology in systems theory, is the teachability map and St"
the controllability map.

Proof. By Proposition 2.1 (vi), the left factorization F/ is equivalent to
H/ _t_ SIX and the right one F_ cff, to H- _1_ glX. But these conditional orthogonality
conditions are both equivalent to H-_t_ H/IX (Proposition 2.1), the splitting property.
Since X c S and X c S, and ff" are obviously onto. Therefore the left factorization
is canonical if and only if is one-one, i.e. X is observable, and the right one is
canonical if and only if c is one-one, i.e. X is constructible. Then, the minimality
statement follows from Corollary 4.1. Since ker F/ S fq (H/)x, it follows from Lemma
2.1 that S)ker F+ ff.SH+. But, in view of the splitting property (3.3), ff.SH+= ff.XH+,
which is the observable subspace of X; see (4.1). Hence (5.1a) holds, and there is
equality if and only if ff.XH/= X, i.e. X is observable. The proof of the symmetric
statement involving (5.1b) is analogous. D

Observing that S)ker F/ and S)ker F_ are representations ofthe quotient spaces
S/ker F/ and S/ker F_ respectively, the analogy with the deterministic construction
is apparent. Note, however, that in order for X to be a minimal splitting subspace,
and hence correspond to a minimal state space, both diagrams need to be canonical.
This is because the input space in the stochastic problem is not fixed but may change
with X.

Some of the geometric results of 3 and 4 can be inferred directly from the
diagrams. Clearly we always have

(5.2) ker c ker F/

with equality if and only if is one-one. In fact, except for the elements in ker
which are sent to the zero point in X and onto the zero point in H/, there may be a
subset of $ whose image in X is nontrivial but then mapped onto the zero point of
H/. This happens if and only if fails to be one-one. However, ker SX q+/-
(Corollary 3.2), and therefore (5.2) can be written +/-c S fq(H+)- or, equivalently,

H/ v Sx, i.e. (3.8a). Equality yields the observability condition (4.7). Likewise, the
corresponding relation between ker $’/" and ker F_ yields the constructibility condition
(4.8).

Construction of semigroups for the stochastic problem requires that X is
Markovian, in which case the input space S is invariant under the shift { U,*; >= 0}
and S is invariant under { Ut; t-> 0} (Theorem 3.2). These shifts play the role of
{trt; _-> 0} in the deterministic theory.

THEOREM 5.2. [30]. Let X’--(S, S) be a Markovian splitting subspace. For each
>- O, let U(X)" X X be the compressed shift U,(X) ExU, and Ut(X)*" X X

its adjoint Ut(X)*:= EXu_,. Then, for >-_0, the diagrams

S "’X S X

S X S X

commute. Moreover, { Ut(X) _-> 0} and { Ut(X)* >- 0} are strongly continuous contrac-
tion semigroups, and for each s X and >-O,

(5.3a) ESu,= U,(X),

(5.3b) E U_t. U,(X)*.

IfX is proper, both Ut(X) and Ut(X)* tend strongly to zero as t-)c.
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Proof Let _-> 0 and h 6 S-. Then, since XS+/- (Corollary 3.2),

(5.4) EXu, ExUtEXX + EXUtES’.
Here the last term is zero, for UtS+/- c S 3_ X (Theorem 3.2 and Corollary 3.2). Therefore,

(5.5) EXutx ExUtEXX,
and consequently YU, U,(X)Y as required. Also, since S _1_ q]X and U,, e q, the left
member of (5.5) can be exchanged for ESuvx. Therefore, since X c $, (5.3a) follows.
The symmetric argument yields U* U,(X)*Yt and (5.3b). Since U,U U,+, it
follows from (5.5) that G(X)U(X)= G+(X), i.e. {G(X); t->_0} is a semigroup,
which is strongly continuous since { U,} is. Clearly U,(X) is a contraction, for U, is
unitary. If X is proper, f ,o U,S =0 and hence, in view of (5.3a) and the identity
ESut UtE t*’s, we get u,(x)ll- IlE-’Sll-o as to proving the last statement
of the theorem. The family { Ut(X)*; >= 0} is merely the adjoint semigroup with the
same properties. ]

Following the pattern of this section, in 8 and 9 we shall assign to each proper
Markovian splitting subspace X two realizations with the systems-theoretical properties
of Theorem 5.1, a forward one with input space S and semigroup {Ut(X)*} and a
backward one with input space S and semigroup {Ut(X)}. Therefore we shall call
{ Ut(X)*; >- 0} and { Ut(X); >- 0} the forward and backward Markovian semigroups
of X respectively.

6. Generating processes. By representing the random variables as Wiener integrals
we shall next derive functional models for the geometric results presented above.

To this end, let us first define a p-dimensional Wiener process on the real line ff
to be a real centered Gaussian vector process {u(t); R} which has (almost surely)
continuous sample functions and independent (and hence orthogonal) increments such
that

(6.1) E{du(t) du(t)’}= Idt.

Although we shall only be interested in the increments of u, it is convenient to set

u(0)=0. Defining H(du) to be the Hilbert space generated by the components of

{u(t)- u(s); t, s R}, we have the orthogonal decomposition

(6.2) H(du) H-(du)(R) H+(du)

where H-(du) and H+(du) are the subspaces corresponding respectively to the incre-

ments {u(t)-u(s); t, s<=0} and {u(t)-u(s); t, s>=0}.
It is well known [38] that to any / H(du) there is a function f in (), the

space of p-dimensional real vector functions square-integrable on , such that

(6.3) r/= E fi(-t) du,(t),
i=1

where the integral is defined in quadratic mean. We shall write (6.3) as

(6.4) rl I_of(- t) du(t)

i.e. we shall think of the function f as a row vector and the process u as a column
vector; this convention will be maintained through the rest of the paper. Let Iu" ()-
H(du) be the map defined by (6.4), i.e. r/= I. Then (If,, Ig)= -oof(t)g(t)’ dt, the
inner product off and g in 20(), i.e./ is ar isometry. Since it is also onto, Iu is unitary.
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It is not hard to see that the vector process

1 f e-iCt-- 1
du(t)(6.5) t(ito) := -- it

defined on the imaginary axis U, has much the same properties as u with

(6.6)
1

Idto,E{d(ito) dt(ito)*} 2---
and therefore we can think of it as a vector Wiener process on the imaginary axis. Also,
it is well known [38, p. 147] that, for each f 2p(),

where to f(ito) is the Fourier transform

(6.8) f(i,,,)= fo e-"’f(t) dt

extended to all of () in the usual manner [10], [38]. The space 2p(U) of all such
f is a Hilbert space with inner product

f , - f ito ff, (- ito )’ dto,

and the map if: p2()_ 2p() defined by f= ;f is unitary. (We define f in the style
of the Laplace transform in order to conform with usual nomenclature in systems
theory.) In view of (6.7), the map In: p() H(du) defined by

(6.9) Iaf f_f(ito) dt(ito)

is also unitary, and the diagram

H(du)

commutes. Taking f(-t) to be the indicator function of the interval 0, t], (6.7) yields
the spectral representation

(6.10) u(t)=f e’’-lito d(ito).

If we let f vary over all functions in p() which vanish on the negative [positive]
real axis, (6.4) generates H-(du)[H+(du)]. This motivates the introduction of the

2 2 2 2Hardy s.paces p and p. Let p [p] be the subspace of those f() for which
f:= -lf vanishes on the negative [positive] real line. Then, H-(du)=Ia and
H+(du) Ia -2, i.e.

(6.11) ()

Here * denotes conjugate transpose.



828 ANDERS LINDQUIST AND GIORGIO PICCI

is the isomorphic image of (6.2) under I1. Clearly f(2p=(itog(-ito)lg 2p}, and
therefore is sometimes called the conjugate Hardy space. The Hardy spaces
and 2p can also be defined as bona fide function spaces of functions analytic in the
open right and left complex half planes respectively, the limits ofwhich as the imaginary
axis is approached perpendicularly are the elements of and 2p as defined above
[14], [18], [45]. Therefore the functions of 2p will sometimes be called analytic and
those of coanalytic. In the same way we define pp to be the space of all
p p-matrix-valued functions bounded and analytic in the open right half plane, or,
alternatively, as the corresponding subspace of pp(U). Here we shall think of these
functions as defined on the imaginary axis, but it is useful to keep the other interpretation
in mind.

Our program now is to assign to each proper Markovian splitting subspace
X.--(S, S) a pair (u, t) of Wiener processes on the real line such that H-(du)= S,
H+(dt) , and H(du) H(df) H. Through the isomorphisms Ia and I we shall
then transform the geometry of 2-5 to the Hardy space in which the appropriate
mappings take a particularly simple form.

Recall that the given m-dimensional process {y(t); } is stationary, Gaussian,
mean-square continuous, and centered. From now on, we shall also assume that y is
purely nondeterministic in the (strong) sense that both (H-) +/- and (H+)- are full range.
Then, y has a spectral representation

(6.12) y(t)= f_ et dfi(ito)

where {33(s); s U} is an independent-increment process such that

1
(6.13) E {d( io dfi( ito )*} -- dP( iog do.

Here the m m-matrix function , is the spectral density of y, and 33 is given by

1 fr e-i.,_l
(6.14) )3(/to)= lim

T-o it
y(t) dt,

where the limit is in quadratic mean [9].
Since y is purely nondeterministic, ,(ko) has a constant rank p_-< m (for almost

all o), and it admits a factorization

(6.15) W(s) W(-s)’ (s)

where W is an m xp-matrix function whose rows belong to (fl) [38, p. 114]. There
are many such W, and we call them full-rank spectral factors. More specifically, the
condition that (H-)[ H/) +/- is full range implies that there are W with rows in (e).

To each full-rank spectral factor W we associate a unique p-dimensional Wiener
process (on the real line), namely (6.10) with

(6.16) dt W-/

where W-/ is any left inverse of W, i.e. a p x m-matrix function such that W-LW L
Although, in general, W has more than one left inverse, u is uniquely determined by
(6.16). In fact, let W-L and w-L+A be two left inverses. Then A W=0, and con-
sequently, because of (6.15), AA* dto= 0, and therefore the uniqueness is established.
For example, we may take W-L= (W’W)- W’. Despite the fact that ww-L I in
general, WW-L d= d, i.e.

(6.17) d= Wda.
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To see this, form E{(I- WW-L) d d*(I- WW-’)*}, which, in view of (6.13) and
(6.15), equals zero.

The class 07/of Wiener processes u defined in this way is characterized as follows.
PROPOSITION 6.1. [28]. Let u be a vector Wiener process defined on the real line.

Then u ell if and only if H(du)= H. In this case, for each

(6.18 U,Ia lax,

where X,: 2p() 2p() is multiplication by e i’’.
Proof. First suppose that u . Then, by (6.17),

(6.19) y(t) f e i,OtWd

and consequently, in view of (6.7), yk(t)H(du) for k=l,2,...,m. Hence Hc
H(du). On the other hand, it follows from (6.10), (6.16) and (6.14) that H(du)c H,
and therefore H(du)= H. Conversely, assume that H(du)= H. Then, by (6.7), there
exists a matrix function W with rows in 2p(]) such that y(0)= j Wda. From this it is
seen that W is a spectral factor and that d)3 Wda, but it remains to show that W is
full rank. However, since H(du)c H, for each R, there is a matrix function G, such
that u(t) = G,d; i.e. u(t)= G,waa. Hence, by (6.10), G,W=(e"’-l)/itoI for all

R. Consequently, W must have full rank.
COROLLARY 6.1. Let u all. Then, for k 1, 2,. , p,

(6.20) Ut[Uk(r)-- Uk(tr)] Uk(’r+ t)-- Uk(O’+ t)

and consequently UtH-(du) is the subspace generated by the components of (u(r)-
u(cr)1% cr <= t).

Proofi In view of (6.10),

eO eiO
(6.21) u(r) u(cr) | dt

and therefore (6.20) follows from (6.18).
How are the processes in 0?/related to each other? It is immediately clear that, if

u and u2 correspond to the spectral factors W1 and W2 respectively, then

(6.22) da2 W
The p p-matrix function WW is uniquely defined (independent of the choice
of left inverse), because, just as above, dt2= P d and dt2= P d imply that
(P1- P2)(P P2)* 0, i.e. P P. Also, it follows from (6.15) that the values of WLW
on are unitary matrices. Therefore we can think of u being obtained by passing u
through a filter with the transfer function WW:

(6.23a) W W

In engineering language, such an object is called an all-pass filter Moreover, for any
f p(B), Ia2f IafcVL W, i.e.

(6.23b)

where, here as in the sequel, Mq: 2() - 2() denotes multiplication from the right
by Q, i.e. Mof=fQ.
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Clearly, if W is a full-rank spectral factor, then so is WT for any constant unitary
p xp matrix T. However, the corresponding processes in 0// are related to each other
by a trivial coordinate transformation, and therefore we shall regard them as equivalent.
The transformation (6.23) is interesting only if WLW1 is nonconstant.

A matrix function Q Ypp with the property that Q(ito) are unitary matrices for
almost all to is said to be inner [14], [18], [45]. In particular, WLW1 is inner if it
belongs to Ypp. The following lemma, which is a corollary of a famous theorem by
Beurling, generalized to vector functions by Lax [14], [18], [45], states that the all-pass
filter (6.23a) is causal if and only if WW1 is inner.

LEMMA 6.1. [28]. Let ul and u2 be two processes in ql, and let W1 and W2 be the
corresponding spectral factors. Then WW1 is inner if and only if
(6.24) H-(du2) c H-(dul).

Proof Set Y := I-lal H-(du2). Since UtH-(du2) c H-(du2) for <= 0 (Corollary 6.1),
XtY C Y for -<_ 0 (Proposition 6.1). A subspace with this property is called invariant.
Moreover, since H-(du2) is full range, then so is Lr, in the sense that the closed linear

--1 2hull of {Xt; t} is all of p(fl). Since Ial H-(dUl)= Yfp, (6.24) is equivalent to
: Yf. Now, by the Beurling-Lax theorem, the invariant full range subspaces of
are precisely the subspaces of the form y(2pQ where Q is inner. But, in view of (6.23b)

yf2p W/W1. Therefore, if W W1 is inner, (6.24) holds. Conversely, if (6.24) holds,
WIw must be inner. In fact, if 2pQ1 ,Q2 where both Q1 and Q2 take unitary
values in fl, then Q TQ2 where T is a constant unitary matrix [18].

Referring to the alternative definitions of 2p and 2p, a full-rank spectral factor
with rows in will be called analytic, and one with rows in 2p coanalytic. Let
and + respectively be the corresponding subclasses of .

LEMMA 6.2. [28]. Let u . Then, u all- ifand only ifH-(du) H-, and u all +

if and only ifH/ du H/.
Proof By definition, u q/- is equivalent to Wk yf2p for k 1, 2, , m, where

Wk is the kth row of the spectral factor W corresponding to u. Under the isomorphism
Ia this is equivalent to

(6.25) yk(O) H-(du) for k= 1, 2,..., m.

For this to hold it is clearly sufficient that H- H-(du). Conversely, suppose that
(6.25) holds. Then, in view of Corollary 6.1, yk(t)c H-(du) for t--<_0 and k=
1, 2,. ., m. This implies that H-c H-(du). The proof of the symmetric statement is
analogous.

We are now in a position to tie together the results of this section with the geometric
theory presented in the beginning of the paper. The link is provided by the following
theorem.

THEOREM 6.1. [28]. (i) Let S be a subspace such that S H- and S+/- is full range.
Then

(6.26) US c S for <- O

ifand only if there are an analyticfull-rank spectralfactor Wand a corresponding u -such that

(6.27) S= H-(du).

The spectral factor W and the process u are unique modulo multiplication from the right
(respectively the left) by the same constant unitary matrix.
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(ii) Let be a subspace such that D H/ and +/- is full range. Then

(6.28) UtS c S for >- O

ifand only if there are a coanalyticfull-rank spectralfactor Wand a corresponding 71+

such that

(6.29) g=H+(du).

Here W and enjoy the same uniqueness properties as in i).
Proof. (i) Let v 0?/be arbitrary, and let V be the corresponding spectral factor.

(Since there are full-rank spectral factors [38, p. 114], q/is nonempty.) Set := I-S.
In view of Proposition 6.1, (6.26) is equivalent to

(6.30) XtY for t_-< 0.

Moreover, since both S and S+/- are full range, then so are and Lr- (in the sense of
the proof of Lemma 6.1). Therefore, there is a p p matrix function ito - Q(ito) taking
values which are unitary matrices such that Q [18]. Define W:= VQ-1. Clearly
W is a full-rank spectral factor; let u a// be the corresponding element in a//. The
function Q is unique up to multiplication by a constant regular matrix 18] and hence
the same is true for W and u. Then, by (6.23b), I-Ia MQ, i.e. IMQ Ia. Therefore,
since S I, we have S IMoygEp Iay(2p H-(du). Since S D H-, Lemma 6.2 implies
that u o1/-. This concludes the if-part of (i); the only-if part follows immediately from
Corollary 6.1. The proof of (ii) is analogous. Vq

Consequently, each proper Markovian splitting subspace X (S, S) is completely
determined by a pair (u, ti) of Wiener processes, one in 0-//- and the other in 0//+; in fact

(6.31) X H-(du) fq H+(d).

The processes are called respectively the forward and backward generating processes
of X.

7. Hardy space representation of Markovian splitting subspaces. The goal of any
description of dynamic phenomena is to obtain differential (or difference) equation
representations of the relevant state variables, such as (1.7) and (1.9). To achieve this
goal, in this section we go through an intermediate step in which the basic objects
representing the dynamics are pairs of transfer functions W, W), one causal and the
other anticausal. We shall arrive at a concrete coordinate-free state-space description
in terms of analytic functions which can be computed from W and W. The appropriate
mathematical setting for representing causal and anticausal transfer functions is the
theory of Hardy spaces. Notice that, while in the finite-dimensional setting differential
equations can be obtained through straightforward algebraic calculations involving
the appropriate analytic functions ( 8), the general situation requires considerably
more care ( 9). The advantage of working with transfer function descriptions, i.e. the
Hardy space setting, is that very detailed structural information about the state-space
representations is obtained without having to introduce unnecessary finite-dimension-
ality conditions from the beginning.

Our next task is therefore to transfer the splitting subspace geometry to the Hardy
space setting. To this end we need the following lemma.

LEMMA 7.1. [29]. Let Ul, u26 be such that H-(dUl) v H-(du.)= H, and let W
and W2 be the corresponding spectral factors. Then H-(du) and H+(du2) intersect
perpendicularly if and only if WfLW1 is an inner function.
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Proof. By Theorem 2.2 (ii), H-(dUl) and H+(du2) intersect perpendicularly if and
only if H-(du2)c H-(dul). But this is equivalent to wLwI being inner (Lemma
6.1).

As we have seen, each proper Markovian splitting subspace X (S, S) is character-
ized by a pair of generating processes (u, if); we have S= H-(du) and = H+(d).
Let (W, W) be the corresponding pair of spectral factors. The condition S H- is
equivalent to W being analytic, H+ to being coanalytic (Lemma 6.2), and the
perpendicular intersection of S and $ to

(7.1) K := ff’-LW

being inner (Lemma 7.1). The function K is called the structural function of X and
will play a major role in what follows. It corresponds to the scattering matrix in
Lax-Phillips scattering theory [23].

Now, by Corollary 3.2, we have X=Sx, i.e. X=H-(du)H-(df), and
therefore, in view of (6.23b), laX 2p(K). (Remember that I is unitary, and
therefore orthogonality is preserved.) Define (J) := (pJ) for any inner function
J. Then

(7.2)

Together with d W-td this yields a representation in terms of y. Consequently,
we have established the following Hardy space version of Theorem 3.1.

THEOREM 7.1. [28]. A subspace X is a proper Markovian splitting subspace if and
only if

(7.3) X=I_og(ff’-W)W-d
for some pair W, W) offull-rank spectralfactors such that Wis analytic, W is coanalytic,
and K := fie-Wis inner. The correspondenceX- W, if’) is one-one (modulo multiplica-
tion from the right by constant unitary matrices).

Instead applying Ia to X S+/- (Corollary 3.2), we have the symmetric rep-
resentation

(7.4) X=I_(K*)d
where e(j):= ’ppj for each conjugate inner function J. (A function J is conjugate
inner if its inverse J* is inner.) Consequently, since d ff’-td, we can replace (7.3)
by

(7.5) X=f_(W-Iff’)ff’-1d
in Theorem 7.1.

Which pairs of spectral factors W, W) correspond to minimal splitting subspaces ?
To answer this question we need to take a closer look at the classes of analytic and
coanalytic full-rank spectral factors.

By assumption, H- satisfies the conditions of Theorem 6.1 (i), and hence there
is a u_ 07/- such that

(7.6) H-(du_) H-

This is the (forward) innovation process of y. Let W_ denote the corresponding analytic
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spectral factor. Since dfi W_ d_, (6.12) yields Ilay(_ t)- xtaW_ for any row vector
a in Rm, and therefore applying 1 =lu_ to (7.6) we obtain

(7.7) span {xtaW_ < O, a "} 2

Such a function W_ is called outer [14], [18]. There is only one spectral factor with
this property. Consequently, we shall call W_ the outer (or minimum phase) spectral
factor.

All other analytic full-rank spectral factors have the property H-(du) H-, where
u is the corresponding process in - (Lemma 6.2), i.e. H-(du) H-(du_). Therefore,
Q :- W=LW is inner (Lemma 6.1) so that we have the inner-outer factorization

(7.8) W= W_Q.

To see this, use the following lemma.
LEMMA 7.2. Let W1 and W2 be full-rank spectral factors. Then

(7.9) W1W-L W2 W2.

Proof. Form W1W-/W- WE)( W1W-WE W)*. Since WE WE* W1W*, we see
that this is zero.

Likewise, Theorem 6.1 (ii) implies that there is a t+ + such that

(7.10) n+(d+)--n+.
This is the backward innovation process of y. The corresponding spectral factor W+
satisfies

(7.11) span {xta I/+ >-- 0, a ’} p
and is therefore called the conjugate outer spectral factor. In the same way as above,
we show that any coanalytic full-rank spectral factor W can be written

(7.12) W W/Q

where :=/ is conjugate inner. The factorizations (7.8) and (7.12) are unique
(modulo trivial coordinate transformations).

Consequently each proper Markovian splitting subspace is characterized by a
triplet (K, Q, Q*) consisting of the structural function K and the forward and backward
spectral inner factors Q and t*. These define three causal all-pass filters with the
following inputs and outputs.

(7.13a) .>

(7.13b)

We shall call (K, Q, (*) the inner triplet of X.
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Our question on minimality can now be answered in terms of certain coprimeness
conditions on these inner functions. Before turning to this, let us define a few concepts.
If P1 and P2 are inner functions, then so is P3 := PIP2; P1 is a left inner divisor of
P3(PIP3 for short) and P2 is a right inner divisor of P3(P21RP3)" (These notations will
also be used for conjugate inner functions.) Two inner functions are left (right) coprime
if they have no nontrivial (i.e. nonconstant) common left (right) inner divisor. If
and P2 are right (left) coprime, then there is no cancellation in the factorization
P P1P2* (P P*P2); we say that it is coprime. If there is such a factorization of P, it
is unique (modulo multiplications from the right (respectively the left) by a constant
unitary matrix) 14].

THEOREM 7.2. [29]. The proper Markovian splitting subspace X with inner triplet
(K, Q, *) is observable if and only if K and * are left coprime and constructible if
and only if K and Q are right coprime.

Proof. Let (u, iT) be the generating processes of X. Then the constructibility
condition $= H-v q+/- can be written H-(du)= H-(du_)v H-(df). Applying IS to
this, and using (6.23b), we obtain =(Q)v (K) which holds if and only if Q
and K are right coprime [18]. In the same way we see that the observability condition= H/v Sx is equivalent to the conjugate inner functions t and K* being right
coprime, which is the same as K and t* being left coprime.

The interplay between the past and the future of y can be described by the all-pass
filter

(7.14)

transforming the forward innovation process u_ into the backward innovation process
t+; it has the transfer function To := ff.L W_. This is not a causal all-pass filter, unless
H- and H/ intersect perpendicularly. For each proper Markovian splitting subspace
X with inner triplet (K, Q, Q*), the function To has the factorization

(7.15) To= QKQ*.

In view of Lemma 7.2, this follows by simple calculation, but it can also be seen by
putting the boxes in (7.13) in series, after having reversed (7.13b) and (7.13c). By
Theorem 7.2 and Corollary 4.1, X is minimal if and only if there is no cancellation
in (7.15), i.e. the factorizations T:= QK and T:- KQ* are coprime.

What has been established so far in this section holds under the assumption that
X is proper. Therefore, we may ask under what conditions at least all minimal splitting
subspaces are proper.

THEOREM 7.3. [28]. Set To := IYC’_Iw_, and let N- and N+ be given by (3.12).
Then the following statements are equivalent.

(i) All minimal splitting subspaces are proper.
(ii) Both N- and N+ are full range.
(iii) There are inner functions J, J2, J3, and J4 such that

(7.16) To JJ*2 J*3 J4.

Proof. (i)=>(iii)" The predictor space H//- is a minimal splitting subspace such
that Q= L Hence the second of the factorizations (7.16) follows from (7.15). In the
same way the first of relations (7.16) follows from the fact that H-// is a minimal
splitting subspace with Q= L (iii)=>(ii)" The first of relations (7.16) yields W_J2=
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W+J1. Since J1 is inner, the spectral factor W := W_J2 is analytic. Let u 0-//- be the
corresponding generating process. Since ff’_/W J is inner, H-(d/)c H-(du), i.e.
H/= H+(d+) H+(du). Moreover, since u -, H-(du) H- (Lemma 6.2), or,
equivalently, (H-)- = H+(du). Hence, N/ := H+ f’) (H-)- H/(du). Therefore, since
H/(du) is full range, then so is N/. The second relation (7.16) yields W_J*4 fie+J*3.
Here if" := ff’+J3* is a coanalytic spectral factor, and therefore the corresponding
satisfies H+(dff) H+, or, equivalently (H+)- H-(df). Also, I/’-LW_ J4 is inner,
and hence, by Lemma 6.1, H-(d)c H-. Consequently, N-:= H-f)(H+)+/- H-(d),
showing that N- is full range. (ii)(i)" Let X (S, S) be a minimal splitting subspace.
Then, from the proof of Theorem 3.4, we see that S c (N/) +/- and c (N-)+/-, i.e.
Sx N/ and - N-. Therefore, if N/ and N- are full range, then the same must
be true for S+/- and q+/-. Hence X is proper.

A unitary function To has the property (7.16) if and only if it is strictly noncyclic,
i.e. the orthogonal complement in of the range of the Hankel operator Hro" 2p 2p
defined by HTof PTof (where PZ denotes the orthogonal projection onto ) is
full range [14, p. 254]. Therefore, with a slight misuse of notation, we shall say that
the process y is strictly noncyclic if the conditions of Theorem 7.3 hold. For example,
a scalar process y with spectral density (ito)= (1 +to2)-3/2 will not satisfy these
conditions; in this case H//-= H- and H-//= H/ [10, p. 99]. However, it can be
shown that all processes with rational spectral density are strictly noncyclic.

COROLLARY 7.1. Suppose that y is strictly noncyclic. Then the predictor spaces H+l-

andH-//, defined by (3.13), are proper. Let (K_, Q_, O*_) and (K+, Q+, O*+) respectively
be their inner triplets. Then Q_ I and Q/ I; the other inner functions are the unique
solutions of the coprime factorizations

(7.17) To= O_K_= K/Q*+.

Proof. The factorization (7.17) was derived in the first part of the proof of Theorem
7.3. Since H//- and H-// are minimal, the coprimeness follows from Theorem 7.2
and Corollary 4.1.

Now, in 3, we saw that H//----(H-, (N-)I), and hence its generating processes
are (u_, tT_), where u_ is the innovation process of y and

_
/ is determined,

through Theorem 6.1, by

(7.18) H+ dfft_) N-) +/-.

The analytic spectral factor is the outer spectral factor W_, and the coanalytic one is
if/’_ := if’+ (_. In the same way, H-// has generating processes (u/, +), where u/ //-

is defined by

(7.19) H-(du+)=(N+)-
and t+ is the backward innovation of y, and its spectral factors are W+ := W_Q+ and
W/, the conjugate outer spectral factor.

Next, we shall take a closer look at the minimal Markovian splitting subspaces
of a strictly noncyclic process y.

THEOREM 7.4. [31]. Suppose that y is strictly noncyclic. Let X.--.(S, S) be a
Markovian splitting subspace. Then the following conditions are equivalent.

X is minimal.
(ii) X is observable and S (N+)-.
(iii) X is constructible and c(N-)-.
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The proof of this theorem6, which can be found in [31] and will not be repeated
here, is based on the observation that the structural functions of any two X satisfying
(ii) or (iii) have the same invariant factors. The invariant factors of a p p inner
function K are scalar inner functions kl, k2,’", kp defined in the following way. Set
3’0 1, and, for 1, 2, , p, define yi to be the greatest common inner divisor of all

minors of K. Then set ki := yi/y- for 1, 2, , p. Clearly these functions are
inner, for Yi-1 divides y. (Two inner functions with the same invariant factors are
called quasi-equivalent 14].) Consequently we have the following important corollary,
the significance of which will become evident in 10.

THEOREM 7.5. [31]. Suppose that y is strictly noncyclic. Let K1 and K2 be the
structuralfunctions of two minimal Markovian splitting subspaces. Then K1 and K2 have
the same invariant factors.

To illustrate this result, let us consider the following example [31]. Let y be a
two-dimensional process with the rational spectral density

1 [ 17-2s2 -(s+ 1)(s-2)](s)=(s2-1)(s2-4) -(s- 1)(s+2) 4-s2

Then it can be seen that the structural function of H+/- is

s-1 [s-l.2 1.6 ]K-(s)=(s+ 1)(s +2) 1.6 s+ 1.2

and that the one of H-/+ is

s -1 [s-70/37 24/37 ]K/(s)=(s+ 1)(s+2) 24/37 s+70/37

These functions look quite different, but they have the same invariant factors, namely

s-1 (s- 1)(s-2)
k(s)- and k2(s)

s+l (s+ 1)(s+2)’
and are therefore quasi-equivalent.

In the scalar case (m 1), quasi-equivalence reduces to equality.
COROILArV 7.2. Suppose that y is scalar and strictly noncyclic. Then all minimal

Markovian splitting subspaces have the same structural function.
Conditions (ii) and (iii) of Theorem 7.4 suggest the following definitions for

minimality of spectral factors [41]. An analytic full-rank spectral factor W is minimal
if the corresponding ua//- satisfies the condition H-(du)c(N+)+/-; a coanalytic
full-rank spectral factor if" is minimal if its a 0-//+ satisfies H+(d)c (N-)+/-. These
definitions are justified by the following result.

COROLIAr’ 7.3. Let y be strictly noncyclic. Then there is a one-one correspondence
between the class of minimal Markovian splitting subspaces X and the class of minimal
analytic (coanalytic) spectral factors W[ W] (modulo multiplication from the right by
constant unitary matrices). The correspondence X W IX W] is that of Theorem 7.1.

Proof In view of Theorem 7.4 and the observability condition = H+v S+/-

(Theorem 4.1), there is a one-one correspondence between minimal X---(S, $) and
u - such that S= H-(du)= (N+)", i.e. to minimal analytic spectral factors. Here
the correspondence u S is by Theorem 6.1 and is hence modulo the transformations
described there. The proof of the symmetric statement is analogous. U

Theorem 7.4 was first stated in [28], but there is a nontrivial gap in the proof. The same incomplete
argument was used in [41], [43].
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Note, however, that a Markovian splitting subspace X need not be minimal even
if both its analytic and coanalytic spectral factors are minimal; the only thing we can
say in this case is that X c H[], the frame space.

In 8, we show that, if W[ W] is rational, it is minimal if and only if its degree
is minimal. This is the concept of minimality mentioned in 1.

The scalar version of the following result is due to Ruckebusch [41].
PROPOSITION 7.2. [41], [28]. Suppose that y is strictly noncyclic. Then (i) W:= W_Q

is a minimal analytic spectralfactor ifand only ifQILQ+; and (ii) W:= W/Q is a minimal
coanalytic spectral factor if and only if

Proof. Let u /- be the Wiener process of W. Then, by definition, W is minimal
if and only if H-(du)c H-(du+), which is equivalent to P:= W-W+ being inner
(Lemma 6.1). Now, in view of Lemma 7.2, Q/:= WW+ wsww-W+= QP.
Therefore, W is minimal if and only if QILQ+. This establishes (i); (ii) is proved in
the same way.

Now, by Corollary 7.3 and Proposition 7.2, there is a one-one correspondence
(modulo trivial transformations) between minimal Markovian splitting subspaces X
and left inner divisors Q of Q/. This provides a parametrization {XQ; QIQ+} of the
class of minimal Markovian splitting subspaces which introduces a natural partial
ordering of this class, under which XQ, < Xo2 if and only if QIIQ2. Here there are a
minimal element XI H+/- and a maximal element Xo+-- H-/+. Obviously this is the
lattice structure described in the end of 4. (A similar parameterization can of course
be obtained in terms of the conjugate inner functions t such that

Given a left inner divisor Q of Q/, how do we determine Xo? The inner triplet
(K, Q, t)*) can be determined from the factorization (7.15) as described in the following
lemma.

LEMMA 7.3. Suppose y is strictly noncyclic. Let Q be a left inner divisor of Q+, and
define T := To Q. Then, T has a unique modulo constant unitaryfactors) coprimefactoriz-
ation

(7.20) T QK

where K is inner, Q is conjugate inner and K and Q* are left coprime. Moreover, K, Q, Q*)
is the inner triplet of Xo.

Proof Let (K, Q, Q) be the inner triplet of XQ. Then (7.20) follows from (7.15).
Since Xo is observable, K and Q* are left coprime (Theorem 7.2). As pointed out
above, the coprime factorization is unique, in the sense described in the lemma [14].
Since we do not distinguish between equivalent inner triplets (differing only by constant
unitary factors), the lemma follows. [3

(For the relationship between the factorization (7.20) and the corresponding
Hankel operators, the reader is referred to [30].) Consequently, in view of Theorem
7.1, we have the following representation theorem for the class of minimal Markovian
splitting subspaces.

THEOREM 7.6. Suppose that y is strictly noncyclic. Then a subspace X of H is a
minimal Markovian splitting subspace if and only if

(7.21) X=f_oo(K)O*d_
for some Q]Q+, where K is the inner factor in the coprime factorization (7.20) and u_

is the innovation process of y.
An alternative formulation of this theorem goes as follows. (Here P denotes

orthogonal projection onto the subspace r and/e the closure of pe.)
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THEOREM 7.7. [28]. Suppose that y is strictly noncyclic. Then a subspace X ofH is
a minimal Markovian splitting subspace if and only if

It:X3 Q 2(7.22) X= [P (pTo)] dfi_

for some left inner divisor Q of Q/.
Proof. We need to show that XQ is given by (7.22). Let u - be the forward

generating process of XQ, and let W be the corresponding analytic spectral factor.
Then W-Iw_ Q*. Now, in view of Corollary 4.2 and (7.10),

(7.23) Xo

By (6.23b), H-(du) and H+(dfi+) correspond, under the isomorphism Ia, to 2pQ.
and To respectively, and therefore (7.22) follows from 7.23).

Of course, there are also backward versions of Theorems 7.6 and 7.7 in which
plays the role of Q.

8. Stochastic realizations: the finite-dimensional case.
PROPOSITION 8.1. Let X be a proper Markovian splitting subspace. Then X is

finite-dimensional if and only if its structural function K is rational.
Proof. Let (u, fi) be the generating processes of X. Then, by Corollary 3.1, X

En-au)H+ dfi ), the isomorphic image of which under IS is pep( K ). Consequently,
X is isomorphic to the range of the Hankel operator HK" 2p- p defined by Hrf
PfK, which, by [14, Thm. 3.8, p. 256], is finite-dimensional if and only if K is
rational. [3

Now, let X be a finite-dimensional, but not necessarily minimal, Markovian
splitting subspace with structural function K and generating processes (u, fi). Then K
is rational, and there is a coprime factorization

(8.1) K(s) (s)D(s)-’
where D and D are real invertible p x p polynomial matrices which are right coprime,
i.e. any common right divisor is unimodular7 [14], [47]. The matrix polynomial D and
D are unique (modulo a common unimodular factor). To maintain the symmetry
between the past and the future in our presentation we also note that

(8.2) K*(s) D(s)D(s)-’.
The following result shows that (K), the isomorphic image of X under Ia, consists
of rational functions which are strictly proper, i.e., in each component, the numerator
polynomial is of lower degree than the denominator polynomial.

THEOREM 8.1. [29]. Let the inner function K have the polynomial-matrix-fraction
representation (8.1). Then

(8.3) (K) {gD-[g IP[s] gD- strictly proper}

where RP[s] is the vector space ofp-dimensional row vectors of polynomials.
For the proof we need the following lemma.
LEMMA 8.1. If K is rational, the space (K) consists of strictly proper rational

functions.
Proof Set k:=det K. Then kc pK [14, p. 187], and consequently (K)c

(kI). Therefore, it is no restriction to study the scalar case p 1. In fact, if K is

A matrix polynomial is unimodular if it has a polynomial inverse.
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rational, then so is k. So, if we can prove that the scalar (k) consists of rational
functions, the same holds true for (kI) and thus for (K). A scalar rational inner
function k is a finite Blaschke product [14], [18], i.e. a finite product of coprime
functions ki(s):= (s-si),(s+ g)-,, where, for each i, s is a complex number, g its
complex conjugate, and vi an integer. Then 2k fq iaEk, and hence (k)= Vi(k),
so it is enough to show that any (ki) consists of rational functions. To this end, we
quote from 10, p. 34] that

(8.4) e(s)
1 s,

s+g +g_l
j=0,1,2,.

is an orthogonal basis in 2. However, ejki ej/,, and hence 2ki is spanned by
{e,, e,+,,...}. Therefore, (k) is the span of {eo, el,’", e,_,}, which is a space of
strictly proper rational functions. Consequently, the same is true for (K), as
required. [q

Proof of Theorem 8.1. It is not hard to show that

(8.5) (K {f ,1fK* ,2p}
[18, p. 75]. In view of (8.2), this may be written

(8.6) (g)-- {gO-l 2plgD- 2.
Since gD-l (K) is rational (Lemma 8.1), then so is g. Any rational g such that
gD-l gEp and gE3-1 2p must be analytic in the whole complex plane, and hence
g RP[s]. By Lemma 8.1, gD-1 is strictly proper. [q

COROLLARY 8.1. [29]. Let X be a finite-dimensional Markovian splitting subspace
with structuralfunction (8.1). Then the corresponding spectralfactors Wand Ware strictly
proper rational. In fact,

(8.7a) W(s)- S(s)D(s)-1,

(8.7b) ff’(s) N(s)ff)(s)-
for some m p-matrix polynomial N.

Proof. By the definition (7.1), W ff’K (Lemma 7.2), i.e. if" WK*, and there-
fore, in view of (8.5) and the fact that W is analytic and W is coanalytic, the rows of
W belong to (K). Hence, by Theorem 8.1, W is strictly proper rational and has a
representation (8.7a). However, (7.1) and (8.1) yield WD WD, which is precisely N.
Hence (8.7b) follows. Since W is square-integrable, it must be strictly proper. 0

It is important to note that the factorization (8.7) need not be coprime. The
significance of this will be made clear below.

We proceed to construct a basis in X. To this end, we shall choose the arbitrary
D

unimodular factor in (8.1) so that (i) if n is the degree of the ith column of r3], then
nl

__
n2.t_... + np n, where n is the common degree of det D and det D; and (ii) D

and D are column proper, i.e. the highest-degree coefficient matrices Dh and Dh are
full rank; here Dh (Dh) is the constant matrix whose ith column consists of the
coefficients of s n’ in the ith column of D (D). It is always possible to choose D and
D in this way, and there are procedures to achieve it [13], [20], [47]. With this
representation, we have

(8.8a)

(8.8b)

D(s) D{diag {s",, s"2, s"p}+ DoII(s)},

D(s) D{diag {s",, s"2,..., s"p}+ DoII(s)}

where diag {s",, s", , s% } is the p p matrix with s",, s", , s% on the diagonal



840 ANDERS LINDQUIST AND GIORGIO PICCI

and zeros elsewhere, the n p-matrix polynomial rl(s) is the transpose of

(8.9) II(s)’ := sn2-, ., s, 1

S rip-l, S, 1

(where empty spaces are zeros), and Do and Do are constant p n matrices.
LEMaA 8.2. [29]. The n rows of the n p matrix ll(s)D(s)- of rational functions

form a basis in (K).
Proof. The rows of IID-1 are clearly linearly independent. It remains to show

that they span (K). In view of Theorem 8.1, this amounts to showing that gD-1 is
strictly proper for precisely those g RP[s] which can be written all(s) for some row
vector aR", i.e. for those gP[s] with deg gi< ni for i= 1,2,... ,p. By Cramer’s
rule, [D(s) -1] )i+JA

ij (-1, j(s)/A(s), where A:=detD and A is the determinant of
the matrix obtained by deleting row j and column in D. Hence, A is a sum of
products of one element from each of all columns of D except the ith, and consequently
deg A =< n- ni. Since Dh is full rank, for each i, there is a j such that equality holds.
In fact, in each column of D there is a row j such that deleting row j and column
in Dh leaves a nonsingular matrix. Hence in forming Ai there is at least one product
that contains only factors of highest degree. Since deg A n, gD- is therefore strictly
proper if and only if deg g < n for 1, 2,. , p as required.

THEOREM 8.2. [29]. Let X be afinite-dimensional Markovian splitting subspace with
structural function (8.1) and spectral factors (8.7). Then, for each , the components
of the random vector

(8.10) x(t)=Ioe’O"II(io)N(io)-d
form a basis in UtX. Moreover,

(8.11) y(t) Cx(t),

where the matrix C is uniquely determined by identifying coefficients of like power of s in

(8.12) N(s)= CII(s).

The process x also has the representations

(8.13a) x(t)=I_oe’’tH(io)D(io)-ld,
(8.13b) x(t) I ei’tII(iw)(io)- d

where u, ) are the generating processes of X.
Proof In view of Lemma 8.2, it is immediately clear from (7.2) that

{x(0), x(0),..., x,(0)}, as defined by (8.13a), is a basis in X. Then, it follows from
(6.18) that {Xl(t),x2(t),’’", xn(t)} is a basis in UtX for each t. From (6.16) and
(8.7a) we have that D- dt N- d33, and hence (8.10) and (8.13a) are equivalent. The
equivalence of (8.13a) and (8.13b) follows from dt= K dt and (8.1). In the proof of
Corollary 8.1, we saw that the rows of W belong to (K). Therefore, by Lemma 8.2,
there is an m n matrix C such that W(s)- CII(s)D(s)-l; hence, in view of (8.7a),
(8.12) holds. It is easy to see that C is uniquely determined by this relation. Inserting
this expression for W in (6.12)+(6.17) and observing (8.13a) we have (8.11).
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In particular, it follows from Theorem 8.2 that

(8.14) UtX {ax(

which is precisely (1.4). Hence x is a state process of X.
It remains to find two Markovian representations for the state process x, a forward

one generated by u and a backward one driven by ti. To this end, we define the n n
matrices A and A and the n p matrices B and B as

a:=J-II(O)Do, a:=-J+n(O)Do,
(8.15)

B := II(O)D’ / := II(O)E3
Here J is the block diagonal matrix

(8.16) J=diag{J,,,J,,... ,J,,}
where J is the k k shift matrix with ones on the superdiagonal and zeros elsewhere.
The pair [J, II(0)] is known as the Brunovsky canonical form, and {n, n2," ", rip} are
known as its indices.

THEOREM 8.3. Let {x(t); R} be the stateprocess (8.10) ofthe Markovian splitting
subspace

(8.17) X {ax(O)la
and let A, B, A, and B be defined by (8.15). Then A and A have the same eigenvalues,
all located in the open left half plane, and [B, AB, AB, .] and [, , 2,...]
have full rank. Moreover, x has the two representations

(8.18a) x(t) f-oo ea’-)B du(o’),

(8.18b) x(t) f-oo e’(-’)B da(tr)

where u, ) are the generating processes ofX and the integrals are defined in quadratic
mean.

Proof A simple calculation yields (sI-J)II(s) II(0) diag {s",, s"2,. , s"p}, and
consequently (sI A)II(s) BD(s), i.e.

(8.19) H(s)D(s)-’ (sI- A)-’B.
It is well known and easy to show that [B, AB, AZB, .] has full rank, and therefore
(8.19) has degree n [20], [47]. Consequently det D(s) and det (81-A) have the same
zeros, i.e. the eigenvalues of A and the zeros of det D(s) coincide. In the same way,
we see that

(8.20) H(S)D(S)-1= (sI +

and therefore, since [B-, /, fifl/,...] is full rank [20], [47], the eigenvalues of are
the zeros of det D(-s). In view of (8.1), det K det D/det D, which is a finite Blaschke
product [14], [18]. Such a function has all its poles in the open left half plane, and
the zeros of its numerator polynomial are related to those of its denominator polynomial
by a simple change of sign. Consequently, the zeros ofdet D(s) and det D(-s) coincide,
i.e. A and A have the same eigenvalues, and they are located in the open left half
plane. The rows of (8.19) belong to (Lemma 8.2), and the inverse Fourier transform
of (itoI-A)-B is eA’B for >=0 and zero otherwise. Consequently, in view of (6.7)
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and (6.18), (8.18a) follows from (8.13a). In the same way, (8.18b) follows from (8.13b).
In fact, (iwI +,)-1 has inverse Fourier transform e-at for t-< 0 and zero otherwise,
its rows belonging to p.

Therefore, given a finite-dimensional Markovian splitting subspace X with generat-
ing processes (u, t), there are a forward stochastic realization

Ef dx Ax dt + B du,
(8.21a)

y= Cx

and a backward one ,. dx x dt + ; dft,
(8.21b)

[y= Cx

such that (8.17) holds; this follows from (8.11) and (8.18). We shall call them the
standard (forward and backward) realizations of X. The fact that is forward and
is backward is seen from (8.18), but it can also be illustrated by (3.6) rewritten as

(8.22) H= H- da O)Xq) H+ du ),

i.e. the components of the state x(O) are orthogonal to the future increments of u and
to the past increments of iT.

From Theorem 8.3 it also follows that E is always reachable and E is always
controllable, with these terms defined as in 1. The circumstances under which E is
observable and E is constructible is described by the following theorem.

THEOREM 8.4. Let X be a finite-dimensional Markovian splitting subspace with
spectralfactors W, W) and standard realizations (8.21). Then, W is the transferfunction
of ,, and the following conditions are equivalent.

(i) X is observable.
(ii) E is observable.
(iii) Thefactorization W ND- ofCorollary 8.1 is coprime, i.e. N and D are right

coprime.
Symmetrically, W is the transfer function of E and the following conditions are

equivalent.
(iv) X is constructible.
(v) E is constructible.
(vi) The factorization IY= Nff)-1 is coprime.
Proof We shall only consider the first part. The second follows by symmetry. In

view of (8.12), (8.19) and (8.7a), we have

(8.23) W(s)= C(sI-A)-IB

and consequently W is the transfer function of E. Then, the equivalence of (ii) and
(iii) follows from [14, p. 41] or [20, p. 439], so it only remains to show that (i) and
(ii) are equivalent. With $ H-(du), it follows from (8.17a) and (8.11) that

(8.24) ESay( t) clC eatx(O)
for any row vector a R’, and consequently

(8.25) ff, SH+=span {aCeat’, t>O, a

By Corollary 4.2, the left member of (8.25) equals X if and only if X is observable.
On the other hand, E is observable if and only if the range of {ea’tc’; t-->0} is dense
in " [22]. Therefore, it follows from (8.17) that (i) and (ii) are equivalent, lq
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We shall say that a finite-dimensional stochastic realization is minimal if there is
no other realization with a state process x of smaller dimension. Together with Theorem
8.2, the following result implies that E and E are minimal if and only if X is minimal.

THEOREM 8.5. A finite-dimensional splitting subspace is minimal if and only if its
dimension is minimal.

Proof. Let X be a splitting subspace. First, assume that there is a splitting subspace
X1 of smaller dimension than X. By Corollary 3.5, X contains a minimal splitting
subspace X2. Since dim X_-<dim X < dim X, Theorem 4.2 implies that X is non-
minimal. Second, suppose that X is not minimal. Then it contains a minimal splitting
subspace as a proper subspace (Corollary 3.5), and thus X cannot have minimal
dimension. 0

By Theorem 8.4 and Corollary 4.1, it is not enough for the stochastic realization
E to be both reachable and observable to be minimal as is the case in deterministic
realization theory; for this to happen the backward realization E must be constructible
also, or, alternatively, the analytic spectral factor W must be minimal in the sense
described in 7. In the finite-dimensional case under discussion, minimality of spectral
factors can be related to their degrees, as the following result shows.

COROLLARY 8.2. Let X be a finite-dimensional Markovian splitting subspace with
spectral factors W, W). Then

(8.26) dim X deg W

with equality if and only ifX is observable, and

(8.27) dim X >_- deg W

with equality if and only if X is constructible. Moreover, W[ W] is minimal if and only
if its degree is as small as possible.

Proof. By Theorem 8.2, dim X equals n, the degree of det D. But, since W ND-deg W-<_ n, with equality if and only if N and D are right coprime, which, in view of
Theorem 8.4, holds if and only if X is observable. Now, suppose that X is observable.
Then, deg W dim X. Since W is minimal if and only if X is minimal (Corollary 7.4)
and X is minimal if and only if dim X is minimal (Theorem 8.5), W is minimal if
and only if deg W is minimal. The proofs of the statements concerning W are
analogous. 0

In view of Theorem 7.4, we have also established the following result.
COROLLARY 8.3. Let X be a finite-dimensional Markovian splitting subspace with

spectral factors (W, W) and standard realizations (8.21). Then the following conditions
are equivalent.

X is minimal.
(ii) E is minimal.
(iii) E is observable and W is minimal.
(iv) E is minimal.
(v) ,E is constructible and W is minimal.
(vi) E is observable and E is constructible.
As an application of Theorem 8.4, let us give an alternative characterization of

the class of minimal Markovian splitting subspaces in the case that y is a scalar process.
Then, N, D, and D are scalar and D(s)= D(-s), for K is a finite scalar Blaschke
product. Minimality of X requires that both Condition (iii) and Condition (vi) in
Theorem 8.4 are satisfied, i.e. N(s) and O(s):= D(s)D(-s) are coprime. This is clearly
equivalent to coprimeness of 0(s):= N(s)N(-s) and O(s). Therefore, we can charac-
terize the class of minimal Markovian splitting subspaces in the following way.
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Write the rational density of y as = q/0 where q and q are coprime
polynomials. For each polynomial solution N of

(8.28) N(s)N(-s) q(s)

form

(8.29) X N(s) deg g < deg d33

where deg g < n means that g is a polynomial of degree less than n. It follows from
(8.10), (8.17), and what has been said above that this procedure produces precisely
the minimal splitting subspaces of y.

9. Stochastic realizations: the general ease. In 8, given a Markovian splitting
subspace X of finite dimension n, we constructed a state process {x(t); e } taking
values in " and forward and backward ditterential equation representations for it.
The main point of this construction is a convenient choice of basis in X. In this basis
the matrix representations eA and ea ofthe Markov semigroups { U(X)*} and { U(X)}
can be found almost by inspection from the matrix fraction representation (8.1) of the
structural function K. This immediately leads to the forward and backward realizations
(8.21) of the process y in the familiar state space form. So, in the finite-dimensional
case, the passage from any solution ofthe abstract realization problem, i.e. a Markovian
splitting subspace X---(S, S) and a corresponding Markov semigroup { U,(X); R},
is merely a question of coordinatization.

On the other hand, the theory developed up to 8 is absolutely independent of
any restrictions of the dimension of X. The natural question to ask at this point is thus
the following. Given a Markovian splitting subspace of possibly infinite dimensions,
when is it possible to obtain differential equations representations for {y(t); R} of
the type (1.7) and (1.9) ?

This is basically a representation problem in which one seeks a global description
in terms of local or infinitesimal data. As such it has no meaningful solution in general.
Obtaining differential equation representations for a process with nonrational spectrum
necessarily involves restrictions of a technical nature (essentially smoothness condi-
tions) on the underlying spectral factors. The elucidation of these conditions is one
ofthe goals ofthis section. Note that there are several possible mathematical frameworks
for infinite-dimensional Markov processes as solutions of stochastic differential
equations (e.g. [17] and [49]), all of which coincide when specialized to the finite-
dimensional case. Here we shall work in a setting which looks most natural to us, but
other approaches are possible.

The problem dealt with in this section might seem relevant only from a purely
theoretical point of view. However, we remark that many engineering problems involve
random processes with nonrational spectra, e.g. turbulence, wave spectra, gyroscopic
noise, etc. In practical problems, these spectra must be approximated, and finite-
dimensional approximate realizations must be constructed. Understanding the exact
structure of the infinite-dimensional state space models for these processes is probably
the best way to gain insight into the approximation process and to design efficient
finite-dimensional filters.

An important feature of the construction in 8 is that x(0) is a basis in X so that
the state space ", i.e. the space in which the state process {x(t); } takes values,
and the splitting subspace X have the same dimension (and are therefore isomorphic).
Choosing the state space in this way insures that the forward realization is reachable
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and the backward realization E is controllable. Of course we could have achieved the
same thing by taking as the state space any vector space f isomorphic to X such as,
for example, an n-dimensional vector space of polynomials in the style of Fuhrmann
[14], thereby obtaining a coordinate-free representation.

In this section we shall assume that X is a possibly infinite-dimensional (not
necessarily minimal) proper Markovian splitting subspace with spectral factors W, W)
and generating processes (u, t). As before, it is reasonable to take as the state space
a Hilbert space isomorphic to X. In this paper, we shall choose := I*X as the state
space of the forward realization and := I*aX as the state space in the backward one.
then, by (6.7), (7.2) and (7.4), = *9g(K) and f=*’(K*) where K is the
structural function of X.

As explained in 5, the forward realization should, in an abstract sense, be a
stochastic dynamical system with input u and semigroup { U,(X)*; >=0}. With our
present choice of state space we should therefore take

(9.1) eA’:=I*Ut(X)*I.
Of course, as should be, {eA’;t 0} is a strongly continuous contraction semigroup
on (Theorem 5.2), and the infinitesimal generator A is in general an unbounded
operator with domain @(A) dense in .

In the same way, the backward realization should have input t and a semigroup
isomorphic to { U,(X);t >= 0}. We take

(9.2) e’: I*aU,(X)Ia

defining a strongly continuous contraction semigroup on the state space of the
backward realization.

It remains to determine maps B"P -+ and C" a_+, for the forward realization
and /:P and t" a_+,- for the backward realization having the appropriate
properties. We would like these maps to be bounded.

We begin with the forward realization. Let s X be arbitrary, and let f be
the corresponding point in the state space, i.e. sc I. Then

(9.3) U,=I_oof(-cr) du(cr+t)=I_of(t-cr)du(r).
But, f 9g(K)c , and therefore f vanishes on negative real line so that

(9.4) U’sC f f(t-cr) du(o’).

Consequently, since S H-(du), (5.3a) yields

(9.5) U’(X) sc I0oo f(t-cr) du(r).

It follows from (9.1) that U,(X):=/ eA*f, and hence

(9.6) (ea*’f)(r)={fo(t+r) frr->0’forr<0.

Therefore, whenever defined, A*f is the derivative of f in the ,2 sense [3].
Now, following a standard construction [3], define Lr to be the domain @(A*)

of the unbounded operator A* equipped with the graph topology

(9.7) (f, g) (f, g} + (A’f, A’f}
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where now (f, g):= o f(t)g(t)’ dt is the inner product in . Since an infinitesimal
generator such as A* is a closed operator with a dense domain [48], Y is a Hilbert
space which is densely embedded in T. The topology of Y is stronger than that of ,
and therefore all continuous linear functionals on are continuous on Y as well.
Consequently, we can think of the dual space * as embedded in the dual space Y*.
Then, identifying * with , we have

(9.8)

where L is dense in which in turn is dense in *. We shall write (f, f*) to denote
the value of the functional f** evaluated at f Lr (or, by reflexivity, the value at

f* of f regarded as a functional on Y*). Clearly, the bilinear form (f, f*) coincides
with the inner product (f, f*) whenever f* . Since A*f is the derivative of f, 2 is
a subspace of the Sobolev space Hi(R+), and * is a space of distributions [3].

Next, define D:- to be the differentiation operator on . Then Df- A*f for
all f Z, but, since IlDfll <-II/ll, O is a continuous map. Its adjoint D*:-* is
the extension of A to T, because (f, D*g)=(A*f g). We collect some well-known
properties of D in the following lemma.

LEMMA 9.1. The map (1-D):2 f is bijective, and it has a bounded inverse
I D)-

_ . Moreover,

(9.9) fll --< I1( I D)fll = _-< 2 fll .
Proof Since {Ut(X); t_>0} is a strongly continuous contraction semigroup

(Theorem 5.2), then so is {eA*’; t-->0}. Consequently, D is dissipative, i.e. (Df, f)<-_O
for allf Lr, and (I- D) maps 3f onto f [48, p. 250]. The dissipative property implies
that

(9.1 O) I1( I D)/II = e fl] = + Dill =
and therefore (I- D) is also injective. Hence, (I- D)-1" is defined on all of ,
and, due to (9.10), I1(I-D)- gll <- Ilgll, i.e. (I-D)-1 is a bounded map. The first of
inequalities (9.9) is precisely (9.10), whereas the second follows from the inequality
(a b)2 <_- 2(a2 + b2). [q

We shall construct a shift realization much along the lines of infinite-dimensional
deterministic realization theory [5], [6], [14], [15], [19]. Note, however, that, in
comparison with this work, our set-up has been transposed. This is necessary in order
to obtain the appropriate relation between observability (constructibility) of X and
its standard forward (backward) realization, as we shall see below.

Let fe . Since is a bona fide function space, we can evaluate f at each point,
and consequently, in view of (9.6),

(9.11) f( t) eA*tf)(O).
Since is a subspace of the Sobolev space Hi(R+) the evaluation operator is bounded
[3], [16]. However, we want it defined on o, and for this we need the operator (I-D)
of Lemma 9.1. Since A* commutes with eA*’, then so does (1-D). Therefore, (9.11)
yields

(9.12) f(t) [(I D)- eA*’(I D)f](0).

Now, recalling that (I-D)-1 maps onto ( (Lemma 9.1),

(9.13) B*g [(!- D)-lg](0)

defines a bounded map B* -P. Let B:P- be its adjoint. Then, (9.12) may be
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written

(9.14) f(t)= B*ea*t(I-D)f,
and therefore, if ek is the kth unit axis vector in fiP,

(9.15) fk(t)=(B*ea*t(I--D)f, ek)ap=((I--D)f, eatBek), k= 1,2,...,p.

Together, (9.4) and (9.15) yield, for each s/Lr, the representation

(9.16) U,= (g, eA(t-)Bek)dUk(tr)
=l

where g (I-D)I*. It can be shown that if the structural function K is analytic in
some strip -a < Re (s)<=0 of the complex plane, the integral

(9.17) x(t) [’ eA(t-)ndu(o’)
d-

is well defined [32], and hence it defines an -valued state process {x(t); fi}, i.e. a
Hilbert-space-valued process with nuclear covariance operator [16]. If so, (9.16) can
be written

(9.18) Uts= (g, x( t)).
If the integral (9.17) is not well defined, we can interpret the state process {x(t); fit}
as a generalized stochastic process in the sense of [17], in which case (9.18) is merely
shorthand for (9.16), rather than a bona fide inner product.

Note that, when g varies over ,f ranges over (Lemma 9.1), and hence s ranges
over IuLr which is dense in X. Consequently,

(9.19) X cl {(g, x(O))lg }

where cl stands for closure (in the topology of H). This should be compared with
(8.17) in the finite-dimensional case, of which it is a generalization: recall that the
state space fin corresponds to here.

It is important to note that we must take closure in (9.19). This means that processes
with components of type { Uts; fi} can be represented as outputs of a stochastic
dynamical system with state process {x(t); fi} if and only if s /:, which is only
a dense subset of X. Therefore, in particular, we must have

(9.20) yk(O) Iu for k= 1, 2,..., m

in order to have y as an output. This condition can be characterized in the following
ways.

PROPOSITION 9.1. Let X be a proper Markovian splitting subspace with analytic
spectralfactor W. Let w denote the inverse Fourier transform ofWand F the infinitesimal
generator of { Ut(X); >= 0}. Then, the following conditions are equivalent to (9.20).

(i) yk(O) (F) for k= 1, 2,..., m.
(ii) The rows w, w.,. ., w,, of w belong to .
(iii) The rows of ito W(ito)- N belong to p for some constant m p matrix N.
Proof. First note that, by construction, (F)= IuLr, and therefore (9.20) and (i)

are the same. Since/ Ia;, it follows from (6.12)+(6.17) that

(9.21) Wk= I*yk(O) for k= 1,2,..., m.

Hence the equivalence of (i) and (ii) is immediate; that of (ii) and (iii) follows from
[23, Lemma 3.1]. l-]
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If the conditions of Proposition 9.1 are satisfied, the inner products

(9.22) (Cg)k=((I--D)Wk, g), k=l,2,...,m

are well defined, and, they define a bounded operator C"-P such that

(9.23) y(t) I Cea(’-’Bdu(o’),

as can be seen from (9.16) and (9.21). If the integral (9.17) is well defined, this may
be written

(9.24) y(t) Cx(t);

otherwise we may interpret (9.24) in the generalized sense mentioned above, i.e. simply
as (9.23). We shall call (9.23) the standard forward realization of X.

How natural are the conditions of Proposition 9.1? For any (forward) stochastic
realization

dx Ax dt + B du,
(9.25)

y Cx

with x a strong solution, we must have

(9.26) E-(a’a[y(h)- y(O)]= E-(aaCAx(t) dt

for any row vector a N and h-> 0. Using (5.3a), it is easy to see that this implies
Ill U(X)- I]y(0)l <- kh and hence, as in [33], Condition (i) of Proposition 9.1, provid-
ing a justification for this condition. However, it should be noted that, even if (9.17)
is well defined, it is not automatically true that x is a strong solution of the stochastic
differential equation in (9.25) [8].

Next, we shall investigate the systems-theoretical properties of the realization
(9.23). Let us begin with reachability. Recall that (9.23) is reachable if 1 ,o ker B* e*
0 [14]. But, in view of (9.14), B* e*g 0 for all _->0 if and only iff:=(I-D)-g is
identically zero, i.e. if and only if g 0. Hence, (9.23) is reachable.

The realization (9.23) is said to be observable if C?_okerCeA=0 [14]. To
determine if this holds, form

(9.27) (CeAtg)k ((I D)Wk, eAtg) ((I O) eA*Wk, g)
A*twhere we have used the fact that D and e commute. Define the vector space

(9.28) J//:- span {eA*Wk >-- O, k 1, 2, , m}.

From (9.27) it follows then that (9.23) is observable if and only if (I-D) is dense
in . However, in view of (9.9), this is equal to being dense in Lr (in Lr topology).

On the other hand, X---(S, S) is an observable splitting subspace if and only if
the vector space

(9.29) M := span {ESyk(t); -->_ 0, k 1, 2,. ., m}

is dense in X (Corollary 4.3). In view of Theorem 5.2, ESyk(t) U(X)yk(O), and
therefore, by (9.1) and (9.21), M I,.

Now, suppose that (9.23) is observable. Then is dense in Lr and hence in
(weaker topology). Consequently, M is dense in X, i.e. X is observable. Next, suppose
that X is observable. Then M is dense in X, and hence is dense in . Therefore,
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we have the situation

(9.30) Lr

where the vector space is dense in the Hilbert space . Since the topology of Lr is
stronger than that of , (9.30) does not automatically imply that is dense in Lr as
required; Lr is said to be normal if this favorable situation occurs [3, p. 101]. However,
it can be shown that the dissipative property of {ca*t; >--0} implies that Lr is normal
[32]. Consequently, the realization (9.23) is observable if and only if X is observable.

.We collect these observations in the following theorem.
THEOREM 9.1. [32]. Let X be a proper Markovian splitting subspace with forward

generating process u, and let := IuX. Then

(9.31) X cl{ k=l fc (g’eA(t-’lBek) dUk(’)lgG}
where { ea’ >= 0} is the strongly continuous contraction semigroup on :T defined by (9.1)
and B’p -> is the adjoint of (9.13). If the structural function ofX is analytic in some
strip a < Re s <= 0 of the complex plane, the integral

(9.32) x(t) I ea’-)Bdu(o")

is well defined and defines an -valued random process {x(t);t ff} in terms of which
(9.31) can be written

(9.33) X cl {(g, x(O))lg g}.

If the conditions of Proposition 9.1 are satisfied, there is a map C" ’, defined by
(9.22), such that

(9.34) y(t) I cea(t-)Bdu(tr)

which, in the case that (9.32) is well defined, yields

(9.35) y(t) Cx(t).

This is a reachable forward realization which is observable if and only ifX is observable.
The construction ofthe corresponding backward realization is analogous, exchang-

ing + for - everywhere. Let be @(/*) equipped with graph topology, and let
D" r-. be the (bounded) differentiation operator on . Let (.,.) denote the inner
product in . Then, we can proceed as above to obtain, for each Ia, the rep-
resentation

(9.36) U,= (g, -’)ek) dfik(r)
=1

where g--(I-/))-li,._:, and/’NP - is the adjoint of

(9.37) /*g [(I-/))-lg](0).

Now, if one of the three equivalent conditions

(i) yk(O) e (r*), k 1, 2,..., m,

(9.38) (ii) k := I*yk(O) , k 1, 2,’’’, m,

(iii) the rows of itolYg(ito)- ll belong to for some constant rn p matrix/



850 ANDERS LINDQUIST AND GIORGIO PICCI

hold, we may define a bounded linear operator C"-R" by the relations

(9.39) Cg)k ((I D)i’k, g), k 1, 2,’’’, m

and then we have the standard backward realization

(9.40) y(t) ea’-’)/ dt (or).

Following the convention set up in 1 and 8, we shall say that (9.40) is controllable
if f’l ,_>-o ker/* e/x*’= 0 and constructible if fl ,_->o ker (e/i’= 0. It is then easy to check

that Theorem 9.1 has the following "backward" version.
THEOREM 9.2. [32]. Let X be a proper Markovian splitting subspace with backward

generating process . Set := laX. Then

(9.41) X=cl (g, e’’-’)ek) dUk(Cr)]ge
k=l

where {ea’; t>_-O} is the strongly continuous contraction semigroup (9.2) on , and

B" RP ") Cc is the adjoint of (9.37). If the structural function ofX is analytic in some strip

a < Re (s) <-_ 0 of the complex plane, there is an -valued random process {(t); }
defined by

(9.42)

so that (9.41) may be written

(9.43)

:(t) e’’-’) d(o"

X cl {(g, g(O))lg }.

Moreover, if the conditions (9.38) hold, there is a map " ’- P, defined by (9.39), such

that (9.40) holds, and hence, if (9.42) is well defined,

(9.44) y(t) C(t).

This is a controllable backward realization which is constructible if and only if X is

constructible.
Consequently, for X to have both a forward and backward realization we must have

(9.45) yk(O) (F) f’) (F*), k 1, 2,..., m.

Questions of this sort are studied in [33].

10. State space isomorphism. There is an important difference between stochastic
and deterministic realization theory which manifests itself already in the finite-
dimensional case. In the deterministic theory, there is an essentially unique minimal
realization (modulo trivial coordinate transformations). This is not the case in the
stochastic theory. Two different minimal Markovian splitting subspaces give rise to
realizations with probabilistically different state processes. Therefore, it is important
to investigate the relationship between realizations of different minimal X.

In this section we shall study the class of standard forward realizations (9.23) of
minimal Markovian splitting subspaces; the corresponding results for backward realiz-
ations are analogous and will not be mentioned. Our main goal is to clarify the
connections between triplets (A, B, C) of such forward realizations. In the finite-
dimensional case, this link is provided by the Yakubovic-Kalman-Popov or Positive
Real Lemma, to which we shall return below.
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For the rest of the paper we shall assume that y is strictly noncyclic. Then the class
of minimal Markovian splitting subspaces can be parameterized by the left inner
divisors Q of Q/ (Theorem 7.6), and this parametrization, denoted {XQ; QILQ/},
induces a lattice structure on the class under which XQ2< Xo, if and only if Q21.Q1;
see 7.

Let (K1, Q, (*) and (K2, Q2, O*) be the inner triplets of two minimal Markovian
splitting subspaces, Xo, and Xo2. Then, it follows from (7.15) that

(lO.1) O,.

LEMMA 10.1. The following statements are equivalent.
(i)
(ii) V :- Q* Q, is inner.

(iii) V := (* (, is inner.

If these conditions are satisfied, then

o.2)

with K and V right coprime and K2 and V2 left coprime.
Proof. Let Xo,--. (S, S) and Xo---(S_, S). Then, by Lemma 6.1, (ii) is equivalent

to

(10.3) $2 S1
--iand (iii) is equivalent to c S1, i.e.

(10.4) $2 S1.
But, since Xo, and Xo: are minimal, (10.3) and (10.4) are equivalent (Corollary 3.3),
establishing the equivalence of (ii) and (iii). Now, Q QV1. Hence (i) and (ii) are
equivalent, and, since K1 and Q are right coprime (Theorem 7.2 and Corollary 4.1),
then so are K1 and V. Likewise, since t* V(I*, the left coprimeness of K2 and V2
follows from that of K and Q* (Theorem 7.2 and Corollary 4.1). Relation (10.2) is
the same as (10.1).

The following theorem describes the intertwining of the triplets (A1, B1, C1) and
(A2, B2, C2) corresponding to two minimal Markovian splitting subspaces, X1 and X2,
which are ordered.

THEOREM 10.1. Let X and X be two minimal Markovian splitting subspaces such
that X< X, and let , and E2 be the corresponding standardforward realizations with
state spaces and . Then the map R" - 2 defined by

(10.5) Rf peMo,o*f

is injective with dense range, and the following diagram commutes,

B eA1
P

B eA2

where indices refer to E1 and ,.
Proof. Let K and K be the structural functions of X and X2, and let

E,(Ki)" 4(Ki) (K) be the restricted shifts

(10.7) E,(K,)f Pe(I,)X,f
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for -> 0 and 1, 2. Since there are inner functions V1 and V2 such that V2K1 K2 V1
(Lemma 10.1), there is a map/*" (K2)--> (K1) such that

(10.8) *,(K2) Et(K1)I*
14, Thm. 14.8, p. 203]. This map is given by

(10.9) /*f= P(K’)Mo,o,f
and, in view of the coprimeness conditions of Lemma 10.1,/* is injective with dense
range [14, Thm. 14.11, p206]. Therefore the same is true for the adjoint/" W(K1)-
(K2) and for R := *R"1 2, which is the map of the theorem. It remains to
show that the diagram commutes. To this end, first note that eA*’-- *,t(Ki),. for
i= 1, 2, and therefore (10.8) is equivalent to

(10.10) R eA’t= eA’R.
Then the same intertwining must hold for the resolvents, i.e. in particular

(10.11) R(I 31)-1 (I A2)-IR

(Lemma 9.1), and therefore

(10.12) (I- A* )R* R*(I A* ).

Now, if W1 and W are the analytic spectral factors of X and X, then W1 WQ*Q1.
But, in view of (8.5), aWl (K1) for any row vector aR", and hence aWl *aW.
Consequently

(10.13) awl R*aw2
where wl := * W1 and W2 :--- W2. Now, from the definition (9.22) it is easy to see that

(10.14) C*i a (I A* )aw,

for i= 1,2. (Recall that A*f=Df.) Consequently, in view of (10.12) and (10.13),
C* R* C*, i.e.

(10.15) C1 CR.
This together with (10.10) proves that the diagram commutes. D

The parts of diagram (10.6) involving B and B2 add nothing to the theorem but
have been added to remind the reader that the two horizontal chains of arrows realize
different functions, namely wl and w:. This situation differs of course from that in the
deterministic "state space isomorphism" theorems [22, p. 258].

A map which is injective with dense range such as R in Theorem 10.1 will be
called quasi-invertible. In the finite-dimensional case, this is the same as invertible, and
therefore, in this case, the condition X2 < X1 of Theorem 10.1 is unnecessary, for we
have also a diagram with the arrows reversed. In particular, the semigroups {eAst; 0}
and {ea2t;t 0} are then similar.

In the infinite-dimensional situation, a natural generalization of similarity is
quasisimilarity. We say that the semigroups { eA’; >= 0} and { eA’; >= 0} are quasisirnilar
if there are quasi-invertible maps R1:1- and R2:2 1 such that

Rleal eaztR1,
(10.16)

R2 ea2t-- eatR2.
Only the first of relations (10.16) is given by Theorem 10.1, and then only if X2 < X1.
If we also had the other, the ordering assumption would be unnecessary also in the
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infinite-dimensional case, for quasisimilarity is an equivalence relation 14, p. 74]. That
this favorable situation actually happens follows from the next theorem, the proof of
which can be found in [31].

THEOREM 10.2. [31]. Let El and ,2 be theforward standard realizations correspond-
ing to two arbitrary minimal Markovian splitting subspaces. Then the corresponding
semigroups {east; t0} and {ea2t; t_>--0} are quasisimilar, i.e. they satisfy (10.16).

This implies that, as far as the rectangular part of the diagram (10.6) is concerned,
the ordering condition X2 < X1 can be dispensed with. Whether this is true for the
diagram as a whole is as yet an open question.

By [14, Thm. 15.18, p. 220], the semigroups are quasisimilar if and only if the
corresponding structural functions K1 and K2 are quasi-equivalent, i.e. have the same
invariant factors, and therefore Theorem 10.2 is equivalent to Theorem 7.5. This allows
us to draw the conclusion that the infinitesimal generators A corresponding to minimal
Markovian splitting subspaces have the same eigenvalues. To see this, just note that
these eigenvalues are the poles of the common determinant of the structural functions
[23, Thm. 3.2, p. 70], [14, Thm. 13.8, p. 195].

Theorem 10.2 can also be stated in terms of Jordan models. For a discussion of
this concept, see, for example, [14, p. 214].

COROLLARY 10.1. [31]. All semigroups {eAt; >--O} corresponding to minimal
Markovian splitting subspaces have the same Jordan model, i.e. they are all quasisimilar
to the direct sum

(10.17) E,(kl)) E,(k2) 03 "
where kl, k2, ., kp are the common invariant factors of the structuralfunctions, and the
restricted shifts E,(ki), i= 1,2,..., p and t>-O, are defined as in (10.7) but for a scalar
Hardy space.

As an application of Theorem 10.1, we shall next derive an infinite-dimensional
version of the Positive Real Lemma equations. For this we shall need the following
two lemmas.

LEMMA 10.2. Let A and B be defined by (9.1) and (9.13). Then

(10.18) AP+ PA* + BB* 0

where P: is the positive self-adjoint operator

(10.19) P (I- A)-a(I A*) -1.

Proof. Let f Lr, 1, 2. Then, recalling that A*f Df for f Lr, where D is the
differentiation operator, integration by parts yields

(10.20) (A*fl,f2)+(f,,A*f2) (flf’2+f,f) dt= --fl(0)f2(0)’.

Also, by the definition (9.13),

((I- A*)fl, BB*(I- A*)f)= (B*(I- A*)fl, B*(I- A*)fE)a
(10.21)

fl (0)f2(0)’.

Now, let gi , i= 1,2, be arbitrary. Then, by Lemma 9.1, f := (I-A*)-lg Lr for
i= 1, 2. Inserting this into (10.20) and (10.21) and adding the relations, we obtain

(10.22) (gl, APg2)+(gl, PA*g2)+(gl, BB*g)=O

where we have used the fact that A* and (I-A*)- commute. This yields (10.18).
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The operator P is actually the state covariance operator in the sense that

(10.23) E{(g,, x(0))(g2, x(0))}-- (gl, Pg2).

To see this, note that, by (9.4) and (9.18),

(10.24) (g,x(O))=foo[(I-A*)-g](-,r)du(,r)
where, in general, the left member should be understood in the sense of (9.16). In
passing, we recall that the state process {x(t); } is a bona fide -valued random
process if and only if the operator P is nuclear [16].

LEMMA 10.3. Let A:ll+Rm" be the covariance

(10.25) A(t)= E{y(t)y(O)’}, t>-O

and let A and C be defined by (9.1) and (9.22). Then

(10.26) A(t) C ea’pc*

where P is the state covariance operator (10.19).
Proof. Since C*a (I A*)aw for any row vector a ", and (I A)- commutes

with eAt we have

(10.27) C eAtpC*a C(I-A)-1 eAtaw,
and therefore

(10.28) [cea’pc*]kj=((I-A*)Wk, (I-A)-1 eAtwj)=(Wk, eAtwj).

But ;* ea’;;=,,(K)* and Wk ;Wk. Hence

(10.29) C eA’pC*]kj Wk,

because, by (8.5), Wk (K). Consequently, (10.26) follows from the Bochner rep-
resentation

(10.30) A(t)=I_oei’tdp(ito)dto. [3

To compare the standard forward realizations of different minimal Markovian
splitting subspaces, we must reduce them to the same state space. In view of the
ordering condition of Theorem 10.1, the most suitable choice of common state space
is i, the state space of the minimal element X1 := H+/- of the lattice. Given the
standard forward realization Eo of an arbitrary minimal Markovian splitting subspace
Xo, the reduction will be according to the diagram

(10.31)

defining a new (A, B, C) for Xo which has state space . Here Ro is the map (10.5)
with Q := Q and Q2 := L Then, when Xo varies over the lattice of minimal Markovian
splitting subspaces, A := A and C := C are fixed, whereas B varies.
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THEOREM 10.2. Let Xo be an arbitrary minimal Markovian splitting subspace, and
let A, B, C) be defined by (10.31). Then

AP+ PA* + BB* O,
(10.32)

PC* G

where the positive self-adjoint operator P: 2T -> 2F, defined by

(10.33) P := (I 3)-1RQR(I A*)-1

is the state covariance operator in the fixed state space representation, and G: ff" --> is

given by

(10.34) G:= (I-A)-I(I-A*)-IC*.

Proof. By Lemma IO.2,.AQPQ+PQA+BQB--O, where PQ:=(I--AQ)-I
(I- A)-I. Transforming this via (10.31 and (10.11 yields the first of relations (10.32).
To derive the second relation (10.32), reduce the representation (10.26) to the fixed
state space I. Comparing the expressions for A(t) thus obtained corresponding to Q
and E respectively, we have

(10.35) Ce/t’[PC*-PC*]=O for all t->_0.

Since Et is observable (Theorem 9.1), this implies that PC* PxC*, which is precisely
G. [q

We have thus shown that all standard forward realizations {Eo; QILQ+} reduced
to the common fixed state space Ft satisfy equations akin to those of the Positive Real
Lemma [2], 11], 12]. Note, however, that in our case the representation is coordinate-
free.
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ADDITIVE CONTROL OF STOCHASTIC LINEAR
SYSTEMS WITH FINITE HORIZON*

PAO-LIU CHOWS-, JOSI-LUIS MENALDIt AND MAURICE ROBINS

Abstract. We consider a dynamic system whose state is governed by a linear stochastic differential
equation with time-dependent coefficients. The control acts additively on the state of the system. Our objective
is to minimize an integral cost which depends upon the evolution of the state and the total variation of the
control process. It is proved that the optimal cost is the unique solution of an appropriate free boundary
problem in a space-time domain. By using some decomposition arguments, the problems of a two-sided
control, i.e. optimal corrections, and the case with constraints on the resources, i.e. finite fuel, can be reduced
to a simpler case of only one-sided control, i.e. a monotone follower. These results are applied to solving
some examples by the so-called method of similarity solutions.

Key words, dynamic programming, stochastic processes, free boundary problems, degenerate second
order parabolic equations

Introduction. In this paper, we wish to control a linear stochastic differential
equation in the sense of It6 by using additive strategies, i.e. the evolution of the state
is subjected to

y(s)=x+u(s-t)+ (a(A)y(A)+b(A))dA

(1)

+ o-() dw()t t) for every s ->_ t,

where a(. ), b(. ), o-(. are given deterministic functions, (w(s), s >-0) is a standard
Wiener process, x is the initial state at the time and (u(s), s >_- O) stands for the control
which is a progressively measurable process with locally bounded variation.

The expected cost takes the form

(2) J,(u) E f(y(s), s) ds+ c(t)u(0)+ c(s) dlu[(s- t)

with f(’,’), c(’) given, [u denoting the variation of the process u and T being the
finite horizon. Hence, the optimal cost function is

(3) u(x, t)= inf {J,(u)" u} for every x, t.

The entire paper is devoted to the one-dimensional case, i.e. x belonging to E" however,
most of the results can be extended to multidimensional situations.

A formal application of the dynamic programming principle yields the complemen-
tary problem

max{Au-f,[Dul-c}=O inx[0, T[,
(4)

u(., T)=0 inE,
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for the optimal cost (3), where the operators

(5)

Au
Ou 1 02U OU

--0----- O’2(t)
OXz (a(t)x + b(t)) Ox’

Ou
Du

OX’
and l" denotes the absolute value of a real number.

It is clear that (4) can be regarded either as a variational inequality or as a free
boundary problem. In contrast with the classical aspect of the problem (4) we mention
that among our assumptions it is allowed to have degeneracy, i.e., r(t)= 0, and that
we are interested in the characteristics of an optimal policy of the control as well as
a possible computation ofthat optimal strategy. Moreover, we seek a suitable decompo-
sition of (4) into problems, typically of the form

(6)
max {Au f, Du c} 0

u(., T)=0 in.

in [0, T[,

Also, we wish to be able to treat the case with constraints on the resources, i.e. in the
minimization (3) we add a condition"

(7) the total variation of u on [0, T] is bounded by a constant K,

where K stands for the total resources available.
On the other hand, we will see that the problem (6), commonly referred to as the

"monotone follower," can be obtained as a limit-case of a quasi-variational inequality.
As the main result of this paper, we should mention the characterization of the

optimal cost function as the unique solution of the problem (4) or (6) in a certain
sense" the proof of the existence of an optimal control; the construction of an optimal
control of Markovian type; the reduction to problems of the form (6); and lastly, some
properties of regularity for the optimal cost, e.g. locally Lipschitzian derivative of u,
even without assuming uniform ellipticity of the operator A in (5).

This problem is motivated by our interest in studying the optimal control of a
dissipative dynamical system under uncertainty. In the simplest model, one considers
the automative cruise control of an aircraft under an uncertain wind condition. The
equation (1) is the equation of motion, where y(s) is the speed; a(s)< 0 the coefficient
of air resistence; b(s) the thrust force; the white-noise term the dynamic force due to
the shifting wind condition, and the formal derivative ) represents the control in the
form of a corrective thrust force. We wish to find an optimal control policy u over the
flight time T so that, given a finite amount of fuel for correction, the flight speed will
deviate as little as possible to a desirable cruising speed at a minimum fuel cost. This
fact is expressed by the equations (2) and (3). The system (1)-(3) has another interesting
interpretation in the context of optimal harvesting of randomly fluctuating resource
Ludwig [36]. In this case, the equation (1) stands for a controlled linear growth model
for the size y of a population, say, in a fishery, where a > 0 is the birth rate; the terms
b and (trY) are, respectively, the mean and fluctuating rates of migration, and k denotes
the harvesting rate. For instance, in a finite horizon, we would like to determine the
harvesting rate in order to maintain the population size as close as possible to an
equilibrium size at a minimum cost.

Let us remark that, when the rate function a--0, similar kinds of problems have
been considered by several authors, in particular Bather and Chernoff [4], [5], Benes,
Shepp and Witsenhausen [6], Borodowski et al. [12], Bratus [13], Chernousko [17],
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[18], Gorbunov [22], Harrison and Taksar [24], Harrison and Taylor [25], Jacka [26],
Shreve et al. [55], Karatzas [27], [28], and [41], [42]. The connection with optimal
stopping is deeply investigated in Karatzas and Shreve [29], [30].

The methods to be used throughout this article are suggested by the techniques
presented in the books of Bensoussan and Lions [8], [9], Fleming and Rishel [20],
Friedman [21], Kinderlehrer and Stampacchia [31], and Krylov [32].

We organize the contents of the paper as follows"
1. Statement of the problems and assumptions
2. The dynamic programming approach

2.1. Some estimates
2.2. Characterization of the optimal cost

3. The free boundary
3.1. Variational inequality
3.2. Optimal decision

4. Finite resources
5. Optimal corrections

5.1. Reduction
5.2. General comments

6. Examples
6.1. Unlimited resources
6.2. Finite resources

1. Statement of the problem and assumptions. Let (12, -, P) be a probability space,
(w(t), >= 0) be a standard Wiener process in R and (-t, -> 0) be a filtration satisfying
the usual conditions with respect to (w(t), >= 0), i.e., (O-t, t>= 0) is an increasing right
continuous family of completed tr-subalgebras of - and (w(t), t>-O) is a martingale
with respect to (fit, t-> 0).

Denote by 7/" the set of controls ,(. which are progressively measurable random
processes from [0, +o) into R (extended real numbers), right continuous having left
limits (cad-lag), nonnegative and increasing, i.e.,

(1.1) ,(0) _--> 0, ,(s)- u(t)_-->0 for every s_--> t_>--0.

(1.2)

The state of the dynamic system is described by the following stochastic equation

dy(s): du(s- t)+(a(s)y(s)+ b(s)) ds+cr(s) dw(s- t),

y( t) x + (0),

where a(s), b(s) and O’2(S) stand for the drift and the convariance terms, and x is the
initial state at the time t. Note that y(s)= y,t(s) is a cad-lag random process adapted
to (9-s-t,s>=t).

To each control , in V, we associate a cost given by the payoff functional

f(y(s),s)exp(- f( a(A) dA)ds+c(t),(O)
+ c(s) exp a (A) dA d,(s

where f, a, c and T are respectively, the running cost, the discount factor, the
instantaneous cost per unit of fuel and the finite horizon.

Our purpose is to characterize the optimal cost

(1.4) (x, t) inf {Jxt( ’)"
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and to construct an optimal control , i.e.

(1.5) in V such that (x, t) Jx,()

for each initial state (x, t). This problem corresponds to several simple models, e.g.,
control of a spaceship with unlimited fuel (cf. Bather and Chernoff [4]), optimal
control with no turning back (cf. Barron and Jensen [1]), monotone follower problem
(cf. in Benes et al. [6, problem # 2], Karatzas [27], [28]), optimal correction problem
(cf. Chernousko [17], [18], Borodovskii et al. [12], Bratus [13], Gorbunov [22], optimal
control of a dam (cf. Bather [3], Faddy [19]), control of Brownian motion (cf. Rath
[50], [51], Chernoff and Petkau [16]) and inventory theory (cf. Bather [2], Menaldi
and Rofman [45]).

A similar study will be made for the optimal cost

(1.6) 3(x, z, t) inf {J,( v)" v in V, v(T) <- z},

where the positive constant z stands for the total amount of fuel available. This is
associated with the previous cases under constraint of resources, e.g., the control of a
spaceship with finite fuel available (cf. Bather and Chernoff [5], problem 4 3 in Benes
et al. [6]).

Let us summarize the technical assumptions as follows:

(1.7) T is a positive constant,

(1.8) a(t), b(t), or(t), a(t), c(t) are Lipschitz functions from [0, T] into
and either c(t)>= Co> 0 for every or c(t)= 0 for every t,

(1.9)

f(x, t) is a nonnegative continuous function from R x[O, T] into R such
that there exist constants m >_- 1, 0_<- c _<- C satisfying

cIx+l C <-f(x, t) <- C(1 + Ixl"),
If(x, t)-f(x’, t)[ <- c(1

If(x, t) -f(x, t’)l--< C(1 + [xl’)lt- t’l,

0 < 02f (x, t) < C(1 + Ixl q) q (m 2)+,
0X2

t’,for every x, x, t,

where (.)+ denotes the postive part of a real number, i.e., x+= x if x => 0 and x+= 0
if x<=0. Note that r(t) could vanish, even everywhere, and then the problem could
be degenerate and even deterministic. On the other hand, since the horizon T is finite,
without loss of generality, the function a(t) may be assumed to satisfy for every

(1.10) a (t) _>- ao, ao is positive large enough.

Let us introduce two penalized problems associated with (1.4) as follows: e > 0,

(1.11)

is the set of all controls v(.) in V such that v(t) is Lipschitz
continuous and

dv 1
<- --d <= -e for almost every t->_ 0,

(1.12) t(x, t)=inf(Jxt(v)" vin
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and

(1.13)

is the set of impulse controls, i.e., v(.) in V such that there exist
stopping times (0j, j 1, 2, .) 0 _<- 0j _<- 02+1, for every j 1, 2, .,
and adapted random variables (,j 1, 2,...) satisfying

v(t) I(0 =< t) for every >_-- O,
j=l

where I(0 <_-t) is the characteristic function of the set (0 _-< t),

(1.14) J,(9) J,(9)+ eE exp a(s) ds
j=l

(1.15) a(x, t)=inf(J,(9)" 9in V,}.

Notice that (1.12) and (1.15) correspond respectively to a classical stochastic control
problem (cf. Fleming and Rishel [20]) and an impulse control problem (cf. Bensoussan
and Lions [9]). The term "penalized" is used to indicate that the formal Dynamic
Programming equations associated with the problems (1.12) and (1.15) are indeed two
possible penalizations of the equation (2.4) below.

On the other hand, for z >_-0 and 9 in V, define a cost

F(x,z,t,v)=E f(y(s),s)exp a(A)dA ds+c(t)9(O)I(t<r)

(1.16) + c(s) exp c(A) dA dg(s- t)

+u(y(r), r)exp a(s) ds

where -= rz, is the first exit time from [9_-< z] of the process 9(s), i.e.

(1.17) r=inf{s[t, T]" v(s-t)> z},

y(s) is given by (1.2) with 9 =0, and

(1.18) u(x, t)= E f(y(s), s) exp a(A) dA ds

represents the cost of free evolution. It is clear that the optimal cost (1.6) corresponding
to finite fuel conditions, satisfies

(1.19) (x, z, t)=inf{F(x, z, t; 9): vin V}.

The relation will be used to reduce the problem with constrained resources to the case
without constraint.

To conclude this section, let us observe that it is possible to obtain the same
optimal cost (1.4) by minimizing the functional cost (1.3), denoted now by Jx(),
over all system controls , where is a set including the probability space (fl, -, P),
the filtration, the Wiener process and the control (t, w(t), 9(t), >_- 0). The same idea
corresponds to identifying the state process yx(s) with its probability law Px on the
sample space D of the cad-lag functions. The probability law Px is characterized by
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the conditions

Pxt(Xt=x)=l,

Oq 02q+(a(A)X,+b(A))__x(1.o)
,(x, s)- +o-(, ox--- (X, x dx

is a martingale in -<_ s -<_ T, for every smooth function q in N x [0, T].

More details about this formulation for stochastic control problems can be found in
Nisio [49], Bensoussan and Lions [8], Lions and Menaldi [35].

2. The dynamic programming approach. Consider the differential operators

(2.1) Au=
Ou ltr2(t)___O2u (a(t)x+b(t))u0---- Ox2 --x + ( t)u,

and

OU
(2.2) Bu c(t).

Ox

A heuristic application of the dynamic programming to the penalized problem (1.11),
(1.12) yields the following Hamilton-Jacobi-Bellman equation

(2.3)

1
Au +- (Bu)+ =f in R [0, T[,

u(., T)=0 inR

to be satisfied by the optimal cost defined in (1.12). Then, as e tends to zero, (2.3)
becomes

(2.4)
(Au-f)vBu=O inRx[0, T[,

u(., T)=0 in,

where x v y denotes the maximum of the two real numbers x and y. Equation (2.4)
will be used to characterize the optimal cost a given by (1.4).

On the other hand, the quasi-variational inequality associated with the impulse
control problem (1.14), (1.15) is

(2.5)
(Au -f) v (u Mu e) 0

u(.,T)=0 inR,

in [0, T[,

where

(2.6) Mu(x, t)=inf{c(t)+u(x+, t)" :>- 0},

which is satisfied by the optimal cost t defined in (1.15). Moreover, t is indeed the
maximum solution of (2.5). Thus, as e tends to zero, (2.5) becomes

(2.7)
(Au-f)v(u-Mu)=O inx[0, T[,

u(., T)=0 in.

Hence, the optimal cost t given by (1.4) will be the maximum solution of the equation
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(2.7). For details on the two penalized problems one is referred to the books of Fleming
and Rishel [20], Bensoussan and Lions [9] and to the works [38], [41] and [52].

2.1. Some estimates. First of all, we will deduce some a priori estimates for the
optimal costs (1.4), (1.12) and (1.15).

THEOREM 2.1. Under the assumptions (1.7),. , (1.10) the optimal cost defined
by (1.4) is a nonnegative continuous function such thatfor some constants 0 < c <- C, the
same m >-_ 1 of hypothesis (1.9), and every (x, t), (x’, t’) in R [0, T] we have

clx+l C <- a(x, t) < C(1 / Ixlm),
(2.8) t (x, t)-a(x’,

0< (x, t)<C(l/lxlq) q (m-2)+

--OX2

so, is convex in the first variable. Moreover, if satisfies

(2.9)
a(x, t) <--_ E f(y(s), s) exp a(A)dA ds

+(y(t’), t’)exp (s) ds

for every t’ >= >= 0, x in andy(s) given by (1.2) with , O, i.e. the dynamicprogramming
in the weak sense, then we have

(2.10) la(x, t)- a(x, t’)l C(1 / Ixl)l t’l,

for every x in , t, t’ in [0, T] and some constant C.
Proof Since f has m-polynomial growth as x tends to positive infinity, u(s)>-O

and for the vanishing control , 0

J,(o)c(l+lxl),

one can restrain the set of admissible controls to those satisfying

(2.11) f,T lYx,(s)l" ds <= C(1 + Ixl
for the same m-> 1 of (1.9) and a suitable constant C independent of x, and u.
Similarly, every admissible control , may satisfy without loss of generality, the
inequality

(2.12) f I(yt(s))/] ds clx+l C

for some constants 0 < c <- C independent of x, and v. It is clear that from (2.11) and
(2.12) one deduces the first condition of (2.8).

Now, using the fact that for some constant C and for every t, x, x’ and v the
following estimate holds

(2.13) ly,(s)- y,,(s)l ds
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and starting with

la(x, t) a(x’, t)l--< sup (lJ,(v) j,,()l: u in 7/" satisfying (2.9)},

IJx,(V)-Jx,t(v)[ <- CE (1 +[yxt(s)l "-1 /ly,,(s)lm-)ly,(s)- yx,,(s)l ds

where C is a constant independent of x, and v, we obtain the second estimate of
(2.8) after applying Halder’s inequality.

In order to get the estimate (2.10), we observe that

Jxt(p)--E f(y(t+s),t+s)exp a(t+A)dA ds+c(t)v(O)
(2.14)

+ c(t+s) exp a(t+,X)d,X dr(s)
0 0

and if c(s) is strictly positive, the set of admissible controls can be restricted to those
continuous at T-t and satisfying for every x,

(2.15)

for a suitable constant C independent of x, and z If y(s) and y’(s) denote the
evolutions associated respectively to x, t, and x, t’, , we have

(2.16) E{ly(t+s)-y’(t’+s)l}C]t-t’[% for every s in [0, T-t]

and some constant C independent of x, t, t’ and v. Hence, staing with

a(x, t)- a(x, t’) sup {L,()- L,,(): v in satisfying (2.11) and (2.15)}, t’

and in view of (2.14), (1.9), (1.8), for some constant C,

J()-L,,()NCE (l+y(s)m)ds+(T-t) t-t’

0

we deduce, for a constant C independent of x, and t’,

(2.17) a(x,t’)-a(x,t)C(l+[x[)lt-t’l, t’t,

after using HSlder’s inequality and (2.16). To obtain a similar inequality for t’> 0
we shall use (2.9) as follows. From It6’s formula applied to a sequence of smooth
functions convergent to

xa(x,t’)
we get, for some constant C > 0,

in view of (2.8). Since there is a constant Co such that

the dynamic programming propey (2.9) yields

It is clear that this last estimate and (2.18) imply (2.10).
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To estimate the second derivative of (x, t) in x, let us proceed as in Krylov [27].
From

a(x + Ax, t) 2a(x, t) + a(x Ax, t)

--<_ sup {(Jx+ax(v) 2J(v) + J-a( v))" v in satisfying (2.9)},

where the subscript has been omitted in the functional J,(v), and the equalities

f(z + rAx, s) 2f(z, s) +f(z r Ax, s) }axl2 dA (z + rAx, s)[rl d,
-X OX2

y+(s)=y(s)+x exp a(1) dl

for every x, z, x, r and s, we deduce

a(x + Ax, t)-2a(x, t)+a(x-Ax, t) C(1 + Ixl )laxl2,
where q (m-2)+, C is a suitable constant independent of (x, t) in x[0, T] and Ax
in [-1, 1]. Hence an upper bound for the second derivative in x of a(x, t) is obtained.

To complete this proof, we need to show that the optimal cost a(x, t) is a convex
function in the first variable x. Since the functional Jx,(U) is simultaneously convex in
(x, ) and the set of controls is a convex set, we have

(2.18) a(Ox+(1-O)x’, t)

for every t, x, x’, u, ’ and 00 1. Thus, the inequality (2.18) implies the convexity
of function .

COROLLARY 2.1. Under the same assumptions of eorem 2.1 the optimal cost
(x, t) corresponding to the penalizedproblem 1.11 ), (1.12), is a nonnegative continuous

function satisfying conditions (2.8) and (2.1 O) uniformly in e > O. Furthermore, the optimal
cost (x, t), corresponding to the penalized problem (1.14), (1.15), is a nonnegative
continuousfunction satisfying conditions (2.8), and (2.1 O) except the bound ofthe second
derivative, uniformly in e > O.

Remark 2.1. The optimal cost a(x, t) given by (1.15) is not convex in general.
However a discretization in the time variable allows us to adopt a technique of Scarf
[49] in order to show that a(x, t) is e-convex in x, i.e. for every (x, t) in x[0, T]

(2.19) e + a(x + z, t) a(x, t) z (x, t) for every z 0

and any e > 0. On the other hand, a lower bound for the second derivative in x of
a (x, t) may be deduced by using the dynamic programming equation (2.3) and the
nondegeneracy of (t).

Define the subset of admissible controls

(2.20) o is the set of all controls v(.) in such that u(t) is uniformly
Lipschitz continuous on [0, +], i.e. 0 du(t)/dt C, for almost
every and some constant C.

THEOREM 2.2. Let the assumptions (1.7),..., (1.10) hold. e infimum of the
functional Lt(u), given by (1.3), over the sets (a) all controls v in , (b) all Lipschitz
controls u in o, (c) all impulse controls u in ., is always the same. Moreover, the

Note that t and t satisfy the condition (2.9). See Theorems 2.3 and 2.4.
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functions and , given by (1.12) and (1.15), converge to the optimal cost pointwise
in R x[0, T].2

Proof. Denote by y(s), y’(s) the output corresponding to controls v, v’ in V given
by (1.2). Using Gronwall’s inequality, we obtain

(2.21) [y(s)-y’(s) ds<lv(o)-v’(o) +c [v(s)-v;(s)[mds

for a constant C independent of v, v’, x, and t.
Suppose an arbitrary control v in T" is given. We define

(1-nt)v(0)+n2t v(s) ds ifO<-t<-l/n,

(2.22) v,(t)

[nl,_,/,(s) ds otherwise

and

j v(0) if 0,
(2.23) b’_( t)

lim v(s) otherwise.
s?t

Since v(. is a cad-lag process, v,(s) converges, for any fixed to, to v_(s) for every s,
as n approaches infinity. Moreover, except for a countable set in s, we have v_(s) u(s).
This fact and the estimate (2.21) imply

(2.24) Jx,(v,) -+ Jx,(v) as n + oo.

Hence

(2.25) fi(x, t) inf {J,,,( v): v in T’o},

because v, given by (2.22) belongs to To.
Now, suppose v is an arbitrary Lipschitz control in T’o and define

(2.26) v,,(s)=v if---<_s<, i=0,1,...,

which is an impulse control in .. Thus from (2.21) and (2.24) we deduce

(2.27) (x, t) inf {J,(): v in %}.
To complete the proof, in view of Theorem 2.1, we only need to show that the

optimal costs and , given respectively by (1.12) and (1.15) satisfy for every (x,
in N x[0, T]

(2.28) t(x, t)+ t(x, t) as e 0,

(2.29) a(x, t)+ a(x, t) as e $ 0,

where t is the optimal cost (1.4). The first convergence (2.28) is deduced from equalities
(2.25) and

(2.30) Vo {V: e > 0}.

To prove the convergence (2.29), we use (2.27) and the fact that for every v in

The convergence is also uniform over every compact subset of R x[0, T].
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such that J,,(v) is finite,

(2.31) J,(v)Jx,(v) as e $ 0,

where the limit is decreasing.
Remark 2.2. The estimates of Theorem 2.1 allow us to obtain a locally uniform

convergence of the first derivative in x of the optimal cost a(x, t) defined by (1.12).
Moreover, some weak convergence ofthe first and second derivatives of t and a holds.

Remark 2.3. A similar result to Theorem 2.2 can be found in Menaldi, Quadrat
and Rofman [40], Menaldi and Rofman [46].

2.2. Characterization of the optimal cost. Denote by V,, the function space,

(2.32)

v belongs to V, if v :R x[0, T]--> R is such that

Iv(x,t)l+ - (X, t)

xx(X, t) _-< C(1

for almost every (x, t) and some constant C,

and by Llc the space ofmeasurable real functions which are locally essentially bounded
in R x ]0, Y[.

Consider the following partial differential equation"

(2.33) Find a in V,, such that 02a/Ox2 belongs to LCc, a(x, T) =0 for every
x in and Aa +(1/e)(Ba)+=f, a.e. in x]0, T[,

where operators A and B are defined by (2.1) and (2.2).
THEOREM 2.3. Assume the hypotheses (1.7),..., (1.10) hold. Then (2.33) has one

and only one solution, which is given explicitly as the optimal cost (1.12). Moreover, the
inequality (2.9) is valid and if

(2.34) x*(t) inf x" (x, t) + c(t) > 0

we have for every (x, t) in [0, T]

Aa =f and Ba<-0 ifx>=x*(t),
(2.35)

A +1 B f and B >-_ 0 ifx <- x* t)

Proof. First we suppose that er(t) is nondegenerate, i.e.

(2.36) erE(t) _-->/x > 0 for every in [0, T].

Then standard techniques in partial differential equations prove that problem (2.33)
has a smooth solution. Moreover, classical arguments of stochastic control (e.g.
Bensoussan and Lions [8], Fleming and Rishel [20], Krylov [32]) permit us to identify
the unique solution of (2.33) with the optimal cost (1.12). Also, the dynamic program-
ming principle holds. In particular (2.9) is true.

To study the degenerate case, i.e., dropping (2.36), we regularize the differential
operator (2.1),

1 02
(2.37) A, A-- rl Ox2, rl > O.
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Because the estimates (2.8) and (2.10) of Theorem 2.1 hold uniformly in r/as r/tends
to zero, we can pass to the limit in r/and obtain a solution of the problem (2.33). The
uniqueness follows for instance, from the weak maximum principle for degenerate
elliptic equations (e.g., Bony [11]). To show that the solution of (2.33) is the optimal
cost (1.12), we observe that for every (x, t) in R [0, T], every control v in o//. and
some constant C > 0,

(2.38) E{ly’(s)- y(s)l’} <= Crt ’’/z, r/positive,

where y’(s) and y(s) are the evolutions associated with (0"2+ 7) 1/2 and 0" respectively
in the state equation (1.2).

As a consequence of convexity, we have

Bt (x, t) <_- B (x’, t) if x _-< x’

for every fixed in [0, T]. This implies the last conditions (2.35).
Remark 2.4. Using a convolution kernel it is possible to establish that for every

function u (x, t),

(2.39) u in Vm, Au-h in ’(R [0, T[) with h(x, t) continuous in x and
measurable in t,

where @’( ]0, T[) denotes the space of distributions on R ]0, T[, we can apply
It6’s formula for every Lipschitz continuous control v in o, i.e.

(2.40)
u(x, t)- E u(y( T), T) exp a(s) ds

E h- (s) x (y(s), s) exp a(A) dl

where ) is the derivative of the Lipschitz control v.
Now, consider the problem"

(2.41)

Find u in V,, such that

u (x, T) 0 for every x in ,
Au <=f in @’( ]0, T[),

u<-e+Mu inR[0, T],

where M denotes the operator (2.6).
THEOREM 2.4. Suppose the assumptions (1.7),..., (1.10) hold. Then the quasi-

variational inequality (2.41) has a maximum solution , which is given explicitly as the
optimal cost (1.15). Moreover, the inequality (2.9) is valid.

Proof. First, for fixed in V, and r/> 0, consider the problem

(2.42)

Find u in V, such that

u (x, T) 0 for every x in ,
1

Au+--(u-tO)+=f in ’(R x]0, T[).

It is clear that as in Theorem 2.3, we can show that the equation (2.42) has a unique
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solution u u(x, t; , r/) which satisfies

(2.43) u (q, r) inf G(6)" 6 is adapted, 0 _-< -<_

where

G() [f(y(s), s)+ (s)(y(s), s)] exp ((I)+ ()) dl ds

and y(s) is given by (1.2) with =0.
Similar to Theorem 2.1 we can prove that u(, ) belongs to V uniformly as

tends to zero. Therefore,

(2.44) u(, n) u() as n0,

in a decreasing fashion and with a local uniformity in x[0, T]. Moreover, the limit
function u u() is the unique solution of the variational inequality:

Find u in V such that

u(x, T) 0 for every x in ,
(2.45) Auf in ’( x ]0, T[),

u inx[0, T[,

Au =f in ’([u < ]),

where [u < ] denotes the set of points satisfying u(x, t)< O(x, t), and also

u(O) =inf{F(0): 0 is stopping time, t0 T},(2.46)

with

F(O) E f(y(s), s) exp a(A) dA ds

+ (y(O), O) exp a(s) ds I(O < T)

and I(0 < T) is the characteristic function of the set [0 < T]. We remark that (2.42)
is referred to as the penalized problem associated to the variational inequality (2.45).
Also the control problem (2.46) is called an optimal stopping time problem (e.g.
Bensoussan and Lions [8], Friedman [21], Kinderlehrer and Stampacchia [31 ]). Notice
that the running cost f is unbounded and the operator A could be degenerate (cf. [37],
[41], [42] and [52]).

Now, observe that

(2.47) <- 0 implies u(o) <-.u(o).

We may define the decreasing sequence of function

(2.48) u" u(q), q e + Mu"-, n 1, 2,. .,
where u is the unique solution in V,, of the equation

Au =f in fi’( ]0, T[),
(2.49)

u(x, T) 0 for every x in .



ADDITIVE CONTROL OF STOCHASTIC LINEAR SYSTEMS 871

Standard techniques (e.g. Bensoussan [7], Bensoussan and Lions [9], and [38], or
[52]) show that

(2.50) u inf {J,(u)" u in .},
Where o//. denotes the subset of impulse control V. given by (1.13) such that 0 +oo
for every j >- n.

Thus, as in Theorem 2.1, we can prove that functions (2.50) remain in V,, uniformly
as n approaches infinity. Hence the limit function

(2.51) u* lira

solves the quasi-variational inequality (2.41). It is dear that

(2.52) u* -> u,

with denoting the optimal cost (1.15).
A crucial point is to deduce that

(2.53) a >- u for every solution u of (2.41).

Indeed, let , be any impulse control, i.e.

X _-< s),
j-’l

which may satisfy

(2.54) Iv(s)l + lxl ),

for a suitable constant independent of (x, t), and

(2.55) 0 T for every j>= N(to) some random index,

without loss of generality. Since u solves (2.41), we obtain

(2.56) u(x, t) <-_ J,(,) + E u(y(O), 0) exp

for

j--’l

As n tends to infinity in (2.56) and by virtue of (2.54), (2.55), we get

u,(x, t) <= Jt( ’)

which implies (2.53). From this, the equality must hold in (2.52) and the optimal cost
(1.15) is the maximum solution of (2:41).

Remark 2.5. Under the same assumptions of Theorem 2.4, we can prove that the
optimal cost (1.15) is the unique solution of problem (2.41) together with the condition

(2.57) A =f in ’([ < e + M]),
where a < e + Ma] is the set of all points satisfying a(x, t)< e + Ma,(x, t). For a
complete treatment of impulse control problems of nondegenerate diffusion processes
with bounded running cost, we refer to the book of Bensoussan and Lions [9]. Similar
problems are studied in [37], [38] and [52], [53], and some discrete approximations
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are described in Bensoussan and Robin [10], Capuzzo-Dolcetta and Matzeu [14] and
in general in Kushner [33].

Going back to the initial problem (1.4), consider the set of conditions:

Find u in V,, such that

u(x, T) 0 for every x in ,
Au <-f in ’( ]0, T[),

u<=Mu in[0, T[.

Notice that for every u in

(2.59) u <= Mu in [0, T[

is equivalent to

(2.60) Bu <= 0 a.e. in x ]0, T[,

where the operators A, B and M are defined by (2.1), (2.2) and (2.6).
THEOREM 2.5. Let the assumptions (1.7),..., (1.10) hold. Then problem (2.58)

admits a maximum solution , which is given explicitly as the optimal cost (1.4) and
satisfies (2.8) and (2.10). Moreover, defining

(2.61) x*(t)=inf x’--x(X t)+c(t)>O

we have for almost every (x, t) in ]0, T[

A=f and Ba<-_O ifx>-_x*(t),
(2.62)

Aa <=f and Ba O ifx <- x*( t).

Proof The first part is obtained from Theorem 2.4 by letting e tend to zero. It is
clear that we also apply Theorem 2.2 and Corollary 2.1. Note that a satisfies the
dynamic programming principle (2.9).

In order to prove (2.62), we approximate the optimal cost (1.4) by the equation
(2.33). Since the estimates (2.8) and (2.10) hold uniformlyin e >0, for the solution
t of (2.33), we deduce

(2.63) lim Bt _-< 0,

which implies

(2.64) B <= 0 in x [0, T[.

Let (x, t) be a point in [0, T[ at which Ate, At, O< e =< 1 exist and are such that
x > x*(t). Since t is convex, we have

B<0 at (x, t);

hence, for e sufficiently small

Ba<0 at (x, t),

and from the equation (2.33), we deduce

Aa=f at(x,t).

This verifies (2.62) and the proof is completed. Note that the idea of this theorem can
be traced back to [41]. 1
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3. The free boundary. Define the differential operator

(3.1) A’u
Ou 1

Ot 2
O’2(t) 02u OU

Ox’--5- (a( t)x + b( t)) --x + (a( t) a( t))u

and the substitutions

(3.) w c(t),
Ox

(3.3) dc_
g=--t (a(t)-a(t))c(t)-of

OX’

for the given functions u and f
If u solves (2.4), then by taking formal derivative with respect to the variable x,

we can deduce the equation

(3.4)
(A’w-g)vw=O in[0, T[,

w(.,T)=0 in,

to be satisfied by the optimal cost t, defined in (1.4), through the transformation (3.2).
It is clear that (3.4) represents a classical variational inequality in the unknown w (e.g.
Bensoussan and Lions [8], Friedman [21], Kinderlehrer and Stampacchia [31]). In
this connection with optimal stopping, we refer to Bather and Chernoff [4], Karatzas
[28] and more recently to Karatzas and Shreve [29], [30]. Moreover, the solution w
of (3.4) has a stochastic representation as the optimal cost of a stopping time problem,
i.e.

(3.5)

where

w(x, t) inf {S,t(O): -< 0 =< T, stopping time},

(3.6) S,(0)=E g(y(s),s)exp (a(A)-a(A))dA ds

and the process y(s)=yt(s) is given by (1.2) with the control v=0.
Then, with the function w(x, t) we can define the moving boundary x(t), 0-<_ < T,

by

(3.7) x(t) inf {x: w(x, t) < 0}.

As in Bather and Chernoff [4], Benes et al. [6], Karatzas [27], Menaldi and Robin
[41], the reflected diffusion process on the half-space [x>=x(t)] will prove an optimal
control for the original problem (1.4), (1.5). It is clear that the use of the variational
inequality (3.4) will help us to obtain enough regularity of the free boundary (3.7) in
order to be able to construct the reflected diffusion process.

First we consider the problem (3.4) and next the optimal control related to the
free boundary (3.7).

3.1. Variational inequality. Consider the penalizing function

O ifl <-_0,

(3.8) fl(A)= ,2 ifO_<- A _-< 1,
2A-1 if A->l,
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and the set of controls r, e > 0, defined by

(rt, s) belongs to F if rt(t), :(t) are progressively measurable random
processes from [0, +c[ into R such that for every t-> 0 and h in R,

(3.9)

Ar/(t) -1 fl(A)-<_ so(t) <= 1
o

E E

Note that if (r/, :) belongs to , then by looking at the graph of/3(h), we deduce for
every _-> 0,

2 1
(3.10) 0<_- r/(t)_-<- 0<- so(t)-<-

In order to be able to derive the variational inequality (3.4), we introduce another
penalized problem,

(3.11) t(x, t)= inf{]xt(7, so)" (r/, s) in },

(i ) }(3.12) Jx,(rt,:)=E (f(y(s),s)+c(s)rl(s)+(s))exp a(h)dh ds,

with s ->_ t,

(3.13) y(s)=x+ (a(1)y(1)+b(1)+n(A-t))dA+ o’(A+t) d(1),

i.e., the equation (1.2) for

(3.14) (s) n(A) dl, s >- 0.

The Hamilton-Jacobi-Bellman equation associated with the above penalized
problem is precisely the following:

Find t in V,, such that t92/ /19X2 belongs to Llc,

(3.15)
(x, T) 0 for every x in ,

a.e. in x ]0, T[,

where the operators A, B are given by (2.1), (2.2) and the spaces Vm, Llc are defined
in (2.32).

THEOREM 3.1. Under the hypotheses (1.7),..., (1.10) the optimal cost defined
by (3.11) is a nonnegative continuous function such that for some constants 0 < c <-C,
the same m >-_ I for the assumption (1.9), and every 0 < e <- 1, (x, t), (x’, t’). in x [0, T]
we have

(3.16)

c]x+]" C <_- a (x, t) -<_ C (1 + Ixl),
la(x, t)- a(x’, t)l C(1 +lxl- +lx’lm-)lx-x’l,
la(x, t)- a(x, t’)l -< C(1 + Ixl")lt- t’[,

0<_-(x, t)C(l+[x]), q- (m-2)+

ax2

so, is convex in the first variable. Moreover, the partial differential equation (3.15)
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has one and only one solution, which is precisely thefunction . Furthermore, converges
to the optimal cost , given by (1.4), as e approaches zero.

Proof. Use the same technique of Theorems 2.1, 2.2 and 2.3.
Now, we differentiate (3.15) with respect to the variable x and let e tend to zero,

to obtain the variational inequality (3.4). Due to the lack of an a priori estimate of
the mixed derivative of in x, t, we prefer to use a weak formulation of (3.4) in the
sense of Mignot and Puel [48]. However, that estimate will be obtained later on by
means of the interpretation (3.5).

Consider the weighted norm, p > 2m + 1,

(3.17) 11 I(x)l=(l/ Ixl=)- dx

and the Hilbert spaces

(3.18) H is the set ofall real measurable functions v on R suchthat vllp is finite,

(3.19) V is the set of all real measurable functions v on R with a derivative
v’ such that Ilvll, and Ilu’ll,=, are finite.

Identifying H and its dual, we denoted by (.,-) the pairing between V’, the dual, and
E The natural inner product in H is

(3.20) (u, )= f ux)o(x)( + Ix[:)-" dx,

with the corresponding norm I" I1" I1,, for a fixed p. Define the bilinear form, for
in [0, T],

a(t, u, v) 2(t) (x) (x)- 2px(l+ Ixl=)-
(3.21) -(a()x+b()) (x) v(x)+((t)-a())u(x)v(x) ,(+lxl)-,dx,

which is continuous and strictly positive on V. Notice that for any smooth function
u(t) u(t, x), we have

(3.22) (au )--(t), v +a(t, u(t), v)=(A’u(t), v>
for every v in V, with A’ the differential operator (3.1).

Let L2(0, T; X) be the classical space of all square integrable functions on ]0, T[
with values in a Hilbert space X. Introduce the problem:

Find win L2(0, T; V), w=<0 such that

(t), v( t)- w(t) + a( t, w(t), v(t) w(t)), dt +_12 Iv(T)
(3.23) Ior>-- (g( t), v( t) w( t)) at,

for every v in t2(0, T; V), withOv/Ot in L2(0, T; V’) and v-<0,

where the function g(t)= g(t, x) is given by (3.3).
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If a is the optimal cost (1.4), define

(3.24) c(t).
Ox

THEOREM 3.2. Let the assumptions (1.7),..., (1.10) hold. Suppose also that tr(t)
is nondegenerate, i.e. (2.36). Then thefunction given by (3.24) is the maximum solution
of the weak variational inequality (3.23).

Proof. Note that from Mignot and Puel [48], we know that the problem (3.23)
admits a maximum solution . This weak solution is actually a strong solution, i.e., it
is smooth in and satisfies (3.4) in a pointwise (a.e.) sense. However, the point is to
identify that solution with (3.24).

Denote by fl’(A) the derivative of the function (3.8),

(3.25) c(t),
Ox

with t being the optimal cost (3.11). Since a solves (3.15) and o-(t) is nondegenerate,
we are able to differentiate the equation (3.15) to obtain

(3.26)
A’-le fl’() x g inR[0, T[,

T, x) 0 for every x in R.

The facts that t(t, x) is convex in x and fl(h) increasing, fl’(0) 0, imply that

/3’() >- 0, fl’() >- 0, >=0 in[0, T[.
0x

Thus, an integration by parts in (3.26) gives

]--(t), v(t)-(t) +a(t, (t), v(t)-(t)) dt+-lv(T
(3.27)

e (g(), v()-()) de

for every v in L2(0, T; V), with Ov/Ot in L2(0, T; V’), and v<_-0. Since the estimates
(3.16) ensure that - weakly in L2(0, T; V),

we have

limnf a(t, (t), (t)) dt a(t, (t), (t)) dr.
o

Therefore, by means of the following bound, for some constant C > 0,

fl() <--_ e(f Aa) <= eC(1 + e>O,

derived from Theorem 3.1, we take the limit in (3.27) as e tends to zero in order to
deduce that function , given by (3.24), is a solution of the weak variational inequality
formulation (3.23).

Now, we prove that for any solution w of the problem (3.23)

(3.28) w -_< k for every e > O.
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Indeed, if z w- from (3.23) and (3.26) we obtain

]- t), v( t) z( t) + a( t, z( t), v( t) z( t)) dt +- Iv(T)
(3.29)

>-_ (q(t), v(t)-z())

for every v in L(0, T; V), with Or in L(0, T; V’) and v N w, where

(3.30) q(x, t)=’((x’e ))(x, ).

Thus, by taking v 10, I any arbitrary positive number, in (3.29), we may deduce

(3.31) (t), z(t) +a(t, z(t), O(t)) dt (q(t), O(t)) dt

for every 0 0(t) such that

(3.32) 0 belongs to L2(0, T; V),OO/Ot belongs to L2(0, T; V’), 0(0) =0 and 00.

Therefore, introducing 0n as the solution of

O0n(3.33) n-+ 0, z+ 0,(0) 0,

we see that 0n satisfies (3.32). Hence, from (3.31) with 0= 0, > 0, we obtain

or
[a(t, z(t), On(t))-(q(t), On(t)) dtNO.

Since 0, z+ in L(0, T; V), we have

or
[a(t, z( t), z+( t)) -(q( t), z+(/))] dt N O.

But, z(t) 0 implies N w, and note w N 0. We have q(t) 0. Thus

-r

a(t, z(t), z+(t)) dt<-_O.
o

This means z/(t) 0, i.e. (3.28). This completes the proof.
Recall the function space V,,_I as in (2.32), i.e.

(3.34)

v belongs to V,._ if v " x [0, T] is locally Lipschitz continuous such that

Ov
Iv(x, t)l /

<-C(l+lxlq), q (m-2)+

for every x, and some constant C

and the space of distributions ’(R x ]0, T[). Consider the variational inequality:
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Find w in V,-1 such that

(3.35)

Suppose that

w(x, T)= 0 for every x in R,

A’w <- g in ’(R x ]0, T[),
w-<_0 in x[0, T[.

(3.36) of Of (x, t,-x x, t)--x <-- C(1 +]xlm-’)lt t’l,

for every x, and some constant C.

From this together with (1.9) we get Of/Ox belonging to Vm-1.
THEOREM 3.3. Assum’e the hypotheses (1.7),. , (1.10) and (3.36) hold. Then the

variational inequality (3.35) admits a maximum solution , which is given explicitly as
the optimal stopping cost (3.5) and (3.24) is true. Moreover, we have

(3.37) A’=g in ’([<0])

and is the unique solution of (3.35) and (3.37) simultaneously.
Proof. First, suppose that or(t) is nondegenerate, i.e. (2.36). Then, as was described

in the proof of Theorem 2.4, by applying the classical results we deduce that the
function , defined by (3.5), solves the variational inequality (3.35), (3.37).

On the other hand, by means of the assumption (3.36) we can show that

(3.38) I(x, t)-(x, t’)l--< C(1 + Ixl-’)l t- t’l,
for every x, and some constant C.

Therefore, if w is a solution of the weak variational inequality (3.23), we claim
that w , the unique solution of problem (3.35), (3.37), i.e, the optimal cost (3.5).
Indeed, an integration by parts in (3.35), (3.37) yields--- t), v( t) ( t) + a( t, ( t), v( t) ( t)) at
(3.39) rr

--> Jo (g(t)’ v(t)- (t)) dt,

for every v in L2(0, T; V) such that v<_-0,

after using the property (3.22). Hence, adding (3.39) with v- w, to (3.23) with v-
we get

a(t, w(t)-ff(t), w(t)- (t))_->0

which implies w .
To study the degenerate case, i.e. to drop assumption (2.36), we regularize the

problem by changing o-(t) into

(3.40) trn(t)=(tr2(t)+ rl) 1/2, r/>0.

Since the estimate (3.38) is uniform in r/ and the expression (3.5) is stable as
tends to zero, we can complete the proof in a similar way as in [37], [38].
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(3.41)

Remark 3.1. If (x, t) is the optimal cost (1.4), then

Ot
(X, t)=sup {Gxt(O) 0 < 0 < T, stopping time},

Ox

where

Gxt(O)= --(y(s),s)exp (a(h)-a(h)) dh ds

(3.42)

+c(0) exp (()-a(h))d

and y(s)=y is the process (1.2) with =0.
Remark 3.2. The Theorem 3.2 holds without assuming the nondegeneracy condi-

tion (2.36). On the other hand, if we do not include regularity in for the definition
of the space V_, i.e., v(x, t) continuous in (x, t) but locally Lipschitz only in the
variable x, then, the conclusion of Theorem 3.3 is true without the hypothesis (3.36)
on Clearly, in that case, the optimal cost (x, t) is continuous in (x, t) but locally
Lipschitz only in the variable x.

3.. Otl edsm First we give an abstract result about the existence of an
optimal policy.
TOM 3.4. Under the assumptions (1.7),. ., (1.10), and m > 1, there exists an

optimal control in of the initial problem (1.4), (1.5).
Proo Let be fixed in [0, T[ and consider the norm

(3.43)

Noting that for 0

(3.44)

and the linear character of the state equation (1.2) we have:

(3.45)

If (v,, n 0, 1,...) is a sequence in T" such that

II,,.-,o11,.-o, E{lu,.(O)-’o(O)lm} --’0, IE{’.(T-t)-’o(T-t)}l-O.
then Jx,(V,) Jxt(Vo) as n ,

and

(3.46) the mapping u-* J,,(v) is convex from T" into R,

where J,,(v) is the functional (1.3).
By means of the hypotheses (1.8), relative to c(t), and (1.9) we deduce that

(3.47) J,(v) -+ as vll, oo and, unless (t) 0 for every t,
also as E{l,(T-t)l}-c.

Thus, there is a sequence (v’,, n= 1,2,...) in T" and a v in Lm(]0, T-t[ 12), the
space of m-integrable functions, such that as n goes to infinity

(3.48) J,,(v’,)-(x, t). v’, V’o weakly in Lm, and ][v’,[Im+IE{",(T-t)}I<=C,
for some constant C.
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Hence, we can define (v,, n 1, 2,... in ?/" as a convex combination of (v’,, n
1,2,...),

n+k n+k

(3.49) v,,= , a’vl, a’ in [0,1]with a’=l
i=n i=n

and a nonnegative increasing function q(s), O<=s<= T-t satisfying

(3.50) strongly in Lm, and E(v,(s)}-q(s) for every s in [0, T-t].

Moreover, if N is a countable subset of [0, T-t[, a similar argument to the previous
one and the inequality (3.44) allow us to show that v,(s) is strongly convergent in
Lm(f) for every s in N; in particular we may assume that

v, (s) v(s) strongly in L () and almost surely in f, for
every rational in [0, T-t[.

Clearly, v(.) is nonnegative, increasing and progressively measurable. Define

(3.51 Vo(S) inf { v(s’): s’ > t, s’ rational}

which is right continuous having left-hand limits, adapted and Vo v in L" (]0, T[ f),
Uo(0) v(0). Hence, for an eventual subsequence if necessary, from (3.50) we have

(3.52) v, Vo strongly in L’, v,(0) Vo(0) strongly in Lm(), and
E{v,(T-t)}q(T-t), as no,

and if

(3.53)

then

vo(T-t)=sup{vo(S): O<=s< T-t}

E(vo(s)}=q(s)

provided both functions are continuous at s in [0, T-t]. Since

E c(s) exp a(h) dA dg(s- t) c(s) exp a(A) dA dq(s- t),

where

B(s)=Vo(S) if O<=s<= T-t,
(3.54)

Vo( T- t) if s -> T- t,

we may deduce from (3.45) that B belongs to V and

(3.55) J,,(v,)oJ,,(B).

But, based on the convexity properties (3.46), (3.49), we have

n+k

L,(v.) <__- E

and from (3.48), for every e > 0,

a,($)-<_a(x, t)+ if i>-n()

which implies

J,,,(vi)<=a(x, t)+e for every i>=n(e).
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Therefore, we obtain with (3.55)

Jx,()=a(x,t)

and the proof is completed. Iq

Now we give a constructive approach of the optimal control through the free
boundary (3.7).

Let t(x, t) be the optimal cost (1.4), for 0-< < T define

(3.56) x*(t)=inf x:-x(X, t)+c(t)>O

and suppose

(3.57) x*(t) is finite and can be extended to a continuous function on [0, T].

Some sufficient conditions to ensure (3.57) will be given later on. Note that in order
to determine the free boundary (3.56) we need only to know the function (x, t),
which is the unique solution of the variational inequalities (3.35), (3.37).

THEOREM 3.5. Let the hypotheses (1.7),..., (1.10) and (3.57) hold. Then there
exists a control in V whose associated state y(s)= yx,(S, ), defined by the stochastic
equation (1.2), satisfies

(3.58) Ty(s)>=x*(s),for every t<=s<= T, Jt I(y(s)> x*(s)) d(s-t)=O,
I(. denotes the characteristic function, and (0) (x*(t) x)/.

Moreover, the process is continuous, uniquely determined by the conditions (1.2), (3.58)
and finally, the control is optimal, i.e., (1.5) is valid.

Proof It is clear that y(s) is the reflected diffusion on the continuation set

[y>=x*(s)] with initial value xv x*(t) at the time t. Since we assume x*(t), 0<= t<= T
to be only continuous, it is necessary to make precise the classical arguments about
the existence of the reflected diffusion. Indeed, let (x(s), 0< e <= 1) be a smooth
approximation of x*(s), i.e. x(s) has a continuous derivative (s), x(t) x*(t) and

(3.59) x(s) x*(s), uniformly in t, T] as e -, O.

We define the processes (z(s), rl(s), <= s <-_ T), which are continuous and progress-
ively measurable, as the unique solution of the stochastic equations, <-s =< T

I Iz(s)=(x-x*(t))++ (a(A)z(A)+b(A)) dA + o’(A) dw(A-t)

(3.60) I I+ (a(A)x(A)+:(A)) dA + I(z(A) 0) dr/(A),

m(0) =0, (s)- (A) >= 0 for every T >- s >= A >= t,

z(s)>-o for every T_>- s ->_ t,
T

and I(z(s)>O) drip(s) 0.
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Thus, if y(s)= z(s)+x(s), t<-s <- T, we have

y(s)=xvx*(t)+ (a(t)y(.)+b()t))d,+ r(A) dw(1 t)

+ (y( x(l an(,

y(s) >- x(s), for every r_-> s _-> t,

(y(s > x(s an(s o.

Since

y(s) y,(s) a(A )(y(A y,(A )) dA + /(s)- ,(s),

an integration by parts yields

lye(s) y,(s)l- 2 a()ly() y,()l d

+2 (y(1)-y,()) dn(1)-2 (y(1)-y,(a)) dn,(1).

But the last two terms are equal to

N 2 (x(A) x,(A)) dn(A) + 2 (x,(a) x(A)) dn,(A).

Hence, by Gronwall’s inequality we deduce

(3.62) ly(s)-y,(s)lC(n(r)+n,(T))sup{Ix(s)-x,(s)l: tsT},

for every N s N T and some deterministic constant C depending on Z Similarly,
taking some q 1 + x (s), for every N s N T, 0 < e N 1, we obtain

(3.63) lye(s)- ql + n(s) exp 2 a(1)l dl

for every s in It, T]. Now, letting e go to zero and using the estimates (3.62), (3.63),
we get two continuous and progressively measurable (y(s), (s), < s < T) such that

y(s)=xvx*(t)+ (a(1)y(1)+b(1))d1+ (1)dw(-t)

+ (( x*(l an(l,
(3.64)

n(o o, n(s n( e o, y(s e x*(s

for every r s t, and I(y(s) > x*(s)) dn(s) O.
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So the process is defined by

(x*(t) x)+ + r/(t + s)
(3.65) (s)= (x.(t)_x)++rl(T)

if O<=s<= T-t,
if s>=T-t.

It remains to prove that is optimal. Indeed, let us assume that there is no
degeneracy, i.e. (2.36); then the optimal cost (1.4) is smooth enough to apply It6’s
formula for a semimartingale (cf. Meyer [47]) in order to get, for every

E (t, x + v(O))- (T, y(T)) exp a(s) ds

A(s, y(s)) exp ( dl ds

(3.66)

(s,y(s))exp a(A)dA d(s-t)

E,<r[a(s,y(s))-a(s,y(s-))]exp(-ffa(A)dA)},
where y(s-) denotes the limit from the left at s. Since a(T, .)=0 in , AaNN
-Oa/OxNc(.) in N x[0, T[ and

[a(s, y(s))- a(s, y(s ))] N c(s)[y(s)-y(s )] c(s)[v(s)- v(s- )]

we deduce

(3.67)

Similarly, choosing given by (3.65), we obtain from (3.66)

(3.68) a(t,x)=Jt(),

after using the fact that

Aa(s, y) =f(s, y) if y x*(s), T s O,

O
(s, y) -c(s) ifyNx*(s), TsO.

Ox

Until now, we have established the optimality of control P under the assumption (2.36).
In order to remove the nondegeneracy (2.36), let us consider the function (, 0 < e N 1)
given as the optimal cost (1.4) with a covariance

(t)

instead of (t). We have, as e tends to zero
2(3.69) u, Ou/Ox O/Ox locally uniform in N x[0, T], and 0 u/Ox locally

bounded in N x[0, T].
Since (3.67) holds for a, 0 < e N 1, we obtain the same inequality as the limit when e

goes to zero. Now, the It6’s formula (3.66) for the control q + , q > 0, yields

a(,x+(O)+q)= A(s,y(s)+q)exp (1)d ds

(s,y(s)+q)exp a(A)dA dP(s-t)
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Because of y(s) >- x*(s) and

O<-f(s, y + q)- aa(s, y + q)<-- C(1 + lyl")I (oa (s, x*(s)+ q)= O)\Ox

where C is a constant, I(. denotes the characteristic function, we deduce, by means
of (3.69) as e tends to zero

a(t,x+(0)+q)=E f(s,y(s)+q)exp a(1)d, ds

(s,x*(s)+q)exp (a)dl d(s-)

Thus the equality (3.68) follows when q becomes zero. Therefore, the proof is
completed.

Remark 3.3. A way to approximate the solution (y(s), (s), N s N T) of (3.64)
is by solving the It6’s equation

dy(s)=(a(s)y(s)+b(s)) ds+(s) dw(s-)

(3.70) +-1 (x,(s)_ y(s))+ ds, Te s t,

y(t)=xvx*(t).

Similar to [39], it can be proved that for every 1 p <,
(sup {ly()-y()l". r})0,

sup .n(s -- (x*(a)-(a*a .sr
E

as e tends to zero. This provides an approximation of the optimal control
Remark 3.4. Considering the solution (t, x) of (2.62), i.e., the optimal cost (1.4),

for x*(t) e and letting e go to zero, we obtain

a(, x*( + =f(, x*(
(3.72)

>
0
0 (’ x*( + (a(x*(l + b(c( + (a(

which implies

(3.73)
O

t, x*( t) +)
O

o - ’ x*( l ( x
, x*( + o.

So, the first derivative of (t, x) with respect to has a nonnegative jump at x x*(t)
and if that jump vanishes, and (t) 0, then the second derivative of with respect
to x is continuous throughout the free boundary x*(t). The last obseation can be
deduced also from the classical regularity on the function , a solution ofthe variational
inequality (3.35), (3.37).

Remark 3.5. Even under degeneracy, it can be proved (cf. [37]) that A is locally
bounded, more precisely as in Lewy and Stampacchia [34] we have

(3.74) -g-NANg, a.e. in Nx]0, T[

where is the solution of the variational inequality (3.35), (3.37), i.e., is given by
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either (3.5) or (3.24) and g by (3.3). This implies, using the standard regularity results
for parabolic partial differential equations,

(3.75) Ov/Ot, 02/0x2 are essentially locally bounded in (x, t) belonging to
x[0, T] such that r(t) 0

and also

(3.76) O/Ot is essentially locally bounded in x belonging to R for almost
every such that o-(t) 0.

Clearly, from (3.24), (3.75) and (3.76) we deduce that

(3.77) for almost every in [0, T] the function Oa/Ot is continuous in the
variable x belonging to

Note that (3.77) holds under the assumptions (1.7),..., (1.10), and that (3.73) is
actually an equality.

Remark 3.6. Going through the proof of Theorem 3.5 we notice that the continuity
of the free boundary x*(t), given by (3.56), at the end point T is not really used.
It suffices to suppose

(3.78) x*(t) is continuous and bounded from above on [0, T[

in lieu of (3.57).
Remark 3.7. Define the function (q(t), 0 <- t_-< T) by

(3.79) q(t)=sup x" xx(X, t)<----(t)-(a(t)-a(t))c(t)
which is bounded in view of the hypotheses (1.8) and (1.9) if m > 1. The function
(3.79) will provide an upper bound for the free boundary (3.56), more precisely

(3.80) if x*(t) is continuous on [0, T[ then x*(t)-< q(t) for every in [0, T[.

Indeed, fix (x, t) in x ]0, T[ such that x < x*(t). By continuity, there is 8 > 0 such
that x’ < x*(t’) for every It’- t[ < 8, [x’- x[ < 8. Since (x’, t’) 0, by definition of the
free boundary, we get A 0 at (x’, t’). This fact and (3.35) yield g(x’, t’)>-O. Hence,
as x’ approaches x*(t’) we deduce g(x*(t’), t’)<=O for every [t’-tl<& Clearly, this
implies (3.80).

4. Finite resources. In this section we study the case of a monotone follower
problem with a constraint on the resources (1.6).

Let A be the differential operator (2.1) and define

Ov Ov
(4.1) B’v c(t)

Oz Ox

for a function v(x, z, t), (x, z) in x[0, [, 0--< t--< T. A heuristic application of the
dynamic programming to the problem (1.16), , (1.19) yields the following Hamilton-
Jacobi-Bellman equation

(Av-f)v B’v=O in x]0, o[ x[0, T[,

(4.2) v(.,., T)= 0 in x[0, [,

Av=f inx{0}x[0, r[

to be satisfied by the optimal cost 3 given by (1.6).
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First of all, we need some a priori estimates.
THEOREM 4.1. Assume (1.7),-.., (1.10) hold. Then the optimal cost defined by

(1.6) is a nonnegative continuous function such that for some constants 0 < c <-C, the
same m >- 1 of the hypothesis (1.9), and every (x, z, t), (x’, z’, t’) in R [0, oo[ [0, T]
we have

clx+lm- c <-_ (x, z, t)<- c(1 +

I(x, z, t) 3(x’, z, t)l-<- C(1 + Ixl m-1 + [x’l"-l)lx
(4.3)

I(x, z, t)-(x, z, t’)<= C(l +lxl’)lt- t’l,

o<=(x,z,t)<C(l/lxlq), q-(m-2)/

OX2

and

(4.4) (x, z, t)-(x, z’, t) C(1 +lxlm-1)(z’-z)+,
so, is convex in the first variable and decreasing in the second variable.

Proof The estimate (4.3) is obtained by an analogy to Theorem 2.1. Let us prove
(4.4). Indeed, notice that

(4.5) 3(x, z, t) 3(x, z’, t) <-_ sup {(J,(v) J,,,(v’)): v’ in T" satisfying (2.9) and
v’(T-t)<-z’},

where v is chosen as any measurable function of v’, with v( T- t) <_- z. In particular,
we take

v’(s) if v’(s) <= z,
1,’( S)

z if v’(s) ->_ z.

Hence, using the fact that for y(s), y’(s) denoting the processes associated with v, v’,
respectively,

E{ly(s)-y’(s)lm}<-_Cl(z’-z)+l for every s in [t, T],

for some constant C independent of x, t, z, z’, v and v’, we deduce, by virtue of (1.8),
(1.9) and HSlder’s inequality,

(4.6) Jx,(v)-Jx,(v’)<=CE (l+ly(s)l’+ly’(s)l") ds I(z’-z)+l ",

for another constant C. Finally, since (2.11) is equivalent to

(4.7) E I(s)l ds C(l/lxl),

for an appropriate constant C, the expressions (4.5) and (4.6) imply (4.4). [3

Denote by Vm the function space,

v belongs to Vm if V :Ri x[O, 00[ x[O, T]-+R is locally Lipschitz
continuous such that

(4.8)

OV
Iv(x, z, t)l + (x, z, t) =< C(1 + Ixl),

Ov
(x, z, t) + (x, z, t)

for almost every (x, z, t) and some constant C.

Note that 3 satisfies the dynamic programming equation.
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Note the change of notation with respect to the definition (2.34) in 2.
Observe that function u, given by (1.18), is also the unique solution ofthe equation

(4.9)

under the regularity (2.34).
Consider the problem:

Find v in V, such that

(4.10)

Au=f in ’(R[0, T[),

u( .,T)=0 inR,

v(.,.,T)=0 inRx[0, o[,

v(.,0,.)=u ingx[0, T],

Av <=f in ’( x ]0, o[ [0, T[),

B’v <-_ 0 a.e. in R x ]0, c[ x ]0, T[.

Notice that for every v in

(4.11)

is equivalent to

(4.12)

where the operator

B’v<-O a.e. in ]0,[ ]0,T[

v<_M’v in]0,[x[0, T[,

(4.19) a(x, t)=inf Jx,(v, O)+ E exp a(s) as a(y(O-), o) M

(4.18)

then
" inf {s t, T]: z(s) < 0}

and

(4.13) Mv=inf{c(t)+v(x+, z-, t): 0<_- :=< z}.

TI-IEOREM 4.2. Under the assumptions (1.7), , (1.10) theproblem (4.10) possesses
a maximum solution , which is given explicitly as the optimal cost (1.6). Moreover, we
have the following decomposition:

(4.14) (x, z, t) a(x, t)+ h(x + z, t) for every (x, z, t) in x[0, o[ [0, T],

where is the unlimited optimal cost (1.4) and

(4.15) h u- in [0, T],

with u being defined by (4.9).
Prooj First of all, we remark the dynamic programming equation applies to both

optimal control problems (1.4), (1.6), i.e. if

(4.16) z(s)=z-u(s-t) for every t<-s<-T,

Jx(u, 0)=E f(y(s),s)exp a(A) dl ds+c(t),(O)I(t<O)

(4.17)
+ c(s) exp a(A)dA dr(s-t)
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f
3(x, z, t)=inf Jx,(’, 0 ^ ’)

 4o 0, [ (I t+E exp a(s) ds (y(Or-),z(Or-),O) "
where N 0 N T is any stopping time associated with the system control , which
includes the probability space (, , P), the filtration, the Wiener process and the
control (’, w(t), (t), 0).

Next, by viue of the estimates (4.3), (4.4) we can prove as in 2 that the optimal
cost (1.6) is the maximum solution of the problem (4.10).

Finally, let us prove (4.14). Indeed, using either (1.19) or (4.20) with 0=r, and
the fact that

(., 0, .)=a+h,

we obtain

(x, , t)=inf J(, r)+ exp (s) ds (y(-), )

(4.
+ exp (s) ds h(y(r-),) "

Since we may assume that (. is continuous and because of

y(-) =x+z+ (a(s)y(s)+b(s)) ds+ (s) dw(s)

and

Ah f A >- O

we get, by applying It6’s formula

(4.22) E exp (s) ds h(y(’- ), ’) <-_ h(x + z, t).

Clearly, combining (4.19), (4.21) and (4.22), we deduce

(4.23) (x, t) <- a(x, t) + h(x + z, t).

On the other hand, denoting by v(x, z, t) the right-hand side of (4.23), we have

(4.24) Av(x, z, t) Aa(x, t) +f(x + z, t) A(x + z, t).

Denoting by x*(t) the free boundary (3.56), the equality (4.24) yields

Av(x, z, t) <- Aa(x, t) <=f(x, t) if x + z >- x*(t).

Because

A(x+ z, t) A(x, t) A’
0a
(x+, a,

where A’ is the operator (3.1), so from (4.24) we obtain

Av(x, z, t) =f(x, t) g(x + A, t) dA <-f(x, t) if x + z < x*(t),



ADDITIVE CONTROL OF STOCHASTIC LINEAR SYSTEMS 889

in view of Remark 3.7 and the definition (3.3). Hence

(4.25) Av <-f in R ]0, c[ [0, T[

and also

(4.26) B’v Ba <-0 in R x ]0, [ x[0, T[.

This implies that v solves the problem (4.10) and since 3 is the maximum solution,
the equality must hold in (4.23).

COROLLARY 4.1. Ifthe conditions (1.7), , (1.10) and (3.78) hold, then the control

^ z is optimalfor the problem with the resource constraints (1.6), where is the process
defined in Theorem 3.5.

Proofi The result is straightforward and follows from the decomposition (4.14),
the technique of Theorem 3.5 and Remark 3.6.

Remark 4.1. An equivalence to Theorem 3.4 can be stated for the problem with
the resource constraints (1.6). Moreover, the fact that f(t, x) approaches infinity as x
goes to positive infinity is useless in the proof for existence of an optimal control
relative to problem (1.6).

Remark 4.2. From the expressions (1.4) and (1.6), it follows that

(4.27) 3(x, z, t)- fi(x, t) as z-+

in a decreasing fashion and pointwise in x[0, T]. Hence, the equalities (4.14) and
(4.15) imply, for every in [0, T],

(4.28) u(x, t)- (x, t)--> 0 as x -->+

in a decreasing fashion. This means that for a large initial state x, the optimal cost
(1.4) is very close to the cost of the free-control evolution. Clearly, this agrees with
the characteristics of the optimal control of Theorem 3.5.

5. Optimal corrections. Now, we consider a model of an optimal correction control
problem which will be reduced to a problem of the type presented in 1.

Denote by U the set of controls v(. which are progressively measurable random
processes from [0, +] into , right continuous having left limit (cad-lag) and with
locally bounded variation. Hence if/ is the set ofprocesses in which are nonnegative
and increasing, we have the following decomposition

(5.1) = +(R)+,

i.e., for every u(. in o//. there exist ,(. ), ’2(" in 7/’+ such that

(5.2)
v(t) r,,(t) ’2(t), --> 0,

,(0) ((0))+, _(0) ((0))-.
Note the change of notations used in 1.

The state of the dynamic system is described by (1.2), i.e.,

y(s)=x+ ,(s-t)+ (a(1)y(,) + b(,)) dl

(5.3)
+ o’(A) dw(A t), s >- t,

y(s)=y,(s,v) being a cad-lag random process adapted to (ffs-’,s>=t). A cost
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associated to each control v in OF is given by the payoff functional (1.3), i.e.

Jt(v)=E f(y(s),s)exp a(A)dA ds+c(t)lv(O)l
(5.4)

+ c(s) exp (A) dl l(s-)

where a(t), b(t), o-(t), c(t), a(t), f(x, ) and T satisfy (1.7), (1.8), (1.9), (1.10), and
Ivl denotes the total variation of v, i.e., Ivl v + v given by (5.2). Notice that a better
notation could be J,( v, v) in lieu of J,(v), because v, , are not uniquely determined
by v. However, we prefer to use (5.4).

Our purpose is to characterize the optimal cost

(5.5) (x, t) inf {J,(v): v in }

and to construct an optimal control in .
In the first part of this section we treat the problem just stated and then otter

some general comments about other extensions of these results.

g.l. lledfiom Let us suppose that f(x, t) is symmetric in the following sense.

(5.6) f(x, t) f(2xo( t)- x, t), (x, t) in N x[0, T] with xo(t) being Lipschitz
continuous in [0, T] and satisfying 2o(t) a(t)xo(t) + b(t), in [0, r],

where 2o(t) denotes the derivative of xo(t). From (5.6) we have

(5.7) Of=o at (xo(t), t) for every in [0, T].
Ox

Therefore, the function f(x, t) is completely determined by the restriction off(x, t) on
the half-line x >= Xo(t) for every in [0, T]. The assumptions (1.9) and (5.6) imply

(5.8) c[xl’-f<=f(x, t)<-f(l+lx[") in [0, T],

for some constants C -> c > 0, m => 1. Observe that Xo(t) represents the minimal trajectory
of the system.

THEOREM 5.1. Let the assumptions (1.7), , (1.10) and (5.6) hold. Then, if(x, t)
denotes the optimal cost (5.5), we have

(5.9) a(x, t)= a(2Xo(t)-x, t) for every (x, t) in [0, T],

where Xo(t) is given in (5.6).
Proof. Let v be an arbitrary control in F and (x, t) be any point in [0, T].

From (5.3) we have for =< s-< T

y(s, v)= 2xo(s)+ y(s, v-2q) with q(s)= xo(s)- a(s)xo(s) ds.

Since

we have

(5.10)

q(s) b(s) ds + Xo( t),

yx,(s, ) 2Xo(S)-pz(S, -), z 2Xo(t) x,
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where (s) solves an equation similar to (5.3) with a new Wiener process (s-t)--
-w(s-t) in lieu of w(s- t). Hence

f,(s,-u)=yz,(s,-u) in law.

Thereby, we obtain by virtue of (5.6)

(5.11) Jxt(u)=Jz,(-u),

where z is given by (5.10).
Thus, the assertion (5.9) is deduced from (5.11) by taking the infimum over v

inV
Remark 5.1. As in Theorem 2.1, we can prove that under the hypotheses

(1.7), , (1.10) and (5.6), there exist constants C => c > 0, such that for the same m => 1
of the assumption (1.9) and every (x, t), (x’, t’) in [0, T] we have

0 <- (x, t)<= C(1 +[x[),

I (x, t)- t)l +lxl
(5.12)

[(x, t)-(x, t’)]--<_ C(1 + [x[’)[t t’],

O<=(x, t)<C(l+]x[ q) q (m 2) +,
OX2

so is convex in the first variable. Actually, m 1 in (5.12) even if m> 1 in the
assumption (5.8).

Remark 5.2. From Theorem 5.1 we deduce that

(5.13) 0_ 0 at (Xo(t), t) for every in [0, r],
Ox

which represents a Neumann boundary condition for the corresponding Hamilton-
Jacobi-Bellman equation, i.e. the optimal cost is the solution of the equation

(A-f)vB=0 ifx<-xo(t),0 <-_t <-_ T,
(5.14)

-, T) 0 in co, Xo( T)],

with the boundary condition (5.13). This implies that the restriction of the optimal
cost (x, t) to the half-line x<-_Xo(t), 0<= t<= T, is actually the solution of a quasi-
variational inequality with Neumann boundary condition, associated with an optimal
impulse control problem where the state of the system is a reflected diffusion process
(cf. Bensoussan and Lions [9], and [37], [52]). On the other hand, notice that a =f(xo)
if c 0 and f is time-independent.

The whole 3 can be adapted to this case. For instance, define the differential
operator

--+(a(t)-a(t))u(5.15) A’u cr2(t) -(a(t)x+b(t)+2o(t))
OxOt OX2

and the substitutions

(5 16) v(x, t)
0a

(x Xo(t) t) c(t)

de
(5.17) g(x, t)=-dt (t)-(a(t)-a(t))c(t)-f (x-xo(t) t)

Ox

for the given functions and f.
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Then, the following equation is satisfied by the optimal cost (5.5) through (5.16)
and (5.17),

(A’-g) v =0 in ]-c,O] [0, T[,

(5.18) (., T)=0 in ]-,0],

vb(O, .) 0 in [0, T].

Moreover, the solution of (5.18) admits a stochastic representation as the optimal
cost of a stopping time problem, i.e.,

(5.19) (x, t)=inf {Sx,(O)" <- 0 <- T, stopping time},

where

(5.20)
S,(0)=E g(y(s),s)exp (a(A)-a(A))dA ds

r inf {s >- t" y(s) >= 0},

and the process y(s)= y,(s) is given by (5.3) with the control v=0.
Next, with the function (x, t) we can define the moving boundary x*(t), 0-<_ < T,

by

(5.21) x*(t) inf {x --<_ 0: (x, t) < O}

which induces an optimal control.
The precise variational inequality is exactly (3.23) with the space

(5.22) V is the set of all real measurable functions v on [0, [ with a derivative
v’ such that IlV[lp and Ilv’llp-1 are finite, and v(0) =0,

where II" lip and (.,.) are the norm and the inner product on [0, o[ instead of . The
bilinear form a(t, u, v) is defined as in (3.21) but the integration is over [0, c[ in lieu
of E, where a term is added in order to use the new definition (5.15) of the operator
A’. In a similar way, if the space V,,_I is given by (3.34) restricted to [0, [, we can
state a strong formulation of the variational inequality as follows:

Find w in V,,_I such that

(5.23) w(x, T)= w(0, t)= 0 for every (x, t) in ]-, 0] [0, T],

A’w _-< g in ’(]-c, O[ ]0, T[), w<-0 in ]-, 0] x [0, T[.

As in Theorems 3.2 and 3.3 we can prove
THEOREM 5.2. Under the hypotheses (1.7),..., (1.10) the function (5.19) is the

maximum solution of the weak variational inequality (3.23) with the changes (5.22).
Moreover, if we also suppose (3.36) is true and

(5.24) the derivative of Xo( t) is Lipschitz continuous in [0, T],

then the strong version (5.23) of the variational inequality admits a maximum solution,
which is precisely the optimal cost (5.19) and the equality

(5.25) A’C;=g in ([<O])

holds.
Remark 5.3. Similar results to Theorems 3.4 and 3.5 can be proved. For instance,

assuming (1.7), , (1.10) and (3.78), there exists an optimal control in which is
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continuous and uniquely determined by (5.3) and the conditions

(5.26) (s) /(s)- _(s) with /,

_
in /,

if z/(s)= Xo(S)+ x*(s) and z_(s)= Xo(S)-X*(S), then we impose

(5.27)
+(O)=(z+(t)-x)+, _(O)=(z_(t)-x)-,

z/(s) <= y(s) <- z_(s) for every -< s _-< T,

I(y(s) > z+(s)) d+(s- t)=0,
(.28) .

I(y(s) < z_(s)) d_(s- t) =0,

where I(.) denotes the characteristic function, y(s) the associated state and Xo(t),
x*(t) are given by (5.6), (5.21) respectively, i.e. reproduces the reflected diffusion
of y(s) on the interval [z/, z_].

5.2. General comments. Most of the results presented herein can be extended to
more general situations. Let us mention the following examples:

Extension to multidimensional model This includes all of 2 about the dynamic
programming equation, the second part of 3, i.e. 3.2, about the optimal decision
process, all of 4 about the case of finite resources, the first part of this section, i.e.,

5.1, about the optimal correction problem. Let us mention that one of the main
difficulties of the multidimensional case is the smoothness of the free boundary, which
is for us an open question.

Extension to partially observed system. Since the model-equation is linear and the
system may be degenerate, we can treat a multidimensional model with incomplete
information on the state of the system. In particular, a separation principle result can
be obtained (cf. [44]).

Extension to nonconvex data. In all of 2, 4 and in the first part of this section,
i.e., 5.2, we may allow the coefficients of the stochastic equation (1.2) to be nonlinear
in x, i.e., o-= tr(x, t), g g(x, t) in lieu of ax + b, and also c c(x, t), c c(x, t) and
f=f(x, t) to not necessarily be convex in x. In that case, the optimal cost (x, t) is
no longer convex in x and the technique of [41] applies.

Extension to diffusion with jumps. All results herein may be extended to a model
in which a Poisson integral is added to the stochastic equation (1.2). The technique is
similar to that used in [42].

Extension to long term average criterion. When the horizon is infinite, we may
consider a model with a long term average cost instead of the cost (2). (See, e.g. [43].)

Nonsymmetric case. It is possible to treat cases in which the reduction (5.9) does
not hold. This is the case, for instance, if f(x, t) is not symmetric or the cost Jxt(u)
involves c(. v (.) and c2(" 2(" with v vl 2.

To conclude, let us mention that decomposable models and problems with the
long run average criterion may be treated. Also, a combined version of 4 and 5 can
be developed.

6. Examples. To illustrate the results obtained in the previous sections, we shall
consider some examples. We assume that the coefficients a, b, c, cr in (1.2) and (1.3)
are constant, and the running cost f(x) is time-independent and satisfies the condition
(1.9). In addition, let c(t)= 0, i.e., the cost for control is negligible. As mentioned in
the introduction, for a < 0 and b > 0, the equation (1.2) may be interpreted as an



894 PAO-LIU CHOW, JOSI-LUIS MENALDI AND MAURICE ROBIN

automatic cruise control problem. Probabilistically it pertains to the control of the
motion of a Brownian particle with viscous damping, or an Ornstein-Uhlenbeck process
[56]. In the case that a > 0 and b < 0, it becomes a simple model for the control of
the population of a renewable resource. In either case, the unperturbed equilibrium
state is Xo (-b/a) > 0. We wish to construct the optimal control, in particular, to find
the free boundary, so that the mean-square deviation from the equilibrium value Xo is
minimum.

6.1. Unlimited resources. Under the above assumptions, the average cost (1.3)
yields

(6.1) J,(u) E f(y(s)) e ds

By Theorem 2.5, the optimal cost a (1.4) must satisfy

(6.2)

where

Ao f and m->0 ifx>=x*(t),
Ox

Aot -<f and --=0t 0
Ox

if x<=x*(t), 0 <- t<= T,

(6.3) Aou
Ou 1

0"
2 __021g ]Oll

Ot 2 OX2 ax+b’ox +au’

(6.4) x*(t) inf x" xx (x, t) > 0

To construct the solution for x->_ x*(t), we let s (T-t) so that (5.2) gives the
following free-boundary problem

v(x, s)= (x, T- s),

02Ov 1 2 v Ov
Lv 0" -(ax+ b)+ av =f(x),

Os 2 Ox Ox

o31)
(6.5)

03x
for x> x*(T-s), O<- s < T,

v(x, o) o,
031)

x=x*(T-s)
=0,

where v(x, s)= (x, T-s).
Introduce the following change of variables:

e2as 1
7"=

2a
0_-<s_-<T,

(6.6)

1 b
X-- Xo e Xo =--,

o" a

O 1)e as,

*( 7")
l

l + 2aT") l/2 { x* [ ---2al ln( l + 2aT") ] x}"
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In terms of the above variables, it is easy to check that (6.5) reduces to a standard
free-boundary problem for a heat equation.

Ow 1 02w
Mw g(, ’)

Or 202

(6.7)

OW
for

w(, 0) 0,

O<=r<__r=(e2"r-1)/2a,

where

(6.8)

OW

g(sc, ’) 1 + 2a’)t. f{rsC 1 + 2ar)-/+ Xo},

c -2a

2a

To solve (6.7) we seek a similarity solution of the form

(6.9)
w(:,

/= ’r>O.
0()’

for some n 6 N+,

By a straightforward computation, we get

(6.10) Mw= O"-l(nq-rlq’)-O"-q"= g(sC*rl, -)

or

(6.11) OO( nq rlq9’) go"= g(* rl, )/ 0 n-2.

Now, suppose that f is symmetric about Xo such that

(6.12) f(x+xo)= h(x)=lrl"h(rx) for every rN-{0}.

That is, h is positive and homogeneous of degree m. Then the system (6.7) is reducible
to a one-dimensional problem, if we choose

(6.13) 0=1/2, 0(0) =0,

so that the free boundary is given by

(6.14) *(r)=60(r)=6 for some/3e, 0-<_z<-l.

In view of (6.8), (6.12)-(6.14), the equation becomes an ordinary differential equation

(6.15) +-(e he’)= h(n),

provided that

m
(6.16) n=m+2, /3=.

.Let us summarize the above results"
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THEOREM 6.1. In (1.2) and (1.3), we assume the following:

(6.17) a,b, a, tr are constant and c(t)-=0, the conditions (6.12) and (6.16) are

satisfied.
Then, under the transformations (6.6) and (6.9), the free boundary problem (6.5) is
reducible to

-p +(np-/)=trh(r/) for ,1>=6,

(6.18)
’(6) =0,

"() =0,

(n)=o(n) as

Remark 6.1. The last two conditions in (6.18) follow from Theorem 2.1. The
reduced problem (6.18) is a free boundary value problem in one dimension where
is to be determined in the process of constructing the solution. A special case, to be
considered in what follows, has been solved by Benes, Shepp and Witsenhausen [6].

As a special case, let m 2. By (6.16), we get

(6.19) =1, n=4.

Then, setting 1, (6.18) may be written as

t)- +(4 n n, n,

(6.20)
(6) =62’
’() =0,

(n)=o(n) asn.
Similar to [6, Problem 2] (with replaced by -x), the solution of (6.20) is given by

(. ( o(+b(,(l [(al]- e-"/ a

where

(6.22) p, (/) (’04 + 6"r/2 + 3),

b(8)= ,(6)/{[,(6)]-’e })]-2 e-a2/2 da

The parameter 6 is determined by the equation

(6.23) 62 + )]--2 e- --t2)/2 da

[(41(/ )]--2 e-/2 dh-

which may be solved numerically to yield -0.6388 . In view of (6.5), (6.6), (6.9)
and (6.22), the problem (6.2) is solved and the associated free boundary is given by

t[1--e-2a(T-’)] I/2 b
O<=t<= T.(6.24) x-2 a a’

6.2. Finite resources. In the previous case 6.1, suppose the resource u for control
is finite so that 0<= u(T)<=z. The optimal cost (x, z, t) defined by (1.19) can be
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decomposed, according to Theorem 4.2, into two simple problems. That is, noting
(4.13) and (4.14),

(6.25) (x, z, t)= u(x + z, t)- [a(x + z, t)- a(x,

where (x, t) is the optimal cost without resource constraint, while u(x, t) is the cost
of free evolution defined by (1.18). Therefore it must satisfy

Aou=f, 0-<_t<T, xc,
(6.26) u(x, T) O,

,(x, t) O(Ixl") as

where Ao is defined by (6.3). By the transformation (6.6), (6.26) may be solved to give

flr-,, i exp ([(x t)_p]2/2[r(t)_A]+2aA)
u(x, t) e -"(

2[(t)-a]

(6.27)
x(l+2aa)f[ (l+2aa)-’/2p-b]-a da do,

x+ ea(T-t)

r(t)=(2a)-’ [e2" r-"- 11.
Thus, as a consequence of Theorems 4.2 and 6.1, we have

COROLLARY 6.1. If, in addition to the hypotheses (6.17), we assume u<= z, then, in

view of (6.27), the solution of (6.26) is reducible to a one-dimensional problem (6.18).
Remark 6.2. Note that the free boundary, given by (6.14), remains unchanged.

In particular, for m 2, this problem may be solved explicitly.
We wish to point out that, for the optimal correction problems, the case of vanishing

cost, c 0, is less interesting. In this case the optimal policy would be to counteract
the noise as long as the resources remain available so that f(y(t), t) is kept to the
minimum. However, for c # 0, the method of similarity transformations (6.6) and (6.9)
is no longer applicable. This, of course, is true also for the one-sided control problems.
Consequently one must deal with the genuine free-boundary problems for which the
analytical solutions are difficult to obtain.
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THE PARAMETER ESTIMATION PROBLEM FOR PARABOLIC EQUATIONS
AND DISCONTINUOUS OBSERVATION OPERATORS*

K. KUNISCHf AND L. WHITE

Abstract. Parameter estimation problems are studied for a class of linear autonomous parabolic partial
differential equations with various fit-to-data criteria, which may be discontinuous with respect to the state
variable. We analyze the convergence of Galerkin schemes approximating the optimization problems and
generalize results to higher dimensional problems. An example is then presented for the case of point
observation fit-to-data criteria in higher dimensions. Finally, discretization of coefficients is discussed for
identification problems with variable coefficients.

Key words, parameter estimation of parabolic distributed systems, Galerkin approximations, spline
functions, point observations

1. Introduction and statement of the problem. In this paper we study the parameter
estimation problem for a class of linear autonomous parabolic partial differential
equations. We suppose that information , of a physical system is available for which
a priori knowledge guides us to choose a mathematical model from a certain class of
equations depending on parameters q. The mathematical problem consists in determin-
ing q so that some observed part Cgu of the state u depending on q best approximates
or in very special cases even equals . We therefore study

(1.1) min (q) 2

where 0 is some admissible set of parameters, u(q) satisfies the differential equations
and I1" stands for an appropriately chosen norm. The choice of a quadratic criterion
is made on the basis of its widespread use in the applications [16], [23] but other
criteria are feasible and could be treated with the methods described below.

The optimization problem that wejust described is an infinite dimensional problem,
and its approximation by sequences offinite dimensional problems has recently received
much attention (see [3]-[6], [8], [23] et al.). In [3]-[6], [17] the convergence problem
of approximations to (1.1) is addressed. It is generally assumed that the fit-to-data
criterion is continuous in the state variable u of the differential equation, although in
some special cases [5] this condition is not used. Moreover, in all the numerical
examples of parabolic equations studied in [3]-[6] the fit-to-data criterion was not
continuous as a map from the state space to R. It is the purpose of this paper to give
a rather complete analysis of the convergence of Galerkin schemes applied to the
optimization problem (1.1) without the benefit of this continuity assumption. At the
same time results of ([3]-[6], 17] et al.) are generalized to the multi-dimensional case.
Much of the motivation for our work is provided by the study of parameter estimation
problems in transport equations arising in biological modeling as described in the
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work of [4]. In those problems the available information of the unknown system usually
has the form of point observations, see (M1) below.

We now describe the problem that is studied. Let us consider the equation

O__u= .. D,(ao(x)Du)+ b,(x)D’u+c(x)u, fort>O,
Ot i,j=l i=1

u(O, x) q(x) in 1,

u(t,
where is a bounded region in with boundary 0 and D stands for differentiation
with respect to the ith space variable. We assume that p H() and u(t, x),
although systems of equations could be treated along the same lines. The precise
conditions on the coefficients and on 0 will be given in the next section. In this
section we assume sufficient smoothness so that the solution u of (1.2) exists and that
the subsequent operations make sense. We shall denote u also by u(t), u(t, x) and
u(t, x; q) as it is dictated by the context. Here q stands for the (unknown) parameter
vector given by

q ((a,j), (b,), c, q), q Q,

where Q is a subset of an appropriately chosen function space and Q c Q. In the
notation for q we let (ao) stand for the matrix with element ai, and similarly (bi)
denotes a vector in ", with bi as ith coordinate.

Next we describe several fit-to-data criteria, corresponding to the general quadratic
criterion cited in (1.1). Throughout we direct our attention to a finite time interval

[0, T] during which observations can take place. Let tz be a real valued, monotone
increasing function and let I c [0, T] be measurable with respect to the Lebesgue-
Stieltjes measure d/x and with meas I 0. Further assume that 1 is a Lebesgue
measurable subset of f with meas 0.

We start with four specific examples corresponding to four different types of
observations . Let t (0, T] and x f.

(M1) ={z(t, x)}:l, i= 1,. ., r, j= 1,. ., where l=r+/ endowed with
the Euclidean norm, (discrete-discrete case),

(M2) = {z(., xj)} 6 Y2, j 1,. , l, 2 I-I=l L2(I) (continuous-discrete case),

(M3) = {z(t,.)}6 Y3, i= 1,..., r, Y3=I-I,= L2() (discrete-continuous case),

(M4) = {z(.,. )} Y4, Y4 L2(/, L2(1)), (continuous-continuous case).

Here L2(/, H) stands for the usual Sobolev space of H-valued functions, and ! is
endowed with the Lebesgue-Stieltjes measure dz; if H R then its notation is sup-
pressed. Moreover, 1-I_- H denotes the product of r copies of the Hilbert space H
endowed with the Hilbert-space product norm. Corresponding to these types of observa-
tions we consider four quadratic fit-to-data criteria"

.l(q) lu(ti, xj; q)-- z(ti, Xj)l-,
i.j

J2(q)~ f, [u( t, xj’, q) z( t, x)[2 d/x,

"3(q) =/ Ih lU(ti’X; q)-z(t" x)[2 dx,
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These fit-to-data criteria involve point evaluations which will be seen to be justified
for > 0 due to the smoothing properties of (1.2). We shall study (1.2) in its usual
setting in H(f). Then, note that for fixed q, ]l(q) and ]3(q) are not continuous
functions of the state variable if the latter is considered as element in H(f). We next
consider fit-to-data criteria in a more general setting.

Let Zi, 1,. ., 4, be Hilbert spaces (observation spaces) and let

ql" C(I, C(n))--> Zl, I c (0, T],

L(O, T; C(n))--> Z:,

3:-C(I; H(I’I)) -> Z3, I (0, r],

(4: L(O, T; H(f)) Z4

be continuous linear observation operators. Further define Fi’Z- R by

Zi

where Z is the observation, which is assumed to be known (exactly). It is now
easily seen that J(q) is a special case of

J(q) F,C,u(., .; q).

In fact, the observation operator involved to define J1, for example, is given by

(1 ((0(t,, XS)} Rk+,.

Given observations in a space Z so that a continuous observation operator can be
associated and a set of admissible parameters Q, we shall investigate approximation
schemes of the parameter estimation problem, phrased as the optimization problem:

() minimize J(q) FiCiu(., q), over q Q, subject to u satisfying (1.2).

The concept of solution of (1.2) is given by the semigroup solution associated with
the abstract differential equation

(1.3)
du(t)
dt

-A(q)u(t), u(0) p,

where A(q) is the elliptic operator associated with the right-hand side of (1.2), as
precisely defined in 2.

We point out that the use of the Lebesgue-Stieltjes measure in (M2), (M4), or
analogously in c:, (4 is related to the well-known behavior at 0 of the analytic
semigroup associated with (1.2). Recall that if T(t) is an analytic semigroup generated
by A in the Hilbert space H with operator norm I1" 11, then ]IAT(t)I[--< C and similar
estimates will be relevant in the approximation results given in this paper. Therefore
for certain, types of estimates, it will be desirable to have fit-to-data criteria that
compensate for this singularity of 0. Moreover, if there is no observation taken in
a neighborhood of 0, then/z (t) is an acceptable choice for all practical purposes.

To approximate () by a sequence of finite dimensional problems let HN be a
sequence of subspaces of H and denote by pN. H HN the orthogonal projections
N 1, 2, . We shall soon describe an operator-theoretic form of Galerkin approxi-
mations AN (q)" HN HN to A(q). The sequence of approximating Cauchy problems
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is given by

(1.4) duN’t’= AN(q)u(t) uN(o) PSo.dt

Note that (1.4) is an equation in HN. Let J(q) be given by Ji(q) with u(.,
replaced by the solution uN( .; q) of (1.4).

The approximation of the parameter estimation problem then becomes to
(a) solve

";q)

() minimize J(q) subject to u N satisfying (1.4)

and

(b) to establish conditions such that the solutions t]N of (N) (or a subsequence
thereof) converge to some q* 0 with q* a solution of () and

(1.5) uN(t, .; tN) u(t, q*) in H(Y), t [0, T],

(1.6) J(lN) - J,(q*).

DEFINITION 1.1. A sequence (HN, AN(q), cCi) is called parameter estimation con-
vergent (PEC) scheme for (1.2), if (N) has a solution tN for N 1, 2,. ., if there
exists a convergent subsequence Nk q* with q* a solution of () and if (1.5), (1.6)
hold for the subsequence. If there exists more than one convergent subsequence, then
all of the limits must satisfy () with (1.5), (1..6) holding.

Clearly (1.5) ,implies (1.6) with Ji taken as J3; if (1.5) is replaced by a convergence
assumption in 2L(0, T; H(fl)), then (1.6) holds for J4. In these cases it is also quite
standard to show that a scheme is parameter estimation convergent (see [4]-[6], [ 17]).
The major technical step that has to be accomplished to establish PEC in the general
case is to show that the Galerkin approximations (1.4) converge uniformly in the
parameter q to the original problem (1.3) in a norm that is finer than the H(fl)-norm,
in spite of the fact that the projections are taken with respect to the H(fl) inner
product. One remedy to this difficulty in the case of (spatial) point observations would
be to treat the whole problem in a finer topology, say HI() for one-dimensional
domains, or H2(-) for two- and three-dimensional domains. We will not follow this
idea, however, since it restricts the possible choices for subspaces HN requiring more
smoothness of the elements in HN and since the projections become more difficult to
calculate (due to the more complicated inner product structure). Instead we make
precise use of the location of the spectrum of the stationary equation associated with
(1.2). Here the strict ellipticity assumption is essential. For our convergence analysis
we use a technique developed in 11 ], where finite element approximations of the state
of (1.1) (q fixed) are studied, by first considering the (rate of) convergence of the
resolvents of AN in H(fl) and subsequently employing the representation of the
solution semigroup by the Dunford integral formula.

Numerical experiments for the choice of HN as cubic spline functions are docu-
mented in [4], [5] for constant and in [3] for variable coefficients. After completion
of this .manuscript prelimina.ry numerical studies were carried out comparing the use
of the J3(q) criterion to the J(q) criterion to identify spatially and temporally varying
diffusion coefficients in a one-dimensional parabolic equation [32]. For the temporally
varying coefficient there is no essential difference in the numerical results obtained
when using the J1 and the J3 criterion. For the spatially varying coefficient, however,
examples could be found where the ] criterion gives faster convergence than the J3



904 K. KUNISCH AND L. WHITE

criterion as well as "better" estimates; in some cases the J3 criterion would even fail
to lead to convergence of the minima of the approximating problems.

In 2 we present the main parameter dependent convergence theorems of this
paper. These results are subsequently applied to establish PEC for various fit-to-data
criteria. Many of the proofs of this section are given in Appendix A. The techniques
developed in 2 do not directly apply to verify PEC in the presence ofpoint observations
as in (M1) and (M2) if the dimension of the domain is higher than one. In 3 we
take up the problem of showing PEC in the presence of point observations if the
dimension of the domain is higher than one. As a general technique to handle this
case we propose to first show convergence (uniform in q) in the Hl(f)-norm with a
sufficiently high rate and then to use the inverse assumption [2, p. 89] together with
Sobolev’s embedding theorem (in H2() for dimensions two and three). This is
demonstrated by means of an example. The proofs of the technical lemmas of 3 are
postponed until Appendix B. To avoid some cumbersome notation, we do not discretize
the coefficients in (1.1) in 2 and 3. A simultaneous approximation of the coefficients
is carried out in 4. We summarize our results in the section "Conclusions". The
notation that is used is standard. Norms are denoted by l" throughout and we generally
use a subscript to denote the space in which the norm is taken: Operator norms are
denoted by I1" II. The subscript for the norm in H(f) is dropped whenever this seems
appropriate. The inner product in H(f/) is designated by (.,.). In our notation for
Sobolev spaces we generally follow [1], and we specify preimage and image space,
unless the latter is R for some j . For a linear operator A the resolvent set is denoted
by p(A). Throughout we frequently use a generic constant C in our estimates.

2. Parameter estimation convergence. In this section we present the main approxi-
mation results of this paper. It is convenient to repeat the equation under study:

du
dt-Ao(q)u(t,.) in (0, T]X,’-"+I

(2.1)
u(O,x)=(x)

(t,. )10, 0,

where Ao(q)u is formally defined by

in

for t>O,

Ao(q)u= Di(ao(x)DJu)+ bi(x)Diu+c(x)u,
i,j=l i=1

with

q ((ao) (b,), c, q) Q= WI’p(", Rnxn) X LP(’, n) X L(, ) x H(O, )),

with p > n,/ =max (p, 4)/2. Here (ai) denotes a symmetric matrix with elements au
and similarly (b) denotes a vector in ". The domain f/is assumed to be bounded
and either a parallelepiped or with a C2-boundary a2. In the case n 1, we take

(0, 1). Throughout we frequently use the convention to write c Q if for some
(au), (b), we have ((au), (bi), c, ) Q, and similarly for other combinations of
variables. Further P={((au), (b), c): for some we have ((au) (b,), c, ) Q}, and
Q and P are endowed with their natural product topologies.

Let us briefly outline the contents of this section. After stating the technical
assumptions we summarize properties of Ao(q) and their consequences in a series of
lemmas. These results depend on the location of the spectrum and consequently on
the strong uniform (in q) ellipticity assumption on Ao(q) and the parabolicity of (2.1).
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Next approximation of the resolvents is discussed in several propositions. The
proofs of the lemmas and the propositions, some of which are generalizations from
11 ], can be found in Appendix A. Parameter dependent approximation of the solution
semigroup associated with (2.1) is obtained in theorems that follow. These finally can
be used to verify PEC for Galerkin approximations of () for various choices of
observation operators (Theorems 2.6-2.8).

We summarize conditions that will be needed as the theory is developed.

(H1) There exists v>0 such that /Ei=I 2iEi,j=l aijij, for all (aij)EQ and
(:,) .

(H2) There exist constants/z > 0,/2 > 0 such that Q is a closed convex subset of

{((ao), (b,), c, q)" [ao[w,..(m <- tx, [b,[,.<.-_< ,
ICll <- tx, c(x) <= - for almost every x E f, Iql/om)=</x}

where p > n,/ max (p, 4)/2.

Note that by Sobolev’s embedding theorem it follows that for some constant ,

i,j=l i=1

for all (ao) Q and (i) R n.
(H3) The set 0 c Q is a compact subset of WI’p (O,, IR" ") Lp ([’, Rn) X

LO/(a,N)xH(a,N).
(H3*) The set OcQ is a compact subset of

L/(a, ) x n(a,.
(H4, k) The set Q c Q is a closed and bounded (by a constant ) subset of

ck(fi, nxn) X Ck(fi, n) X ck-l(fi, ) X H(a).
(H4*, k)The set 0c Q is a closed and bounded (by a constant ) subset of

c’(fi, "") x c(fi, m") x c’-l(fi, m) x n’(a).
Conditions (H1) and (H2) are common conditions in elliptic operator theory; here
they are assumed to hold uniformlyin Q. The condition on c to be negative is not a
stringent one. We will soon associate with (2.1) a semigroup e ’A(o and subtracting a
multiple of the identity I from Ao(q) only changes this semigroup to e-’ e ’a(q). We
next discuss some of the consequences of (H1) and (H2) in some detail.

Let B(q)" H() xH()oC denote the sesquilinear form

i=lj=l i=1

Ceainly from (H1) and (H2), it follows that

(2.3) B(q)(u, )
for some constant C, CI(, , n) (see [18, 3.4.18]).

Given conditions (H1) and (H2) we have (cf. [18, pp. 45, 144] for any ve H()

ivy2 4 4

where 6 6(p,/x, n, v, f) can be calculated explicitly. If 4 _>-v6, then

(2.4) Re B(q)(v, v) >-
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where C2 C2(n,/z, , v, p, 11). Here and throughout we take q e Q unless otherwise
specified.

The bilinear form B(q) may be used to define operators A(q) in H(f). An
element u H(f) belongs to dom A(q) if the map v B(q)(u, v) is continuous from
H(12) to C with respect to the H(f) topology. Since H(f) is dense in H(f), the
map v B(q)(u, v) may be continuously extended to H(f). Hence, there exists a
unique w H(f) such that

-B(q)(u, v)= (w, v)

for all v H(I)). Set A(q)u w for u dom A(q). A consequence of the Lax-Milgram
theorem is that dom A(q) is dense in H(ft) for every q Q and that

A(q)(dom A(q))= H(I’)
([10, Chap. 4]). By (2.4) we have for all u dom A(q)

(2.5) Re (A(q)u, u) <- -C21ulEn,,).
The Lumer-Phillips theorem ([22, p. 17]) implies that A(q) generates a Co-semigroup
of contractions T(t; q) on H(t2) with IT(t; q)lL2(n)<-_ e -c2t. For the results so far, the
conditions on 011 were stronger than necessary. They will be needed for the following
properties of A(q), however. It will be useful to know that

dom A(q)= H(fl)(q HE(f)

(see [18, Thm. 3.9.1 and 3.4.10]). We also make use of the following a priori estimate

(2.6)

for all vH(11)fqH2(12), [18] where C=C(tx, l",n,r,) but independent of qQ.
From (2.6) we deduce that for A C with Re A >= 0
(2.7) I(A A(q))-1 v[n2ct)<-_ 2CIvlHofft
holds for all v H(11). We shall also need estimates similar to (2.7) for stronger norms.
This necessitates the stronger smoothness assumptions (H4, k) on the coefficients and
on the boundary c911. We summarize from 12, p. 177].

If 011 is of class C(k/2), (H1), (H2), (H4, k+l) hold and J’H’(I), then u
Hk+2(ft), where A(q)u =f and

(2.8)

with C C(n, r,, II, to). In Remark 2.1 below we verify that (2.8) holds in fact for A(q)
replaced by Z- A(q) for all Z outside a certain sector in C with C independent of A.

The sequence of operators A(q) is defined next. First we make the following
assumption, which will be used for fixed s->_ 2.

(H5, s) H is a finite dimensional linear space with H W’(fl)f3 C().
Moreover, there exists p(N) with lim_.oo p(N)=0, such that for every

H(fl), when s is odd), and every N 1, 2, 3, ., there exists an element
such that

and
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Let PS’H(II)--> Hs denote the orthogonal projection. The restriction of B(q) to
Hs x Hs defines uniquely a bounded linear operator AS(q) Hs __> Hs by

(2.9) B(q)(u, v)=(-AS(q)u, v) for all u, v ns.
Certainly, AS(q) generates a Co semigroup TS(t; q)=i--o (AS(q)i/i!) on Hs.

Let {B}i= be a basis for H. Then the solutions us (t; q) of (1.4) are character-
ized by

d N

(2.10) d--t(u (t; q), B)=-B(q)(uS(t; q), B),

(uS(0; q), B)=(p, B)
for all 1,. , ks. Here (.,.) denotes the inner product in H(). Let us discuss
two special cases that have been frequently used in approximation and parameter
estimation problems (see [3]-[6], [17], for example).

Example 2.1. If Hs is a finite dimensional subspace of dom A, then As(q) as
defined in (2.9) is given by PSA(q). Approximations of this form with Hs chosen as
a subspace of spline functions or eigenfunctions were studied in [3]-[6].

Example 2.2. Let us assume (HI), (H2), that Hs c W.*([I) and that A(q) can
be expressed as A(q)=-T*(q)T(q)+ C(q) where C(q) and T(q) are bounded linear
operators from H([I) into H(fl). For u,vdomA we have (A(q)u,v)=
-(T(q)u, T(q)v) + (C(q)u, v) and by assumption the sesquilinear form

trq(u, v)=-(T(q)u, T(q)v)+(C(q)u, v)

can be uniquely extended to H(I) x H(II). Therefore, it coincides with B(q) on this
set. Since Hs c H(I), we find that the approximating operators As (q) in (2.9) can
be expressed as AS(q)=-(T(q)PS)*T(q)+PSC(q). For further details on these
schemes we refer to [29], for approximation of the state and to [ 17] for approximations
of the parameter estimation problem in H(fl).

We now summarize some technical results in a series of lemmas. The following
notation will be needed. Let

and

SR(O, ’)={zC: larg (z- y)l<= 0}

S(0, y)={zC: r- 0=<larg (z- y)l<= r},

where yR and 0[0, 7r/2). By Sc(9, y) we denote the complement of SL(O, y) in C.
LEMMA 2.1. Let (H1)-(H2)hold. Then
(a) {(A(q)u, u): u dom A(q), 1, q Q} & (arctan (2C/C2),-C2/2),
(b) IIm(a(q)u,u)l<--(2C/C)(Re(A(q)u,u)+(C:/2)[ul(n)),forudoma(q),

qQ,
(c) {B(q)(u, u): u H(fl)}c SR(arctan (2C1/C2), C2/2),
(d) p(A(q)) = Sc(O, -C2/2), for any 0> arctan (2C/ C2),
(e) A(q) generates an analytic semigroup T(t; q), given by

1 Ir eXt(h -A(q))-’ dhT(t; q) 27r---
where r is any positively oriented contour in p(A(q)) with arg A --> +/-0 as
with 0 (7r/2, r).
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(f) There exists a constant C independent of a[0,1],
SC(arctan (2C/ C2), 0) such that

q Q and A

C
II(-A(q))(A -A(q))-ll (l l+ 1) -’’

(g) II(A-A(q))-’II<=I/(ReA+C2) for all A with ReA> C2.
(h) For all cr [0, c) there exists a constant Ca (not depending on q Q) such that

I(-A(q))T(t q)l_-< Ct e-,C.

LEMMA 2.2. Let (H1)-(H2) hold and let 01 (arctan (2C/C2), 7r/2). Then there
exists a constant C C( C, C2, 0) such that

for all q Q, u H(I)) and A S(O, 0).
COROLLARY 2.1. If (H1) and (H2) hold then

C

for all q Q, u H(f) and A sC o, 0).
Proof By Lemma 2.2 we fin for udomA(q)that

and lu],n)=< Cl(a-a(q))u]lul. From these two estimates we obtain the corollary
with the same constant C as in Lemma 2.2.

LEMMA 2.3. Let (HI) and (H2) hold. Then dom (-(A(q))/2) H(f) and

(2.11)
HO() (f)

for all u H(f) with C independent of u and q.
Remark 2.1. The estimates developed so far allow us to generalize (2.8). Let

be of class Ck+2), let (HI), (H2), (H4, k + 1) hold and let f dom (Ak/z) for k even
and f dom (Ak-)/2) with Ak-)/2f H(f) for k odd. Then

(2.8") 1(3, --A(q))--flnk+2)<= C(l/Itk)+ I(A --a(q))-’flHo)),
where C= C(n, t,,f, to) is independent of A sC(arctan (2C/C2), 0). For the proof
we refer to Appendix A.

LEMMA 2.4. Let (H1) and (H2) hold and let O (arctan (2C/C2), 7r/2). Then for
all A S[’( 01, 0), q Q and u H, N l, 2, we have

(a) Illul,,.,,,)/lul,,,,)-< ClA[u[2-(aU(q)u, u)[,
(b) SC[(arctan (2C/C2), 0)= p(AU(q)),
(c) I(x -AU(q))-’ul,o,,)<= c/(Ixl/
(d) I(A -AU(q))-’ul,,,,,<= c/(,/ll/
(e) I(,-A(q))-ul,,,<-_l/(Re , +Cz) for all a with Re A >0.
In the following three propositions we study the convergence properties of the

resolvent. We first introduce some additional notation. We recall the definition of P
and denote by 1.1 the norm induced from W’P(f, " x")x LP(, ") x L(fl, ).

PROPOSiTiON 2.1. Let (HI) and (H2) hold and let q qO in P. Then there exists
a constant C (independent of q, A, q and N) such that for all A SC (0, O)

(c) ](A -A(q))-’q-(A A(q))-’l,,-,,,<_- CIq q[ll....,.., for q
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If in addition cp H(I)), then
(d) I(A A(qN))-lcp (A -A(q))-qll-l,(a)<-_(C/(I,l+ 1))lqN--qlplCplH’(a.
In the following estimates we will not distinguish between various functions p

with limn p(N) 0, and which differ from p used in (HS, s) only by a constant multiple
C C(C, C:, , , ,, n) independent of A, q and . We fuher set for A S(0, 0)

e(A) (A A(q))-l -(A A (q))-lpn.

PROPOSITION 2.2. Let (H1), (H2) and (H5, s) hold, and let H(fl), A
S O, 0), and q Q. en

S < N < p(S)llnO()"(a) leq (A)[H’(O)=p(N)IIHO(O), le

(b) More generally, if s is even, s2, if (H4, s-1) and (H5, s) hol< if 0 is of
class C, and dom (A/2)-) then

N

and

(c) If s is odd, (H4, s-1), (H5, s) hold and if OO is of class C2, and p
dom (AS-2)/2)-), with AS-)/2)-p H(f), then the estimates in (b) hold.

PROPOSITION 2.3. Let (HI), (H2), (H4, s-1), (H5, s) hold and assume OI’l to be
of class C s. Further let pdom (A/-) with A/2)-H(f) if s is even and
p dom (A-)/) if s is odd, s >= 2. Then

and

leq (A)ln(m =< IAl+ 1

For s 2 it suffices that (H1), (H2), (H5, s) hold, and that p H(fl).
Finally we are prepared to study the parameter dependent convergence of the

semigroups. Our first method of proof will be that of integral representation of the
approximating as well as the original semigroups.

THEOREM 2.1. Let (H1), (H2), and (H5, 2) hold and let qN qO in Q. Then
(a) IT(t; qO)qo_ TN(t; qN)pNqgNl< C(IqO_qNIpq_p(S)(1/n/)ltpold_lqgN_tpol,

o, 0 TN,t N)(b) [T(t;q )cp ;q PNcpN[H’m)
<-- C((1/x/t)lq- q[p + p(S)(1/ t))ll + C/x/)[cp s ql.

If in addition qN
_

qO in P H(12), then
(c) IT(t; qO),o_ TN(t; qN)pN,NI<
(d) IT(t; q)cp- TN(t; qN)ptVcpN[H’m)

<_ C(]qO_ qSlp + (p(S)//7)lpol t4,m)+ Clpo_ (p
N IHlm).

Remark 2.2. In Lemma 2.5 below we will demonstrate that under additional
eCt. pNassumptions IlTN(t; q)]]Hl(f/) If in addition ]]H (i.e., the H(f)-projection

restricted to H(f)) is uniformly bounded, we can replace the bound in (d) by the
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following estimate:

IT(t; q)t- TV(t; qN)PNqNln(a)

<-C(Iq-q’l,./p(N)/,/i)ll/clo-’lw.) for qq in Q.

oof of eorem 2.1. Let F=U3=F, with F={pe-’p>l},= F=
{e" -02p02}, and F={pe" p 1}, where 02 w-O. Let us obsee that for
an appropriately defined C we have

le’l IdAl t-1,

le’[
for t0.

To verify (a) we note that by Lemma 2.1(e) and the Hille-Yosida theorem we have
IT(t; q)lll for all Hs and qQ, and consequently IIT(t; q)Plll for
all q Q. Fuher, by Lemma 2.1(e)

IT(t; qO)O_

f e’[(x-A(q))--(A-A(q))-]lldx
2

CIq-qlll [e’14+p(N)
r, le’l+[ NI"

For the last inequality we have used Proposition 2.1(a) and Proposition 2.2(a). The
above estimates imply (a). To verify (b), we note that

IT(t; qO)q TrY(t; qrV)pSq

<-IT(t; qO)qo_ T(t; q)ol.,()+lT(t; qrV)t- TV(t;
+ITN(t; q)ppo_ T(t;
I+II+III.

From Lemma 2.4(d) it follows that ITS(t;
CI-1/2IO--qPNIH(C). Estimates on I and II are obtained by Proposition 2.1(b) and
Proposition 2.2(a). The remaining estimates (c) and (d) are proved by using Proposition
2.1(a) and Proposition 2.3 (with s 2) for (c) and Proposition 2.3 for (d).

If the initial state p is more regular, we can expect a higher rate of convergence
in condition (HS, s). For simplicity of presentation we assume that q is known in our
next result.

THEOREM 2.2. Let (H1), (H2), (H4, s- 1) and (H5, s) hold, let 0[ be of class C,
and let qrV _> qO in cs-l(fi’ nn) X cs-l(fi’ n) X cs-E(fi; ), s . 2. Then

(a) IT(t; qO)q_ T(t; qV)pl<_
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(b) IT(t; qO)q_ TS(t; qS)pSqlnm)<__ Ct-1/ElqO_qSlplCpl+p(N)t-llqlHS_2m
for p dom A-/ ifs is even, andfor dom A((s-)/2)-I with A((S-1)/2)-
H() if s is odd,

(c) IT(t; qO)_ TN(t; q)pNl ClqO_qSlpll+p(S)lln,_2m),

for dom A/- with A/- H(O) if s is even and for
dom (A-/) if s is odd.

The proof of this theorem is an immediate consequence of previous results and
we will not include it. Next we turn to estimates that hold for all H(O).

THEOREM 2.3. If
(a) (H1), (H2) and (H5, 2) hold and q qO in Q

or if
(b) (H1), (H2), (H4, s-1), (H5, s) hold, if O0 is of class C and qq in

C*-’(fi; R"*") x C*-’(fi; R") x C*-2(fi; R) x n(), s g2,
then

T(t; q)e + (t, qo) in o()
uniformly in compact t-intervals.

Proof. As in the proof of Theorem 2.1 we have IT(t; q)P%l-< I1, for all q Q,
q H(). From density of f-)jl dom A in H() [22], and Theorem 2.1(c), respec-
tively Theorem 2.2(c), it follows that TS(t; q)pSO+ T(t; qO)O in H(f/) uniformly
in compact t-intervals. Using IITS(t; q)PSll<-I once again, an additional triangle
inequality implies the result.

We now prepare some technicalities for a different technique of convergence proof
given by the Trotter-Kato theorem.

LEMMA 2.5. Let (HI) and (H2) hold.
(a) The restriction of the family of operators T(t; q) to H(12) is a Co-semigroup

with liT(t; q)llnm) <----M for some M independent ofq Q and t>=O.
(b) If moreover Hs c Hlo(f) fq HE(D,), then

IITN(t; q)l]Ha<mec’

uniformly in N, >= 0 and q Q.
THEOREM 2.4. If (H1), (H2) and (H5,2) hold and if q

HN c H(f)(q H2(O) and pS 1 strongly in H(f), then

s _> qO in P x H(fl),

TS(t; qS)pSq+ T(t; qO)qo in HI()
for every q H(f).

Proof of Theorem 2.4. The proof will be given by employing the Trotter-Kato
theorem as stated in [30], for instance. In view of Lemma 2.5 it suffices to show
consistency. For v H we have

]pS (i A(q))-i v (I A(qN )) pNvIH,(a
<= [(pS I)( I A(q))-I vlw,(n
+ 1(I A(q))-’ v (I A(qS))-I

+ 1(I- A(qN))-lv--(I- AN

The first term converges to 0 by assumption; the second and third terms go to 0 as
N- oo by Proposition 2.1(b) and Proposition 2.2(b). Consequently lim IPT(t; qO)O
TS(t; qN)pSll_lm)=O, uniformly in as varies in compact intervals. Another
application of the assumption that pSi in H(f) implies TS(t;qS)PS-



912 K. KUNISCH AND L. WHITE

T(t" qO)9)o in Ho(O). By the uniform boundedness principle IIPN ,,,a)is uniformly
bounded in N, and consequently, by Lemma 2.5, ]]TN(t q)pN]],,,a)is bounded
uniformly in N and as ranges in compact subsets of [0, oo). An additional triangle
inequality and the fact that 9)N

_
9)o in H() imply the final convergence claim.

The assumptions (H5, s) are comparatively easy to satisfy for certain subspaces
of spline functions, see [11] for linear splines and the estimates in [26] for higher
order splines. The additional assumption that pry _+ I strongly in H(O) appears to
be more technical to verify. We discuss these assumptions for several examples.

Example 2.3. We consider the one-dimensional case in which the state space is
H H(0, 1). It is well-known that ei}i with ei x/ sin (irrx) is a complete orthonor-
mal set in H. Let us take subspaces H N as HN= span {ei}l. We will show that
(H5, 2) with 93 N= p9) is satisfied and that pN

_
I strongly in H(0, !). Here again

NpN. HO_ HN stands for the orthogonal projection given by PNg)=Yi__ aiei where
a (9), e) with (.,.) the inner product in H.

Let 9) H2(0, 1) CI H(0, 1) and let D denote the differentiation operator. Then

[p9) 9)12 E (9), ei)e.i
i=N+I

(2.12) E 1(9, e,)l
i=N+I

1 1
Z -l(u,f,)12 N27rIDI,i=N+l

where in the last step we used Parseval’s formula and putf(x) / cos (i’n’x). Similarly,
we have

IPNg)--9)I’(o,,) E (9), el)el
i=N+I H(O,I)

[2<-- N2,n.2ID + E i7r(9), e,)f
i=N+I

(2.13) Nrr:lDol:+ E [ir(o, ei)]
i=N+I

i=N+I

From (2.12) and (2.13) it follows that (H5, 2) holds for this choice of subspaces
with/9(N) N-2. Similar estimates can be given to show that (H5, s) holds for s > 2.
Finally, we point out that the estimates leading to (2.13) also imply that P9) 9) in
H(0, 1) for 9) H(0, 1).

Example 2.4. Let m s be a parallelepiped and let H N be the set of all functions
in H() which are linear with respect to some triangulation of , with the diameter
of the triangles bounded by 1/N. For 9) H:(f) let Ir9) denote the function in H
which coincides with 9) in the nodal points of the triangulation. Note that Ir9) is well
defined since H:() is continuously embedded in C(). It is recalled in [11] that
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and

These estimates imply [rp- P[-<_ (C/N)I+[.,<: for H() and [+- P+lu’<n>
(C/N)I+[H:<a> for e dom A (cf. [11]). Here P" H() + Hs denotes the projection
with respect to the H()-norm. In paicular (HS, 2) is satisfied with N= p+. If
in addition SlH’<a> (C/N)[S[HO<m for some C independent of +s e H (inverse
assumption), then it can easily be shown that PS + I strongly in H().

Example 2.5. We consider another one-dimensional choice of subspaces. Let A
be the paition of [0, 1] given by {i/N} =o and put

H= H(A) {p C(0, 1)’p is a cubic polynomial on each
subinteal i/N, + 1/N], and p(0) p(1) 0}.

Alternatively, H(As) is the space of cubic Hermite splines modified so that
HN(AN) H(0, 1) HE(0, 1), see ([26, p. 24]). For C(0, 1) we let In denote the
interpolating spline function in H(A), so that In(t)=(t) and DIn(t)=
D(t), for 0 N. Thus, we have

CI+- IH+IL:<O,1)ID+IL:<O,1) for + Hi(0, 1),

and

C
for <pH-(0, 1),

see ([26, p. 40]). In particular, (H5, 2) is satisfied in this case with = In<p. Next we
show that P --> I strongly in H(12), where P is the projection with respect to the
H(0, 1)-norm. Let 22 N denote the quasi-interpolation operator from C(0, 1) + S3(AN),
the space of cubic B-splines with respect to the paition AN, as defined in [27, pp.
108, 136]. In [27, p. 230] it is proved that

IDN+[L:<o,,> C[+[HI(0,1 for + H’(0, 1).

Therefore, it follows that

IPSl H’<0,1) IPN H’<0,,)+ S Hi<0,1) + Il Hi<0,1)

where in the first estimate we have used Schmidt’s inequality as stated in [26]. Fuher,
IP% %1 +<o.1)u IP% + % +<o..)u ronows from
[27, Thm. 6.25], and [26, p. 40]. We have therefore established that llP[n(a)is
uniformly bounded in N. Note that Ip- H’<O,,) (el N)llH=(O,i)nom estimates
on - IH+ given above and another application of the Schmidt inequality. These
estimates together with a density argument imply that PS I strongly in H(0, 1).

THEOREM 2.5. Let (H1) and (H2) hold, and assume H W’+()D C() for
N 1, 2,.... en () with replaced by Q has a solution Q for any of the

2fit-to-data criteria J, 1,. ., 4. Recall that in this caseJ q Cu .,. q) zl z, with
u a solution of (2.10). If in addition (H3) (respectively (H3*)) holds, then () has
a solution N .
OO The solution of (2.10) can be expressed as us(t, x; q)=

kNZ=la(t;q)B(x) with a(t;q)=col(,(t;q),...,a(t;q))e It follows
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from (2.10) that a N(t;q) is the unique solution of

-t a (t;q)=G (q)a (t’q), RNaN(o; q)= hN(q),

where R N and G N are real kN kN matrices with elements

(RN)o=(B?, B)no,), (GN(q))o=-B(q)(BN, B)

and hN(q) is a kN-vector with (hN(q))=(, BY)HO). The map qo On(q) is con-
tinuous from the weak topology of Q to [kNkN. Similarly, q h N(q) is weakly
continuous. Consequently, if q-q weakly in Q as 1-oo, then an(t; q)-aN(t; q)
uniformly in compact t-intervals. Since H N C(,), aN(t; ql)--aN(t’, q) implies
uN(.,., ql)_ uN(., .; q) in C(0, T; C(, )) for any T>0. The special form of the
fit-to-data criterion, together with (H2) and the above discussion imply the existence
of a solution tN Q. The remaining assertions are simple to verify.

Remark 2.3. The smoothness requirement Hs W’(-) rather than Hs
H(f) was not used before Theorem 2.5 and it can be relaxed if the coefficients are
more regular. For example if ((a0), (b), c) W’(f") L(f ) L(f [)
then H s H(f) is sufficient for all our results.

Theorem 2.5 guarantees existence of solutions t s 0 of (s). If (H3) (resp.
(H3*)) holds, then there exists a subsequence of t N, again denoted by N, and q* Q
such that limNN= q* in Q (resp. limsN= q* in P x H).

Here we choose to present the final parameter estimation results for the case that
the parameters oN converge strongly. Similar but technically different results are
obtained if one builds upon a weakly convergent sequence of optimal parameters S
of (s) (compare Proposition 2.1). In the following theorems we establish PEC of
schemes (H N, An(q), Ci) where AN(q) is defined in (2.9)-(2.10) under various condi-
tions on HN.

THEOREM 2.6. Let (H1), (H2), (H3) and (H5,2) hold. Then
(a) (H N AN(q) c3)is PEC
(b) (H N An(q) c4) with Ix(t)=t is PEC, ire>
(c) if in addition (H3*) holds, then

(H N, AN(q), c4) with Ix(t)=t is PEC ire>o,

(d) if f is one-dimensional, then (H N A s (q) ) is PEC
(e) if fl is one-dimensional, then H N, A N (q), ) with tx (t) is PEC if e > 2,
(f) if fl is one-dimensional and (H3*) holds, then (HN, AN(q), ) with Ix(t)--t

is PEC, if e > 1.

Proof. We only verify (a) of the theorem and point out the changes necessary to
justify the remaining assertions. By Theorem 2.5 there exists a solution N of (N),
where (N) is considered with observation 3, so that

(2.14) J3N(glN)<--J(q) for all q (.
By (H3) there exists a subsequence of t N again denoted by N such that lim N q,
in Q, with,q* Q. Theorem 2.1(a) implies that j(ON)_ j(q,) and J(q)- J3(q) for
every q Q. Therefore, we find by (2.14) that J3(q*)--< J(q) for all q Q and q* is a
solution of (). The limits in (1.5) and (1.6) have been established already and
consequently (H N, A n(q), 3) is PEC. Similarly (b) and (c) follow from Theorem
2.1(a) and (c) respectively. Finally, (d), (e) and (f) are verified by using Theorem
2.1(b), (b) and (d) respectively and the Sobolev embedding theorem.
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Remark 2.4. Under stronger smoothness assumptions on the coefficients, the
boundary and the initial data, one can employ Theorem 2.2 to derive a theorem on
PEC of (HN, AN(q), cCi) analogous to Theorem 2.6. In this case limvp(N) will
generally converge to zero faster than for less smooth data; since again we can only
use compactness (cf. (H4)) to extract a subsequence of convergent parameters, it can,
however, not be guaranteed that the overall convergence will be improved. The
advantages of Theorem 2.2 will be exploited in 3.

THEOREM 2.7. Let (H1), (H2), (H3) and (H5,2) hold. Then (HS, AV(q), (3)
with I[0, T] and (HAtV(q), 4) with/x(t) are PEC.

The proof of this theorem uses Theorem 2.5 and Theorem 2.3(a) and is otherwise
analogous to the proof of Theorem 2.6.

THEOREM 2.8. Let (HI), (H2), (H3*) and (H5,2) hold and assume that 12 is
one-dimensional. Then (H A (q), c) with I [0, T] and I (t) t, 1,. , 4 are
PEC. Again this result is a direct consequence ofTheorem 2.4, Theorem 2.5, and Sobolev’s
embedding theorem.

3. Point observation operators in multidimensional domains. In the case of observa-
tion operators 1 and R/fiE we have established PEC only for one-dimensional domains
in 2. In this section we show, by means of an example, how Theorem 2.2 can be
used to guarantee PEC in domains of dimension greater than one. Convergence in a
higher order Sobolev space will be shown to hold and continuous embedding into
C(12, ) will be used. At this point we note that state convergence results (for fixed
parameters) in C(12, ) do not seem to be readily available for parabolic equations in
the generality considered in this paper [25], [29], [30].

Let us consider (2.1) with 1) an annulus in 2 with inner radius 1 and outer radius
2. Then f: [0, 1] [0, 1 - 12 given by

f(r, 9) -col ((r/ 1) cos 27r9, (r/ 1) sin 2ra9)

maps the square R [0, 1] [0, 1] onto 12. Moreover, f is infinitely differentiable and,
restricted to [0, 1] [0, 1) it is injective. Let f-1 denote the inverse off; f- is infinitely
differentiable from 12 to R if the upper and lower side of the square are identified
with each other. Further we put Fq q(f) and F-lq- q(f-), and note that Fq and
F-lq are defined on the rectangle and on the annulus respectively.

We next choose an equidistant grid on R with grid points (r, gff), where r iN,

9= i/N, i-0,..., N; j=0,..., N. Let SN be the (N+3) (N+3) dimensional
vector space of bicubic spline functions, (see e.g. [24, p. 131]) so that each ss Stv
has the representation

N+I N+I

sN(r, 0)= flijBin(r)B(O),
i=--! j=--I

with B the usual B-spline basis elements. Next let s be the subset of Ss defined by

N ={sN SN" stY(O, 0)= sN(1, 0)=0 for 0<= O_<- 1,
and sN(r, O)= sN(r, 1), for 0=< r -< 1}.

It is not difficult to construct an (N+I) x(N/I) dimensional basis for s
(compare [24, p. 209]). Note that F-l(ftv) C(I), ) fq Wo’(12, ) for fry tv and

We prepare the following theorem by first stating two lemmas, which are proved
in Appendix B.
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LEMMA 3.. 1. Let s $1. Then there exists a constant c independent ofN and s such
that

We need to introduce some more notation. For a function ’[0, 1]-R we let
IN C2(0, 1;R) denote the cubic spline function with respect to the partition t
i N, i=0,..., N and with (IN)(t)= (t)and D(IV)(O)= De(0), D(IV)(1)=
De(l). Further, for q’, we put (INq)( ", O)=IV( ", O) and (I)(r,.)=

).
LEMMA3.2. (a) LetqH3(R) withp(O, O) q(1, O)=0, (r, 0) q(r, 1),0-<r_-<

1, 0<= 0 <= 1, and let ff, l. HO(R) be the canonical projection. Then

c
(3.1) Iq -/3NpIn’(R <_--

N3_ 0, 1, 2.

(b) If p H2(), satisfying the same boundary conditions as in (a), then

(3.2)
c

Here c is a constant independent of N and
COROLLARY 3.1. (a) Let d H3(-) 1") H(f). Then

(3.3) [t--F-lffNFf[U’(f)<= NC3_iltlH3(f), i=0, 1,2.

(b) If H2() H(), then

(3.4) 1 F-NFIHo(a
with c independent ofN and , but dependent on E

LEMMA 3.3. Let (H1), (H2) hold, and let qNqO in P, H(). en
iT(t; qO)_ T(t; qN)ln2m Ct-lq-ql,ll.

Proo This convergence result is a direct consequence of Proposition 2.1(c) and
the technique of proof that was employed to verify Theorem 2.1.

Having established the above estimates we can obtain the following convergence
result in H2(O) by some simple inequalities.

THEOREM 3.1. Let us consider (2.1) with an annulus with inner radius 1 and
outer radius 2, and let (H1), (H2) and (H4, 2) hold. Put

HN=F-IN

and let qN qO in C2(; U") x C(; ") x CI(; R) x H(O). en

IT(t qo)o_ T(t; qs)Pssln(mN iqO_q ip + +

where SUpN I
OO From the construction of it follows that

Theorem 2.2(b) implies

(3.5) IT(t; r (t; Ct-lg-21
if only (H5, 3) is satisfied with p(N) CN2. But this follows from Corollary 3.1 with=F-F. (Here replaces s in the notation of (HS, 3).)
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Since pN 6 H(I) we have by Lemma 2.1(e) and (2.8*) that

1 J eX’(A-A(q))-’tPUdA ct--lltpNlH’(a),(3.6) IT(t;

where F is as in the proof of Theorem 2.1 and c is independent of q Q. By Lemma
3.1 and Corollary 3.1, (3.3), (3.5) and (3.6) we have

IF-lU(t; qU)u- rU(t; qU)nUUln(a)
CnIF-lUFr(t; qU)u- rU(t; qU)nUUln’(a)

(3.7) CN[F-ISFT(t; q)N_ r(t; qN)NIH’(a
+ CNIT(t; q)- T(t; qN)PSSln’n

<cs-llT(t qN)NIn3(a)Wcs-lt-lIN <CN-’IINIH,(a).-
Consequently, Lemma 3.3, (3.3), (3.6), (3.7) imply

iT(t qO)prv_ TN(t;

<=IT(t; qO)qs_ r(t;

+IT(t; qS)S-F-ISFT(t; q)lH
(3.8)

+IF-IN(t; q) TN(t;
C C

Finally, by Lemma 2.1(h), Lemma 2.3 and (2.6) we have

(3.9)

Estimates (3.8) and (3.9) imply the result.
COROLLARY 3.2. Let the assumptions of eorem 3.1 hold. If O c Q is a compact

subset of C2(,) x C2(,) x C(, ) x H(a), then
(a) (H,AN(q), ) is PEC,
(b) (HAN(q), 2) with #(t)= is PEC, ire> 1.
This is a direct consequence of the previous theorem and Sobolev’s embedding

theorem for dimension 2 (and 3).
Remark 3.1. The method that we employed to derive the H(fl) convergence is

based upon a well-known technique in finite element analysis, the essential ingredient
of which is the inverse assumption (see [2, Chap. 4]). The characteristic steps in the
context of the present example are given by Lemma 3.1 (inverse assumption), (3.5)
for i= 1, 2 and (3.7), (3.8).

Remark 3.2. As in earlier results, assuming more smoothness of the initial data
that are under consideration would allow one to weaken the singularity at 0 in the
estimate of Theorem 3.1.

4. Discretization of the coefficients. If the coefficients in (1.2) are constant or if a
priori information about them allows us to assume a ceain shape of the coefficients,
so that in fact only constants have to be identified, then () together with the
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approximation (2.10) ofthe state is a finite dimensional problem. In case the coefficients
lie in an infinite dimensional space, an additional discretization is required. We first
generalize the definition of parameter estimation convergence to include discretization
and identification of the coefficients. Let Qm c Q and consider the problems

() minimize jS(q) subject to u s satisfying (1.4), i= 1,. ., 4.
qQN

DEFINITION 4.1. A sequence (Hm, Am (q), cCi, Qm), 1, , 4, is called a vari-

able coefficient parameter estimation convergent (VAPEC) scheme if (a) there exist
solutions m Qm of (), (b) there exists at least one convergent subsequence

tmk-> q* with q* ( a solution of () and if (c) umk(t; (tm)- u(t; q*) in H(f) for
each t[0, T] and J(Ftm)Ji(q*). Any other limit of a convergent subsequence
must also solve () and (c) must hold.

We shall make use of the following hypotheses:

(H6) There exists a sequence of finite dimensional compact sets Qmc Q and
surjective maps Vm" 0m-> Qm such that for any sequence qm_> qO in 0,
we have Ivmqm--qmlQ-O.

(H6*) This is (H6) with IVq-qloO replaced by

]Vmqm qN e H1 (1-) --> 0.

The sequence in qm can also be a constant sequence.
If in addition to (H6) we assume that (H1)-(H3) hold and that H

C(I)), then there exist solutions tz/m Qm of (v) by Theorem 2.5. From (H6) we

conclude that Vm(m) tm for some tm Qm. By (H3) one can extract a subsequence
with tm--> q*, q* , and IV(t)-mklo->0. Consequently we have

(4.1) tm-q* in Q, t7mQmL q*0CQ.

If instead of (HS), (H7) we assume (H5*), (H7*), then

(4.2) m _> q, in P H(f), t] mk Qm p x H(f), q* 0 P H(f).

We are now prepared to study VAPEC of various schemes and observation operators
analogous to our study of PEC in Theorems 2.6-2.8 and Theorem 3.1. Here we only
present a result corresponding to Theorem 2.6.

THEOREM 4.1. Let (H1)-(H3), (H5,2) and (H6) hold. Then
(a) (Hm, AS(q), c3, Qm) is VAPEC,
(b) (Hm, AN(q), c4, Qm) with/x(t) is VAPEC if e > 1,
(c) ifin addition (H3*) and (n6*) hold, then (Hm, AS(q), c4, Qm) with/z(t) ,

e > O, is VAPEC.
If fl is one-dimensional, then

(d) (Hm, AS(q), c1, Qm) is VAPEC,
(e) (H AN(q), c2, Qm) with/z(t) is VAPEC if e > 2,
(f) ifinaddition (H3*) and (H6*) hold, then (Hm, Am(q), c2, Qm) with tz(t)= ,

e > 1, is VAPEC.
Proof. We only verify part (a). By definition of t]m it follows that jm(tm) __< jm (q)

for all q Qm and therefore (H6) implies

(4.3) Jm(FtN)<=Jm(Vm(q)) for all q 0.
From Theorem 2.1(a) and (4.1) we have Jm(t]m)-> J(t). Next let q 0 be arbitrary.
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By (H6) we have VrVq-q in Q and consequently, by Theorem 2.1(e) we find
jN V1, (q)) j(q). Therefore J(t) _-< J(q) for all q Q and (a) holds. Similarly, (b),
(c), (d), (e), and (f) follow from Theorem 2.1(a), (c), (b), (b), (d), respectively.

Example 4.1. Consider the case f/=[0, 1], with (H1), (H2) holding and let 0
B fqQ, where B is a closed bounded subset of H2(0,1;Rn")XHI(0,1;Rn)
Hi(0, 1 R) HI(0, 1; R). Denote by S the set of piecewise linear spline functions in
Q with respect to the grid t= i/N, i=0,..., N and let V stand for the spline
interpolation operator from 0 to S1. Clearly is compact in C1(0, 1;n)
C(0, 1;n)C(0, 1;)C(0, 1;) and in Q. Moreover V0 is compact in

C.(0, 1;) C(0, 1; n) C(0, 1; ) C(0, 1; ) (and in Q). Finally, if qn - q in
Q, then

CqNVNq q[o <=-l
SO that (H6) is satisfied. Note, that QS t in this example.

5. Conclusions. In this paper we study Galerkin approximations of the special
optimization problem that arises in the study of parameter estimation problems associ-
ated with parabolic differential equations. We introduce the notion of parameter
estimation convergence (PEC), which requires that the optimal parameters of the
approximating problems converge to a solution of the original optimization problem
and that the associated trajectories and values of the fit-to-data criteria converge. The
novelty of this work as compared to [3]-[6] is that we treat the multidimensional case
and that we allow for point observations, as opposed to distributed observations only.
The convergence analysis is based upon the representation of the solution of the
original as well as the approximating equations by contour integrals and, alternatively,
upon the Trotter-Kato theorem from linear semigroup theory. The parabolic nature
ofthe equation, see Lemma 2.1, 2.2 and 2.4, is used strongly. Once the desired parameter
dependent convergence results are obtained in H(12) and H() (see Theorems
2.1-2.4). PEC is readily shown, if the fit-to-data criterion is continuous from H(f/)
or HI(o) to R. In particular, point observations in dimension one are included by
employing Sobolev’s embedding theorem. To obtain point convergence in dimension
higher than one, we make use of the fact that the contour integral method that we just
mentioned, provides us with a rate of convergence. Utilization of this rate together
with the inverse assumption which is common for the use of finite elements, allows
us to demonstrate convergence (uniform in q) ofthe Galerkin scheme in a finer topology
than H(f) or Hi(O), as for example H2(f). Then again point observations can be
handled by Sobolev’s embedding theorem in dimensions two and three. The simul-
taneous approximation of the state of the equation and of an unknown variable
coefficient was first discussed in [3] and Theorem 4.1 is a generalization of this result
within our framework. Although several research groups have carried out computations
for parameter estimation problems, see the survey articles ([16], [23] e.g.) and the
work of Chavent ([8], and the references given there), a general study of the theoretical
convergence questions has, to our knowledge, only been started in [3]-[6], and the
present paper is a continuation of these efforts. For a recent survey article we also
refer to M. P. Polis, The distributed system parameter identification problem: a survey
of recent results, 3rd IFAC Symposium on Control of Distributed Parameter Systems,
S.P. 45-S.P. 58, Toulouse, France, June 29-July 2, 1982.
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Appendix A. Here we give the proofs of the lemmas and propositions of 2.

Proof of Lemma 2.1. Let u dom A. Then by (2.3) and (2.5), we have

IIm (A(q)u, u)[<=l(A(q)u, u)l<=
C1<=-Re(A(q)u,u)
C
2C1 Re (A(q)u, u)- Cl[/,/[ 2
C2 HI(a)

C2
Re (A(q)u,

Since by (2.5) the term in the last parenthesis is nonpositive, this estimate implies (a)
and (b). By the definition of A(q) from -B(q) we have (c). The theory of sectorial
operators directly provides (d) and (e) (see [14, p. 280], and [13, p. 20]). For a, A,
and q in the sets specified in (f) we have for x H(f/) and constants c and Cl

I(-A(q))(a A(q))-lxl <= c[A(q)(A A(q))-’l I(;t A(q))-’xl’-

I-x+.A(A -A(q))-lx[

(cf. [13, p. 19, 261).

An elementary calculation shows that there exists a constant t7 such that

l + C2/2
for all h SLc arctan

\ C2 ]’
0

Therefore I(-A(q))(;t -A(q))-lxl<= C,l-(1/(lxl + 1))1--a(1 - )ct, which implies (f).
Finally, (g) is a direct consequence of the Hille-Yosida theorem ([22, p. 23]), and (h)
follows from ([13, p. 26]).

Proof of Lemrna 2.2. Although the technique of the proof is quite standard (see
[11]), we present the details of this important technical lemma. Set Ix(u)=
(C2/2)IUI2H,(n)Iu[-2 and :(u)= B(q)(u, U)Iu] -2 for u#0. We have suppressed the q-
dependence in Ix and . Lemma 2.1(b) implies that (u) belongs to SR(Oo, IX(U)) where
0o arctan (2 C1/C2). In fact

U))[ <2C1 (Re (B(q)(u, C2[ul-/lIIm (u)l (B(qlu’ 112 u}) ---I c I
2Cl [Re (B(q)(u, u))

-C2 lul= 2

2C1 [Re :(u) Ix(u)].
C2

Consequently, -(u) SL(O0,--IX(U)). From geometric considerations one concludes
that

dist (A, SL(Oo, --IX(u))) e lal sin 01 00) + IX(/,/) sin Oo
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for A sC(01, 0). For A SL(01, 0) and u Hol(f) it follows that

I lul=+ B(q)(u, u>l IAluI=+  (u)lul=l-lul=lA +

lul= dist (h, S(Oo, -/z(u)))

( C2lu[insinOo)->-lul= Ix sin (0- 0o)+-- [u

where C-1 min (sin (01 0o), (C2/2) sin 0o). This implies the claim.

ProofofLemma 2.3. Let/u Au ),u on H(12) fl H2(12) with /sufficiently large
so that (H1) and (H2) are satisfied for ,. Then dom (_,)/2 H(I)) and by [20], we
have dom ((-A(q))/) (dom (A(q)), H(1)))1/2, where dom (A(q)) is endowed with
the graph norm. Here (x, Y)/2 denotes an interpolation space as introduced e.g. in [7],
[19]-[21]. By (2.6) the identity map J is a homeomorphism (uniform in q) between
Hlo(l)) fl H2(f) with its usual topology and dom A(q). Consequently, by the interpola-
tion property, it follows that J is a homeomorphism (uniform in q) between
and dom (-A(q)) 1/2. For a statement of the interpolation theorem see for example
([7, Thm. 3.2.23]). The interpolation space representation used in [7] is different from
the one in [20]. That these two representations are in fact equivalent follows from ([7,
Thms. 3.42, 3.52], [20]). These facts are summarized in [9]. Since

1/2c:,lul:-< Re ((-A(q))X/2u,

for all u H(I)) (cf. [15, p. 269]), the graph norm of(-A(q))/2 is equivalent uniformly
in q to the norm given by I(--A(q))/2UlHO(n) and the lemma is proved.

Proof ofRemark 2.1. We verify the estimate (2.8*) for k= 1 and 2. Letf H(f)
and determine u so that Au-Au=f. Throughout this argument we suppress the
dependence on q. We have u=(A-A)-f=A-(Au-f), and Au-f_ H(D.). From
(2.8) it follows that I(A--A)-lflu(n)=lUlun=lA-l(Au--f)lnn<--CIAu--flnn <-

cIfl ,, , / A)-lflu’n with C independent of A. Therefore by Lemma 2.3 and
the formula A(A-A)-1= A(A-A)-I-I we have I(X-A)-lfl,3n<_-Clfl.’n. Next
choose fCdomA, and again put u=(A-A)-f=A-(Au-f)domA2. Then (2.8)
implies

I(’h" A)-lf[H4(f) --[A-’(hu f)lH4(f) cifl.(. + c[x A)-’fl.(.),

with C independent of A. From (2.6) and Lemma 2.1(f) we conclude that I(A--
A)-fIH4,) <= clfl..). The estimate for arbitrary k follows by an induction argument.

Proof of Lemma 2.4. From Lemma 2.2 and the definition of AN(q), we deduce
that (a) holds and (b) is a direct consequence of the fact that the numerical range
{(ANu, U)HO,): U HN, lUlHO,) 1} and consequently tr(AN(q)) is contained in SL(arc-
tan (2C/C2),-C/2). Estimates (c) and (d) are direct consequences of (a), and the
constant C is in fact the same as the one in Lemma 2.2. Finally, (e) follows from (2.4).

Proof of Proposition 2.1. Let u and v be given by Au-A(q)u= and Av-
A(qN)v q. Certainly, v depends on N and u v (A A(qN))-(A(q)u A(qN)u).
Lemma 2.1 implies that

C
l
lA(q)u-a(qN)ul.

By (2.6) and Lemma 2.1(f) once again, we find

IA(q)u A(q)ul,o(a <- CIq ql.l I.o.
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and (a) follows. By Corollary 2.1 we have lu VlH’(m <= (C//IAI + 1)lA(q)u A(qm)ul,
and we proceed as in (a). Similarly (c) is a consequence of (2.6) and Lemma 2.1(f).
To verify (d) we again use Corollary 2.1 to get

[u vl.,(m [(h a(qm))-l(A(q)u A(qm)u)lH,(m
C N

<----/[A[+ l
lA(q)u-A(q

Consequently, by Lemma 2.1(f)

C
]qN

Lemma 2.3 now implies the estimate in (d) and the proposition is proved.
Proof of Proposition 2.2.
(a) Let ;t SLC(01,0) and put r/= (A-A(q))-I#, lm=(A-Am(q))-Pm. Then

e(h em q qm H().

For any qm Hm we find

(Ae m, qm An(q)rlu, q,m 0

and therefore

(A.1) (he n, tpm)+ B(q)(e m, qm) 0

for all Om Hu. Lemma 2.2, (2.3) and (A.1) imply that

IA[[eN[2+leN[2,(n) <= C[A[eN[2+ B(q)(e N,
(A.2) Cla(e N, n_,)+ B(q)(e N,

where u is chosen according to (H5, s). This is the essential inequality for the fuher
estimates. Since

Ilw. I( a(q))-ll.(a)
by (2.7) and Remark 2.1, and

C
l, I-’(a)= [(h a(q))-[-’(m 41xl + 111

by Corollary 2.1, we have

(1 + I I)lel= + lel,(.) P(N)I + llel I1 +

Therefore, 41 +lxllel+lel.,(.p(N)ll which implies (a).
(b) From (A.2) and (H5, s) it follows that

(A.3)
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Next we estimate r/lu,-,(n)and Inl(). By (2.8"), since r/= (h A(q))-lq9 E dom (As/2)
we have I[H=m)--< C[lHS-:m). Similarly,

l"ol-s-l(m C(IA-(q)’0 Im-(m + I’o I,-,’(.))

c(l(. -A(q))-A(S/:)-lqlu’(m +
(s/2)-2

i=0
I(A A(q))-1A’(q)o n, (a))

1
_-<C

(s/2)-I

i=0

C

H(a)

These estimates give

,/1

which proves (b).
(c) We derive estimates on r/ similar to those given in (b). Again (2.8*) implies

I1,,--< cll,-,. Further, for s-> 3, we get by (2.8*)

((s--1)/2)--I
<- C [A(q)(-)/:’-l + E [A(q)i’rllH’(a)

i=O

<= C (IA’/2(q)(A A( q))-lA1/2( q)A(-3)/2( q)cp[
((s--1)/2)--I

+ I(A -A(q))-lA’(q)qlul(m
i=0

<
C ( _lA1/2(

/[h[ + i I(h -A(q)) q)A(-3)/2(q)ql+

C

-dlX[+l

)
((s--1)/2)-I

E
i=0

where we used Lemma 2.1(f), Lemma 2.3, and the fact that A1/2(q) and A(q) commute.
Together with (A.3) these estimates imply the claim.

Proof of Proposition 2.3. Using the fact that 2ab <-_ a2+ b2 we find by (A.2) that

(A.4)

Let s be even. Then by (2.8*)

(s/2)--2

i=0
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We use (2.8*), Lemma 2.1(f) and Corollary 2.1 in the next estimate:

(s/2)--I

I,l,e(m-< c [A1/a(q)(h -A(q))-lA1/2(q)A(*/2-l(q)[ + Y
i=0

I(;t A(q))-IA’q]q,(a))
C ( (s/2)-

< IA’/a(q)A’/--’(q)l+ Y
-,/Ixl+l ,=o

Similarly by Lemma 2.3

(s/2)--2

Ilw-l_-<c I(-A(q))-lA(q)’-2v]n’(m+ Z [(X-A(q))-lA(q)q[q,(m
i=0

N C J(A -A(q))-A/(q)A(q)lo(m
i=

C

Using the estimates in (A.2) it follows that

([h+l)e12+e,(a, Np(N)2( 1 [s_ 1 ,_ )
1

HS-(a).

This estimate implies the proposition for s even. The case in which s is odd follows
from analogous estimates.

Proof of Lemma 2.5. We prove this lemma using interpolation space techniques
as previously used in the proof of Lemma 2.3. Recall that H(a)= (H(O) H(O),
H(O)),/. Since T(t; q) generates a Co-semigroup in H(a), the restriction of T(I; q)
to dom A generates a Co-semigroup, again denoted by T(t; q) with
e-c’, (see [31, Thm. 3.4.1]). Therefore II(-e(q))-ll and 11(-
A(q))-"ll,(mN1 for ReA0 and n=l,2,.... Now define (q) by domA(q)=
{ e dom A, A(q) e H(O))} and (q) A(q) for e dom A(q). By interpolation
II(A-e(q))-ll(mM uniformly i q and A with Re A 0 and n= 1,2,. .. The
Hille-Yosida theorem implies that A(q) generates a semigroup (1; q) on
which is easily seen to coincide with T(t; q) on H(O). Thus (a) is verified.

To prove (b) let (q) be given by dom(q)=H(O) with (q)=
2, b,(x)D’(x) and set A(q)= A(q)- (q), dom A(q) H(O) 0 H(O). Clearly
A(q) satisfies (H1) and (H2) and (2.11) with A(q) replaced by A(q). Note that for
u e H we get

((-A(q))/u,
=((-A(q))/u, (-A(q))I/pA(q)u)+(-A(q)u, P(q)u)
-IAI( q)ul +IA(q)ul +1(q)ul

l(q)ul=
<_ ClAl/2(q)ula
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< e Ctfor an appropriately defined C independent of q. This implies that TN(t" q)llg
where I1" denotes the graph norm of (-A1/2(q)). By (2.11) we have TN( t, q)llHn) <=
e C’ for some C independent of q Q and N.

Appendix B. Here we give the proofs that were omitted in 3.
ProofofLemma 3.1. The proof follows almost directly from the Schmidt inequality

[26, p. 7]. Let s(r, O):Ei, fl,jB(r)B(O). Then

Io oDs(r, O)]2 drdO= .fl,DB(r)B(O) drd

E fli, jDrrBi(r)Bj(O) drdO
k=0 a(k-1)/N i,j

cN2 2. ’. jDB,(r)B(O) dr dO

This estimate together with analogous estimates for the other second, order derivatives
implies the claim.

Proof of Lemma 3.2. Let us sta with two identities that will frequently be used
in the following estimates. Let " H(0, 1;R) S={6"[0, 1]a, (0)= 6(1)=0,
6 a cubic spline with respect to the paaition t i/N, 0, , N}, be the oahogonal
projection, and put ()(., O)=(., O). Similarly let :H(0, 1;a)S
{6" [0, 1] , 6(0) 6(1), 6 a cubic spline with respect to the paaition t i/N,

0,. ., N} be the oahogonal projection and put ()(r,.) ()(r,.) here
the subscript p stands for periodic. Then it is quite simple to show (compare [26, p.
83]) that

P Po Po Pr .
Fuaher,

(S.2) "u =uOrPo o Dr and Do Do.
Let us verify (3.1) for i= 0 first. We have

Pr Po
and these two terms are estimated separately"

I 12= ](r, O)-(r, O)12 dr dO

I(r, O)- Ie(r, O)l dr dO

< CN-6II2
H3(R)

where we used [26, Thin. 6.9]. For the second term we find

I fe( ,

--<_ I(r, O)- iBN(r, O)l2 dr dO

CN-61IH3(R),
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again by [26, Thm. 6.9]. These two estimates imply (3.1) for i= 0. Next let i= 1. Then
by (B.1), (B.2) and the Schmidt inequality [26, p. 7] we have

IDa(q, -Pmq’ )l <- IOr( q J3O)l + ID#o(
ID Dr+CNI

By [26, Thms. 4.5 and 6.9] we get

ID( N)I CN-I DoDI+ CN-IDI.
This, together with an analogous estimate for Do(-N) implies (3.1) for i= 1. We
now give estimates for the second order derivatives, again using the Schmidt inequality,
(B. 1) and [26, Thin. 6.9]. Fuher

ID( I)]+ID(IT  7)1 + CN=I

CN-’(ID3! + lUSl).
Similarly, we have

lU(Uo-ITDo)l+lU(ITDo Do)[+N[
CN-’lUUol +2NlIUo Uo] + CN-3IDSI
CN-l(IUUol+ IUUol+ IUSl).

These estimates together with an analogous estimate for the second partial derivative
with respect to O imply (3.1) for i= 2.

The proof of (b) is very similar to that of (a). Since H(R), (r,. H(0, 1 R)
for almost eve r and (., O)e H(0, 1; ) for almost every O. Consequently the
interpolation operators I and I employed in the proof of (a) are well defined for
e H(0, 1;) and (3.2) is verified just like (3.1) for i=0 only that [26, Thm. 4.5] is

used instead of [26, m. 6.9].
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APPROXIMATIONS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS*
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Abstract. This paper deals with the structural and stability properties of the averaging approximation
scheme for linear retarded functional differential equations. Both in the discrete- and in the continuous-time
case the structure of the approximating systems is shown to be analogous to the structure of the underlying
retarded equation. Moreover, it is shown that the approximating systems are exponentially stable in a
uniform sense if the original system is asymptotically stable.
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1. Introduction. The object of this paper is to present some new results on the
averaging approximation scheme for linear retarded functional differential equations
(RFDE).

The averaging approximation scheme has been invented and studied by several
Soviet authors in the early sixties (see e.g. Repin 18]; further references and a detailed
review can be found in Banks-Burns [2]). A general convergence proof, a stability
analysis and applications to optimal control problems have been presented for the first
time by Banks-Burns [1], [2]. Related discrete-time approximations have been con-
sidered by Delfour [6], Reber [17], Rosen [19]. Recently, Gibson [9] has used the
averaging scheme for approximating the solution of the algebraic Riccati equation
associated with a retarded system. However, there remained one open problem in the
convergence proof in [9] which has not yet been resolved. This is the question whether
the approximating systems are uniformly exponentially stable for sufficiently large N
if the underlying RFDE is stable. In [9] this has been stated as a conjecture without
proof. We show in 4.2 that this conjecture is in fact correct.

Another motivation for the present work comes from some recent developments
in the theory of retarded systems in the product space framework. One of these is the
introduction of so-called structural operators for the state space description of RFDE’s
which have made the linear theory much more elegant and efficient (see e.g. Bernier-
Manitius [3], Manitius [14], Delfour-Manitius [7]). They have led to a number of
new results in the control theory of RFDE’s, namely on problems like completeness
of eigenfunctions, controllability, observability, and the linear quadratic optimal control
problem. Another important development was an interpretation of the adjoint semi-
group in terms of the underlying RFDE. Extensions to neutral systems and further
references can be found in Salamon [20].

The problem has not yet been considered whether analogous results can be
developed for finite dimensional approximation of RFDE’s, in particular the averaging
approximation scheme. In this paper we fill this gap. It is shown that the approximating
systems satisfy analogous duality relations as the RFDE and certain structural matrices
are introduced which play an analogous role for the approx,imating systems as the

* Received by the editors October 18, 1983, and in revised form May 28, 1984. This research was
sponsored by the U.S. Army under contract DAAG29-80-C-0041 and by the National Science Foundation
under grant MCS-8210950. The material is based upon work supported by the Forschungsschwerpunkt
"Dynamische Systeme", University of Bremen, West Germany.

" Mathematics Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706.
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structural operators do for the RFDE. Moreover, it is shown that these matrices actually
converge to the corresponding structural operators. These results have several important
consequences. For example, they lead to a uniform convergence result for the resolvent
operators and they are crucial for the proofs of the stability results in 4.2.

In the preliminary 2 we give a brief overview over some recent results in the
theory of linear retarded systems in the product space framework and describe the
averaging approximation scheme. Section 3 is devoted to the study of the structure of
the approximating systems which is shown to be analogous to the structure of the
underlying RFDE under several aspects. A number of convergence proofs is then given
in 4.1 and two stability results are proved in 4.2. In the appendix ( 6) we prove
two functional analytic results which are frequently needed in 4. In particular, we
give a quantitative estimate for the equivalence of LP-stability and exponential
stability for strongly continuous semigroups.

2. Linear retarded systems and averaging approximation.
2.1. Linear retarded systems. We consider the linear retarded functional differen-

tial equation

(2.1) 2(t) Lxt, >- O,

where x(t) R" and xt is defined by xt(z) x(t + z), -h -< z 0, h > 0. Correspondingly
L is a bounded linear functional from c c[_h, 0; R"] into " given by

I-h
where r(z) is an n x n-matrix valued function of bounded variation. Without loss of
generality we can assume that r is normalized which means that r(z)-O for ’>-
0, ?(z) (-h) for r<--h, and (z) is left continuous for -h < z<0. At some places
we will assume that L is given by

Ij:0 -h

where 0 ho<" < hq h and Aj E", j 0, , q,
L2[-h, 0; nn]. In this case /:E->R"" is clearly given by

as well as Aol(’)

r/(’) =-AoX(-oo,o)(Z)- L AjX(-oo,-h1(r)-- AoI(o’) do’,
j=l

where Xi denotes the characteristic function of the interval/.

It is well known that (2.1) admits a unique solution x(.)
Wig;c[0, oo for every initial condition of the form

(2.3) x(0)=t#, x(z)=61(z), -h-<z<0,

where b.= (b, b 1) m , x L2[-h, 0; "] =: M)-. This solution depends continuously on

b G m2. The fundamental solution of (2.1) will be denoted by X(t)mR"", t>--h, and
corresponds to the initial condition X(0)=/, X(z)=0, -h_-<z<0. It can also be
characterized by the Volterra integral equation

X( t) I- q(s- t)X(s) ds

and its Laplace transform is given by A(,)-1 where A(A)=AI-L(ea), h C, is the
characteristic matrix of (2.1).
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Proofs of these facts can be found e.g. in Hale [10] or Delfour-Manitius [7].

2.2. Semigroups and structural operators. In the theory of RFDE’s, as well as
other types of integral and functional differential equations, there are essentially two
ways of introducing the state of the system which are actually dual to each other. The
state of system (2.1) in the "classical" sense is the pair z(t)= (x(t), x,) M2 which
completely describes the past history of the solution. Its evolution determines the
strongly continuous semigroup S(t) of bounded linear operators on M2 defined by

S(t)b (x(t), x,) M2, b M2, _-> 0,

where x(t), >= -h, is the unique solution of (2.1) and (2.3). The infinitesimal generator
of S(t) is given by

domA={ M:14 W,2, = (0)},

Ab (L61,
where W1’- denotes the Sobolev space wl"[-h, 0, "]. In an analogous way we may
introduce the semigroup Sr(t) Lf(M-), t->0, with infinitesimal generator Ar corre-
sponding to the transposed RFDE

(2.4) (t) LTx,, >- O.

The duality relation between (2.1) and (2.4) can be described by means of an
alternative (dual) state concept which is due to Miller [15]. It can be motivated from
the fact that the solution of the RFDE (2.1) (t > 0) can be derived from the initial
function (t <-0) in two steps. First convert the initial function 4 into a forcing term
of suitable length which determines the future behaviour of the solution. Secondly
determine the solution which corresponds to this forcing term. The dual state concept
is obtained by regarding this forcing term as the initial state of the system rather than
the solution segment. To be more precise, we rewrite (2.1) as

I(2.5) 2(t)= dr(r)x(t+’)+fl(-t), x(0) =f

where the pair f= (f,f)e M is given by

(2.6) f 4,f(o) dr/(r)4(z- o’), -h<-o’<-0.
-h

Now the initial state of (2.5) is given byfe M. Correspondingly the state at time ->_ 0
is the pair w(t) (x(t), x) e M where x e L[-h, 0; "] denotes the forcing term of
the shifted equation (2.5) and is given by

(2.7) x’(r) dn(’)x(t+’-r)+fl(r-t), -h_-< r_-<0.

The evolution of this state (x(t), x)e M is described by the semigroup S*r(t) (see
e.g. Bernier-Manitius [3] or Salamon [20]).

Summarizing this situation, we have to deal with the following four semigroups"

S(t) ST(t)

s*( s* ).

The semigroups on the left correspond to the RFDE (2.1) and those on the right to
the transposed RFDE (2.4). On each side the upper semigroup describes the respective
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equation within the "classical" state concept (solution segments) and the one below
within the dual state concept (forcing terms). The diagonal relations are actually given
by functional analytic duality.

The relation between the two state concepts can be described by means of so-called
structural operators. These have been introduced by Bernier-Manitius [3], Manitius
[14], Delfour-Manitius [7] and have turned out to be a very elegant and efficient
concept in the control theory of RFDE’s. The operator F (M2) maps every b M2

into the corresponding initial state

Fc/) fe M2

of (2.5) which is given by (2.6). The operator G e f(M2) maps every forcing term

fe M2 into the corresponding solution segment

Gf=(x(h),Xh)eM2

of (2.5) at time h. Thus Gf can be explicitly described as

Gf] Gf]l(0),

[Gf](r)=X(h+’)f+ X(h+’-s)f(-s) ds, -h<_7-<_O.

Obviously, G is bijective as an operator from M2 into dom A and its inverse is given
by

[G-loci bl(-h),

G-lb]l(o-) q l(-cr-h) dr/(’) b r-o’-h), -h <_- o’<0,

for b dom A. A remarkable fact is that the adjoint operators F* and G* play the
same role for the transposed equation (2.4) as the operators F and G do for the
original equation (2.1). Moreover, the following result has been proved by Manitius
[14] and Delfour-Manitius [7].

THEOREM 2.1.
(i) S(h)= GF, S*r(h)= FG.
(ii) FS(t)= S*r(t)F, S(t)G= GS*r(t), t>=O.
(iii) If 49 dom A, then Feb dom A*r and A*rF4) FAcb.
(iv) Iff dom A’r, then GA*rf AGf.
We close this section with a concrete representation of the resolvent operator. For

this sake we introduce for any A C the operators E :C - M2 and Ta: M2 M by
defining

[Ex] x, [Ex]’() ex, x C,
[Txb]= 0, [Txb]l(’r) e(’-b’(cr) do’, beM2.

Then the following result has been proved in Manitius 13] and Delfour-Manitius [7].
PROPOSITION 2.2. Let det A(A) # 0. Then

(AI-A)-’ ExA(A)-IE*F+
(AI A’T)-’ FEA(A )-1E + T.

2.3. Averaging approximation. In this section we briefly describe an approximation
scheme for RFDE’s which has been studied by Repin [18], Banks-Burns [1], [2],
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Gibson [9] and many others. To this end we introduce for every N N the linear
subspace XN c M2 defined by

XN {6 6 M2[6(’r) z2 [", -J-’hn <-- "r < -J -N1 h, j=I,.-.,N}
and denote the corresponding orthogonal projection by p" M2- XN. This subspace
can be identified with 0 "(+1) by means of the embedding s’R"(s+l)- M2 which
associates with every z=(z,... ,z)TR"(v+) the pair

Nz]O ZO

j-1[z]’(z) zj,
J h <- <-h, j 1 N.
N N

On Rn(N+I) we will always consider the induced inner product

where

NW, Z, W
_
n(N+l)(z, W)N zTQ

(2.8) Q

(2.9)

On Rn(N+I)

(2.10)

where

The corresponding vector and matrix norms will be denoted by I1" I1 . The adjoint
operator zr ()*" M-- E"(v+) is then given by

N f-(j-1)h/N 1(,/.) dr, j= 1,..., N.[’6]o 6, [6] -h-_;/
Obviously, the operators u and ru satisfy

N N N N N
7r =id, 7r =p

we consider the differential equation

,v t) AUztV t), t>_0,

(2.11) AI=(QN)-IH, Hv

and

In an analogous way we define the matrix Aru (QI)-H where the Av are replaced
by (Air) T for j=0, 1,..., N. Then the adjoint matrix (ArU)* of A with respect to
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the inner product (.,.)N is given by

(2.13) (AT)*=(QN)-I(HT)r (HTN)T

We also consider the differential equation

(2.14) ffv (t) (Ar)*wN(t),
on "+). The following theorem has been proved in Banks-Burns [2]. and Gibson [9].

THEOREM 2.3. Let L: --> be given by (2.2). Then the following statements hold.
(i) For every M2 we have b limN_.oo pCb.
(ii) There exist constants M >= 1, w >= O, such that

ot e(A)*t < M ea’t

for every >= 0 and every N N.
(iii) For all 49 M2, f M2

S(t)4 lim n eart "a’Ndp,
N-oo

S*r(t)f lira , eA7)*’ 7rrqf
N-oo

and the limits are uniform on every compact interval [0, T].
Full discretization. A fairly general and extensive study of full discretization

methods for RFDE’s can be found in Reber [17] and Rosen [19]. Since the aim of
this work is to explore the special structure of the averaging approximation scheme
described above, we content ourselves with the consideration of a simple one step
Euler approximation for the ODE (2.10) which has also been studied by Delfour [6]
and Reber 17] for time varying systems.

Replacing the derivative in (2.10) by a difference quotient with step size h/N, we
get the difference equation

( h )(2.15) zkN+I I+-AN z, k-> 0,

in I n(N+l). Since

hAN(2.16) I+--
N

I 0

(2.18) z"=

by means of the identification

I 0

the n(N+ 1)-dimensional first order difference equation (2.15) is equivalent to the
n-dimensional (N + 1)st order difference equation

(2.17) (X4+l XkN) E N NAj Xk_j, k-->0,
j=0
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Equation (2.17) may be interpreted as a direct application of a 1-step difference
approach to the RFDE (2.1) with x approximating x(kh/N). Finally, note that this
simplification of the difference equation (2.15) is only possible because of the coin-
cidence of the step size h/N for the time-discretization with the mesh size of the
spatial discretization in the subspace XN c M2.

3. The structure of the approximating systems. It is the goal of this section to
analyse in detail the structure of the approximating systems (2.10), (2.14) and (2.15)
respectively (2.17). It is shown that there is a strict analogy to the structure of the
underlying RFDE (2.1) as it has been described in 2.2. In particular, there are certain
structural matrices Frq and Gs playing the same role for the approximating systems
as the operators F and G do for the RFDE (2.1).

3.1. The structural matrices. Starting from (2.17), we observe that there is another
way of transforming this (N+ 1)st order difference equation into an equivalent first
order equation. For this sake let us rewrite (2.17) as

(3.1)

k

x) 2 N N k >0,Aj Xk-j +fkN+l,
j=0

where Af := 0, ff := 0 for j > N and

f Xo
(3.2)

The forcing term

N

Aj Xk_l_j, k 1,"" ", N.
j=k

fN | E n(N+l)

may be considered as the initial state of (3.1) since it contains all the information
which is needed for determining the future behavior of its solution xv, k_>-0. Corre-
spondingly the state at instant k E N is given by wff e N "(+1) where

(3.3)
N XkNWk,O

k+l-1
N

Wk,! 2 AX+l-l-j+f+l, 1= 1,’’’, N.
j=l

Then it is easy to see that wv satisfies the first order difference equation

h ),)(3.4) wkN+I I +-(A wv, k >- 0,

since

h h
II +---Ao -As 0 I..

o !
oA

Note that (3.4) can be regarded as a one step Euler approximation for the ODE (2.14).



APPROXIMATIONS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS 935

We conclude that there are two state concepts for the difference equation (2.17),
namely (2.18) and (3.2-3), both of which lead to a first order difference equation in
R"(N+I), namely to (2.15) and (3.4). The relation between these two state concepts can
be described by certain structural matrices FN and GN. Before defining these matrices,
we introduce the concept of a fundamental solution for equation (3.1).

DEFINITION 3.1. The fundamental matrix of equation (3.1) is the sequence Xv e
"", k 0, defined by

k

(3.5) (X+ X’) Y. N NA Xk-, keN, X=I.
j=0

Remark 3.2 (i) By induction, it is easy to see that

k

(3.6) [(XkN+l_ Xq) y, XN N_A kr.
j=O

(ii) The solution of (3.1) is given by

, Xj fk-j, k >=0.(3.7) x Xrfo +-- j--o

Now we introduce the matrices

(3.8) FN

I 0 0

0 A A

and
0 0

(3.9) GN KNQN, KN

0

XN
N

0

Xff 0 0

Then it is easy to see thatfN FNzoN if Zo
u e ,(N+I) is defined by (2.18) andfN e R,(N+|)

is the forcing term of (3.1) defined by (3.2). Moreover, if x, k_-> 0, is the solution of
(3.1) and ze"N+a) is defined by (2.18), then it follows from Remark 3.2 that

z GNfN. Making use of these facts, one can easily establish the following result
which is strictly analogous to Theorem 2.1.

PROPOSITION 3.3.

__hAn G I+-(A)* FNGN.(i) I+
N

(ii) FNAN=(A)*F, ANGN GN(ANr )*.

(iii) FN C
ANt e(A)*tFN, cANtGN GN e(A)*t > O.
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(iv)

(GU)-

N N

N N

0 Ao

Proof Let xe", k>--N, be a solution of (2.17), let zeR"(s+l), k>0= be
defined by (2.18) and fs e ,(S+l) by (3.2). Then fs= FSzo and z satisfies (2.15)
for k >= 0. Furthermore Xk, k >- 0, satisfies (3.1) and therefore z GSf. This implies

h AS)
s

vfvI +-- Zo zl G GrVFlVzo.N

Thus we have proved the first equation in statement (i). Now let w ,(s+l), k->0,
be defined by (3.3). Then w =fs and it follows from (3.2) that wv FSz for every
k_>-0. Since w satisfies (3.4), we conclude that

I+-(AN)* FSzoN= I+(A)* wy=w=FSz=Fs I+ A Zo

is proves the first equation in statement (ii).
In order to establish the second equations in (i) and (ii), letf (s+ be given,

let x", k0, be the unique solution of (3.1) and let zff (S+l, k N, and
w"(+, k0, be defined by (2.18) and (3.3), respectively. Then the sequence
x+, 0, satisfies the equation

X+I) mj Xk+l_ Wk,l+lxk++ />0,
j=0

and hence it follows from Remark 3.2 (ii) that z+= GSw for k 0. Fuhermore
wY =f and w Fz7 for k N. Since w7 satisfies (3.4) for k 0 and z7 satisfies
(2.15) for k N, we conclude that

and

h
fs +hAs zN I+--As GGs I+-(a’)* GNwls= NN+I I

N N

Thus we have proved the statements (i) and (ii). Statement (iii) is an immediate
consequence of (ii).

Finally, let (GS)- be defined as in (iv) and let Ks be defined by (3.9). Then it
follows from (3.5) that (GS)-IKS=(QN)-1 and hence GS=KSQs. This proves
statement (iv). [3

Proposition 3.3 shows that, for any solution zS(t) of (2.10), the function wS(t)=
FSzS(t) satisfies (2.14) and, conversely, for any solution wS(t) of (2.14), the function
zs (t) GSws (t) satisfies (2.10).
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3.2. Spectral theory. In this section we give a brief overview over some spectral
properties of An and (A)* which are analogous to well-known results in the theory
of RFDEs. In particular, we will see that the rational complex n n-matrix valued
function

(3.10) As(A)=AI-L(A)’L(A)=j’oAr/.= N+Ah
A --,

plays precisely the same role for the approximating systems as the characteristic matrix
A(A) does for the underlying RFDE (2.1). Moreover, we introduce the matrices

N(3.11) E

N
N+Ah

cn(N+I)Xn

and

h
(3.12) T=

0 0 0

N
0 I 0 0

N+Ah

0
N+Ah

I
N+Ah

I

cn(N+I)n(N+I)

for Z C, X -N/h.
LEMMA3.4. LetA C,A -N/h, andz, w6C"(u+l) begiven. Then (AI-AN)z w

if and only if

(3.13)

and

(3.14)

z= EN zo+ Tw

AN (A)Zo (E)TQNFNw.

Proof Clearly (hi AN)z w if and only if (AQN HN)z QNw or equivalently

(3.15)

N
(3.16) Zj= N+ hh

N

XZo- E ATz Wo,
j=0

Wj-’Zj_ j=l,’" ",N.

Equation (3.16) is equivalent to

zj= N+Ah Zo+- N+hh w+_,,,
’=1

j=l,’’ .,N,
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and hence to (3.13). If this is satisfied, then (3.15) is equivalent to

Au (h)Zo hZo Aozo
j=l v----1 +Xh

Wo+- 2
v=l

E)rQNFUw. [3

Note that the above lemma is strictly analogous to a well-known result in the theory
of RFDEs (see e.g. Hale [10], Delfour-Manitius [7]). It has several important con-
sequences which are summarized in the proposition below and can be proved straight-
forwardly. Statement (i) can be found in Banks-Burns [2]. Statement (iv) is the analogon
of Proposition 2.2.

PROPOSITION 3.5.
(i) Let A C, A #-N/h; then A r(A1) if and only if detAU(A)=0.
(ii) A S/h tr(AN) if and only if detA 0.
(iii) r((AT)*)= r(AT)= (A).
(iv) If A # N/ h and det A (A) # 0, then

(AI_AN)-I EN N --1 N rQNFN N,xA (A) (Ea) +Ta,

(AI- (A)*)-I FNEA(A)-’(EN )TQN +(Tf) T.
Remark 3.6. A solution x(t) of the RFDE (2.1) is said to be small if it vanishes

after some finite time T (Henry 11]). If L: cg_ n is given by (2.2) and if Ao(" 0,
then there exist nonzero small solutions of (2.1) if and only if det Aq--0 (Manitius
[14]). Now note that for sufficiently large N this means that detA=0 and hence
-N/h tr(A) (Proposition 3.5 (ii)). This indicates that the generalized eigenmodes
of (2.10) respectively (2.14) corresponding to the eigenvalue A =-N/h play the role
of the small solutions in the approximating systems. Moreover, note that the solutions
of the difference equation (2.15) starting with generalized eigenvectors of AN corre-
sponding to A =-N/h are precisely those solutions which vanish after a finite time.

4. Convergence and stability. Having introduced a number of operators for the
approximating systems which are analogous to well-known operators in the theory of
RFDEs, we may pose the question, if--and in what sensewthese operators converge.
This problem will be considered in the next section.

4.1. Convergence. We begin with some preliminary facts.
Remark 4.1. (i) It is easy to see that the function r/’R- Rnn defined by

k+l kh
lim r/(), -h<r<-, k,7")

o-’-kh/ N N N

satisfies the inequality

(4.1)
h

N(ii) For every A e C, A # -N/h, let us define the function e "[-h, 0]- C by

e(’r)=(NN+Ah)J’ -Jh<r<-J-lh’N N
j=O,...,N.
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Then it is well known that the limit

(4.2) lim sup ex*- e(r)l 0
Noo -h =<r--<0

exists uniformly on bounded subsets of the complex plane.
The following convergence result for AN (h) has been shown by Banks and Burns

[2]. For completeness, we present an alternative and simplified proof.
LEMMA 4.2. (i) AN (h) converges to A(A) uniformly on every bounded subset of the

complex plane.
(ii) For every a >- 0 there exists a constant ca > 0 such that [L’v (X)l <- c for every

with N > ah and every h C with Re h ->-a.
Proof. Note that

L(e) e"" dn(r)=-r(-h) e-"h
-h

and, by (3.10) and (2.12),

o

h rl(r) ear dr
-h

r (-h)
N+lh -A--= -h N+hh

=-n(-h) e(-h)-h n ea (r) dr.
-h

us statement (i) follows immediately from Remark 4.1. Statement (ii) follows from
(3.10) with c=VAR(n)sup{(N/(N-ah))lN>h}<m.

For the next result we need the space

M=" x L[-h, 0;

endowed with the norm I111= max {11, IIlll} for e M.
THEOREM 4.3. e limits

N N N

N+m N+m

exist uniformly on bounded subsets of the complex plane.
Proo The statement on Ea is an immediate consequence of Remark 4.1 (ii), since

E Ma x=(x, ea (.)x)e for xeC NeN and h eC, h -N/h.
In order to prove the second pa of the theorem, let us first define e(h, r) e M2 by

e(X ,)= 0, e(a, ,),() {0,
for h e C and -h N r N 0. Then

[TapS6](r)=(e(h, r), p6}=(pSe(h, r),

for all e M=, h e C, N eN and r e[-h,O]. Moreover, the closure of the set

{e(A, r)llalc, -hrO} in M2 is compact and thus p converges uniformly on
this set. Hence Taps converges to Tx in (M2, M) uniformly on bounded subsets
of the complex plane.

Secondly, note that

h ( N ) I Sell( ,h )eT()[ ---- d
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and hence

TpN4,] (’r)- NTrrN41](’r)

do"

for -jh/N <- 7" < -(j 1 )h/N, j 1,. , N. Thus the statement of the theorem follows
from Remark 4.1 (ii) together with the fact that the set

{[ T61’I I,xl<_- , 6 M=, I1<> < 1}

is equicontinuous for c <
THEOREM 4.4. For every b M2

Fb lim rNFNTrVb.

Proofi We prove this result in 3 steps. The first step is a formula for the operators
rNF and FTr.

Step 1. [7rNFb]o [FVzrnb]o o and for j 1,. ., N
n ,-h [ r)- (r-h/N)] dz,

[FTrNb] - r#
J ) ,(’----h [b 7")-c (r-h/N)] d’.

Proofi Let us define 1(7"):--0 for t[-h,O]. Then

Nr --(j-1)hlN IO dn(.),’(--o-) do-

SI "r+jh N

tin(r) 4,’(o1 do"
d’r+(j-1)h/ N

N f -h+jh/N

----ff n(-h) (O-) do"
d-h+(j-1)h/N

’O r--h (’r)-dp 7"- dr
h d-h+jh/N
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since r/(r)= r/(-h) for r<--h, and

N

[FNTrN&]j E AY[TrNb]-j+I
r,=j

_J

’0 r h -’0 r- h qb r) dr
h h N --=---ff r# r---h 6 r)- r- dr

for j 1,. ., N. In the last but one equation we have used the fact that

N J lh =’r# r---h for r<r/ r
N N

This proves step 1.
Step 2, F< <-- max { 1, VAR (r)}, ’st’N N.
Proof. By the well-known convolution inequality, we have

N N

j=l j=l

N

Z ANZv-j+l
v=j

--< IAFI E Iz.s -<{VAR(r#)I E Iz..,I
=1 j=l j=l

and hence

h
E I[F%]sFNz % zol +W:,

N

-<-Izol+[VAR(n)]- E Izsl--<[max{1, VAR
j=l

for z n(N+l) and N e. This proves step 2.
Step 3. Fb limN_, NFNTrVb,
Proof. Let us first assume that b is continuously differentiable and that b 1(0) -0.

Moreover let us define bl(r) =0 for z>0. Then it follows from step 1 and (4.1) that

I[ ,,,-’VF,, ] F6I.

rl r- -rl r- -ff[61(r)-qbl(r-hlN)] dr

-h -h+h/N-’r= h/ N ’-h/N

h
--<-- VAR (’o)11 <7,’11
N
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and hence

h [ I["F@]s-[F""@]sI]’/:--< IIF PNFb +-
h2

For any b M2 the statement follows from the Banach-Steinhaus theorem and step
2. This proves the theorem. [3

Combining the above convergence results with the concrete representation of the
resolvent operators given in Proposition 2.2 and Proposition 3.5, we obtain the following
result. The proof is a straightforward application of Lemma 6.1 and will be omitted.

COROLLARY 4.5. The limits

lim
Noo

lim II(,XI- A*)-’ N(,XI-(AN )*)-IrV II(4) O
N->o

exist uniformly on those bounded subsets ofthe complexplane which are uniformly bounded
away from the zeros of det A(A).

THEOREM 4.6.

lim G NGNor e(:,% 0.
Ncx3

Proof. We establish this result in three steps.
Step 1. Let X]V,j>_-0, be given by (3.5) and let us define

xN(t):= Xf, < <j+lJ h=t h,
N N

j=0, 1, 2, .
Then X(t) converges to X(t) uniformly on every compact interval [0, T].

Proof. For every k

k-1

Xff=I+ f_., IX N+-X
v=0

I+ Av_jX
N =0 j=0

h k-1 k-1

Av_jX--I+--j= v=j

h X=I
Nj=o N

I- rl s- XN(s) ds
dO
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and hence for kh/ N <- < (k + 1)h/N

X(t)-XN(t)= X(t)-x(k-hN)

+ n s--- IX(s)- X(s)] ds.
dO

Thus the desired convergence result follows from Gronwall’s lemma.
Step 2. Let z ,(N+I) and j (1,. , N}. Then

[Gz]=X(h)zo+ X(s)[rz](s-h) ds,

[aNz]l(’)=X(h+’r)zo+ X(s)[Nz] s-h+ ds,

j-1-hr< -h.
N N

Proof. If -jh/N <= " < -(j 1) h/ N, then

h N-j-1

+ Z x[Oz](") X_Zo ZN--,
/=0

=XS(h+r)Zo+ Z X(s)[rz] s-h+ as
1=o dlh N

X(h+)o+ X(s)[%] s-h+ ds.

In the case j 0 this equation leads to the desired expression for [ONx].
Stop 3. lim G G (:,) 0.
Proofi First note that the functions O %f M:, []f[[ 1, are equicontinuous

since the canonical embedding of W’ into is a compact operator.
Now let zR(+). Then, by step 2,

[Gz-Gz]=[X(h)-X(h)]zo+ [X(s)-X(s)][](s-h) ds

and for -jh/NNr<-(j-1)h/N,j=l,..

+ [X(s-X(s][] s+-h as.

By step 1 and the equicontinuity mentioned above, this implies

lim a O ((+",) O.
N

Moreover, note that the operator G: M:M is compact. So is the extended adjoint
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operator G*" (M)* M2. By Lemma 6.1, this implies

lim G GpN Z(M2,M) lo G* pNG. :e((M).,2) O.

Hence the statement of the theorem follows from the inequality

Letf M2 be given and let x(t), 0, be the corresponding solution of (2.5). Moreover,
let x (t), 0, be defined by

k k+lxN(t)=xff --ht< h, kO,
N N

where xff, k 0, is the unique solution of (3.1) corresponding to fN Nf,N+I).
Then the previous theorem shows that

lim sup Ix(t) xN t)[ 0
N- [0,T]

and moreover that this convergence is uniform for bounded f M2. This has also been
proved by Reber [17, Thm. 7.5] under the condition that L: -" is given by (2.2).

Let us now introduce the operator families SN (t) (M2), S*(t) (M2), 0,
by

N* N Nh S(= + g* ,S() I+
N

(4.3)
k k+l
h N t< h, k=0, 1, 2, .
N N

Then the following result is a direct consequence of Theorem 4.4 and Theorem 4.6
together with the factorization results (Theorem 2.1 (i) and Proposition 3.3 (i)).

COROLLARY 4.7. (i) For all ck M2, f M2

S(t)dp= lim SN(t), S*(t)f= lim S*(’)f
N-.-c Noo

and the convergence is uniform on every compact interval [0, T].
(ii) For every k t

lim IlS(kh)- SN (kh)ll:e(M:,Moo) INirnoo IlS*(kh)- S*(kh)lle(M) =0.
N

Proof It only remains to notemfor the proof of statement (ii)--that, by Lemma 6.1,

lim IIS(h)-
lim

Statement (ii) ofthe above result is apparently new. The strong convergence of statement
(i) has been stated without proof by Delfour [6]. The strong convergence of S(t)
has been shown by Reber [17] and Rosen [19].

4.2. Uniform stability. It is a simple consequence of Corollary 4.7 that the discrete
time systems (2.15) and (3.4) are stable in a uniform sense if the underlying RFDE
(2.1) is exponentially stable. More precisely, we have the following result.

THEOREM 4.8. Let to < O and suppose that detA(A)0 for every A C with
Re A => to. Then there exist an No N and a constant 3/> 0 such that for every N >-_ No

I +---AN <-- T ea’kh/N"
N
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Proof. It follows from a well-known result in semigroup theory that there exists
a k0 such that IIS(koh)ll :e(M2) < e’kh" By Corollary 4.7 (ii), this implies the existence
of an No such that

I+ A < e’oS N > No.
N

Moreover, it follows from Corollary 4.7 (i), that

N
l=O,...,koN-1, NN.<oe.

We conclude that the following inequality holds for N>= No and k ukoN+ with
vNand l{0,...,koN-1}

I+N N I+-AN I+ AN
N N

<: "Y ewkoh e,ovkoh <_ 3 ew(vko+U N)h , ewkh/N.

It follows easily fromLemma 4.2 that the stability of the RFDE (2.1) also implies
the stability of the approximating continuous-time systems (2.10) and (2.14) if N is
sufficiently large (the precise arguments are given in the proof of Theorem 4.9 below).
However, a uniform estimate in the spirit of Theorem 4.8 has not yet been proved in
the literature on these approximation schemes. It has been stated as a conjecture by
Gibson [9] and provides--in that paperma crucial step in the convergence proof for
the solutions of the algebraic Riccati equation. Repin [18] also claims the uniform
stability of the approximating systems (2.10), however, his arguments are extremely
unclear and it seems almost impossible to convert them into a rigorous proof. The
following theorem closes this important gap in the approximation theory of RFDE’s
and may be considered as the main result of this paper.

THEOREM 4.9. Let L: c ._> RN be givenby (2.2) and let the RFDE (2.1) be exponen-
tially stable. Then the approximating systems (2.10) and (2.14) are uniformly exponentially
stablefor sufficiently large N. This means that there exists an No and constants e > O,
3’ >-- 1 such that

Ile’ll, e(A)*’ll __< , e-t

for every >= 0 and every N >-No.
Proof. First note that the statement on (A)* follows from that on An. Secondly,

it follows from Theorem 6.2 and the exponential estimates in Theorem 2.3. (ii) that it
is enough to show that there exists an No N and a constant c > 0 such that

ANt
Z 2

for every z e R,s/l) and every N => No. We will prove this in 5 steps.
Step 1. There exists an No e such that det As (A) # 0 for every A e C with Re A -> 0

and every N -> No.
Proof. By Lemma 4.2.(ii), the complex function det As (A) cannot have a zero in

the closed right halfplane outside the disc of radius VAR(r/) centered at the origin.
Inside this disc the nonexistence of unstable eigenvalues of As follows from Lemma
4.2.(i) if N is sufficiently largel
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Step 2. For N E N let us introduce the matrix

-1

an N 1

1 -1

E NN.

Then there exist constant eo> 0, 5’02 1 such that

[aNt]NN/O -et Vt>--O, VNEN.

Proof. First of all it is easy to see that xaNx <= 0 for every x RN and every N N.
Hence it follows from a well-known result in semigroup theory that

(4.4) [eaSt[NN =< 1 V > O, VN E N,

where I" INN denotes the operator norm on RNN which corresponds to the Euclidean
norm on RN. Moreover

eaNt e-Nt/h

Nt/ h
1!

1

Nt/h
1!

(St/h)N-1

(N-l)!

and hence

(Nt/h)k

k!
N--1 ".

e-Nt/h E 0 ..
k=-O

0 0

k=O

e--Nt/h

for every >-0 and every N e N. Since

k e-Nt/h dt= k!(h/N)k+l

this implies

(Nt/h)k

k!

le’], at<= E h.
k=0

Together with (4.4) this estimate proves the statement of step 2 (Theorem 6.2, p- 1).
More precisely, eo> 0 may be chosen to be any constant less than 1/h.

Step 3. For every z E[n(N+I) and every N e N

r, =ll 
80
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Proof. First note that

(AIN_ aN)_ h

N
N+Ah

N
N+Ah

and hence

(4.5) T AIN aN)_ (R) I,

NOW let z ,(N+) be given. Then, by step 2, the function

.(t)=[eaN’(R)I,] e t>--O,
ZN

is square integrable on the interval [0, ) and its Fourier transform

1 f it 1
_

(i)=-o e- if(t) dt=[(iI-a @I](0)

satisfies IIll=t_,:.a: IIll=to,:,a. Hence it follows from (4.5) and step 2 that

This proves step 3.
Step 4. There exists a constant c > 0 such that the following inequality holds for

every z W’(N+) and every N -> No

f ’l(iool-aN)-1zl[ dw <=27rc2[[zl’

Proof Recall that

(itoI AN)-1 E N N -1 N ToNFN Nio,) + Ii,oA (ito) (E wTia,,

(Proposition 3.5). By step 3, it remains to establish the desired inequality for the first
term on the right-hand side of this equation. Moreover, it follows from Theorem 4.4
that the operators FN are uniformly bounded and it is easy to see that the operators
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N TQNEN and (E)*- (E) are uniformly bounded on the imaginary axis. Thus it
remains to prove the desired estimate for the term AN(ito)-. But for Itol> VAR (/) it
follows from Lemma 4.2 (ii) that

1
la(i)-l: E (im)-k-lLN(i) k <

:o [l-VAR ()"
This inequality, together with Lemma 4.2 (i) shows that

sup = do<.
NNo

This proves step 4.
Step 5. For every z ,(N+ and every N N0

o lleA’zll dt

Proo Let ze"(N+) and z(t)=eAz for t0 and NNo. Then z(t) is square
integrable on (0, ) and its Fourier transform is given by (io) (2)-1/(iI AN)-1.
By the Fourier-Plancherel theorem and step 4, we obtain

[leAStz[[% dt= (2)-1 II(iI-e)-zll% dc=llzll.

This proves step 5 and the statement of the theorem.
Remark 4.10. The uniform exponential decay rate -e for the approximating

systems (2.10), (2.14) which has been found in the proof of Theorem 4.9 is always
larger than -1/h. The question remains open if one can find a uniform exponential
bound for the approximating systems with the exponential decay rate Wo+ e where
o=sup {Re A ]det A(A)=0} and e >0 can be chosen arbitrarily small. It is also an
open problem if the operators tNet converge to the (compact) operators S(t)
(M2) in the uniform operator topology if h. If this could be shown, then the
solution to the uniform stability problem mentioned above would be an immediate
consequence.

5. Conclusions. The present paper studies in detail ceain finite dimensional
approximations for linear retarded systems, namely the averaging approximation
scheme, both a continuous and a discrete time version as well as the relation between
these two. It turns out that these finite dimensional approximations show--under
several aspectsprecisely the same structure as the underlying RFDE. In paicular,
the duality relations are of the same type and there are ceain structural operators
which play an impoant role for the description of the approximating systems and
are analogous to those which have recently been introduced by Bernier-Manitius [3],
Manitius [14], Delfour-Manitius [7] for the study of RFDE’s. Moreover, it is shown
that these operators actually converge to the corresponding operators in the theory of
retarded systems. One of these convergence results, namely Theorem 4.6, is only a
slight extension of a corresponding result by Reber [17, Thm. 7.5].
Based on this detailed analysis of the structure of the approximating systems, it is

shown that both the discrete- and the continuous-time approximations are stable in a
uniform sense if the underlying RFDE is asymptotically stable. Such a result is by no
means obvious and not all approximation schemes have this propey. For example,
it is shown in Kappel-Salamon 12] that spline approximations for RFDE’s can never
have the propeyofuniform stability. Neveheless, the uniform stability result provides
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a crucial step in the convergence proof of Gibson [9] for the solutions of the algebraic
Riccati equation. Moreover, the structural matrix Fv introduced in this paper allows
a factorization of the approximate Riccati operator in precisely the same manner as
it is shown in Kappel-Salamon [12] for the spline approximation scheme. Finally, it
seems likely that the uniform stability results of this paper have some implications for
the construction of finite dimensional compensators for RFDE’s. This is a research
problem for future investigations.

6. Appendix. In this section we formulate and prove two general functional
analytic results which are needed frequently in 4.

LEMMA 6.1. Let A be an arbitrary set and let X, Y, Z be Banach spaces. Moreover,
let K. (X, Y), Ta(Y,Z), T(Y,Z), aA, kN, be bounded, linear
operators with the properties

(i) cl {Kaxla A, x X, Ilxll <= 1} c y is compact,
(ii) Tay limk_. Tyfor all y Y uniformly in. a A.

Then TK tends to TaKa .(X, Z) in the uniform operator topology as k tends to
infinity and this convergence is uniform in a A.

Proof. Note that for every e >0 there exist finitely many x,..., xn X and
a,. ., a, A such that for every a A and every xY with Ilxll <_- 1 there is a
j{1,..., n} such that IIKax-KaJxjll<=e. Hence the desired uniform convergence
result follows from the inequality

IITKx-TKxlI[IITII+IITII]IIKx-K%x]I/]ITK%x- TK%xII. E3

The next result is a quantitative estimate for the equivalence of LP-stability and
exponential stability for strongly continuous semigroups. This equivalence has been
proved--for the case p 2nby several authors, see for example Datko [5], Curtain-
Pritchard [4], Przyluski [16]. But none of these give the desired quantitative estimate
which is essential for the proof of uniform stability in Theorem 4.9. Again in the case
p =2 such a quantitative estimate can be found without proof in Gibson [8]. We
mention that some of the ideas in the proof of the theorem below are taken from
Przyluski [16, Prop. 9] and Zabczyk [21, Thm. 5.1].

THEOREM 6.2. Let S( t), >-_ O, be a strongly continuous semigroup ofbounded, linear
operators on a Banach space X satisfying the exponential bound

(6.1) IlS(t)lle(x) <=Me"t, t-->O,

for some constants M >- 1, to >- O. Moreover, let 1 <- p < oo and suppose that there exists
a constant c > 0 such that

(6.2) Ils(t)xll’dtc’Ilxll’, xx.

Then, for every

(6.3)
pcPMp’

there exists a y y(a, to, M, c, p)>_- 1 such that

(6.4) [[S(t)[[e(x) <= y e at, >-O.

Remark 6.3. If -1/pcPMp < a < 0, then there exists a unique T> 0 satisfying

e-apT-- 1 + cPMp ePT
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or equivalently

1 cPMp e
(6.5) ct =log

pT T -F" cPMp e’Pr"
The proof of Theorem 6.2 shows that in this case 3’ 3’(a, to, M, c, p) 1 can be chosen
as

T+ cPMp ewPT]2/P
(6.6) T T1/pc

Proof of eorem 6.2. Let T> 0 be given and let us define

T
(6.7} e e( T)

T+ cPMp ep
> O.

Then it follows from (6.1) and (6.2) that

l forE IJS(T)xI[p= E IlS(kT)xllp dt
k=0 k=O

Ilxll+ IlS(T-t)l[P[lS((k-1)T+t)xll"dr
k=l

Ilxll p+ sup IIS(t)ll p IIS(t)xll dt
[o,r]

+ Ilxll

for every x e X. This implies that

E IIS(r)+lxll= E IlS(r)xll-llxll(1 -) E IlS(T)xll
k=0 k =0 k =0

and hence

IIs(rxll Ils(r+xll

(I- e)Ip E IIS(T)xll
k=0

( )-’IIII
for every x X and every m . Now let mT+ 0 with m and 0 ? < T. Then
we conclude that

s() s )II s(T)
MeT-’/( )11II

() (,og(1-e)())Mere-’lpexp log(l-e) exp -1 IIxllp

pT I



where

and
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1
a a(T) =-log

cPMp epT

T+ cPMp e’pT
<0

y=y(T)=Me,OT[1]I/p_[T+cPMPeO’pT]2/p

e(1- e) T1/pc

(compare (6.5) and (6.6)). Thus the statement of the theorem follows from the fact
that a(T) is strictly increasing for T> 0 and satisfies

1
lim a(T)
T--)O pcPMp"
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AFFINE FEEDBACK CONTROLLABILITY OF CONSTANT
COEFFICIENT DIFFERENTIAL EQUATIONS*

DAHLARD L. LUKESf

Abstract. This paper studies the constant coefficient (closed loop) differential equation =
(A+ BK)x + Bv+f(t) in [to, tl] x R which arises from substitution of the feedback controller u= Kx +v
into the (open loop) control equation Ax + Bu +f(t). The open loop system is assumed to be controllable.
A classical result due to Kalman states that this assumption is equivalent to the condition that rank
[B, AB,...,An-IB]=n. Under mild restrictions on f(t) we prove that for any states x,x in R" there
exists a constant matrix K and a constant vector v for which the closed loop system has a response satisfying
the boundary conditions X(to)= x and x(ti)= x. An equivalence between open loop and closed loop
controllability is thereby established: Ultimately based on the implicit function theorem, the approach taken
lays the groundwork for computing feedback controllers that do the steering.

Key words, control theory, ordinary differential equations, controllability, affine feedback controller,
finite time

1. Introduction. In 1960 Kalman [2] introduced the concept that calls the differen-
tial control equation

(1.1) Ax + Bu

in [to, tl] R" controllable if for any states x, x in R" there exists a (open loop)
control function u(. to, tl] --> R for which (1.1) has a response x(. satisfying the
end conditions X(to)= x and x(t)= x. He showed that if the n n A and n m B
are time-invariant matrices then this open loop controllability is equivalent to the
condition

1.2) rank B, AB,. ., A"-1B n.

(The n x nm matrix in (1.2) is called the controllability matrix of (1.1).)
While it has an obvious significance in optimization problems for which boundary

conditions are imposed on the end states, it turns out that the more subtle and most
profound implications of open loop controllability appear in problems concerned with
alteration of system dynamics and input-output characteristics by means of feedback
control. (See [4] for a detailed treatment of the problems of pole placement, decoupling
and reduction of control dimension using feedback.) These developments motivated
the question studied in this paper: Is it possible, at the outset, to base the notion of
controllability on feedback?

Before making a formal statement of the problem we should add that Kalman’s
definition applies to the more general (nonhomogeneous) (2.1) in which f(t) is
integrable on to, t]. However, that equation can be reduced to one ofthe homogeneous
type (1.1) without disturbing the controllability by a preliminary change of variable
y x-(t) in which (t) is any solution to the nonhomogeneous equation with the
control function set to zero. It will become obvious that such a reduction is not possible
for the problem treated in this article.

2. The feedback controllability problem and a preview of the results. This paper
investigates the controllability of linear, constant coefficient, nonhomogeneous

* Received by the editors May 24, 1983, and in revised form August 16, 1984.
f Department of Applied Mathematics, University of Virginia, Charlottesville, Virginia 22901.
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equations

(2.1) Ax + Bu +f( t),

working with feedback controllers defined by the equation

(2.2) u Kx + v

rather than directly with open loop control functions u(t). The matrix K and the vector
v are not allowed to be time dependent.

DEFINITION 2.1. An admissiblefeedback controller is an affine map of R" into R
determined by (2.2) when the real m n matrix K and the real m-vector v are specified.
Th differential equation

(2.3) (A + BK)x + Bv+f(t)

that results from substitution of (2.2) into (2.1) to eliminate the control variable u is
called the corresponding closed loop system of (2.1).

Recall that a vector function x(. on an interval to, tl] is called a solution to (2.3)
if it is absolutely continuous and satisfies the differential equation at all points in
[to, tl] with the possible exception of a subset of Lebesgue measure zero, i.e., almost
everywhere in to, tl]. The forcing term f is assumed to be integrable. This assures the
existence and uniqueness of a solution to the initial value problem for (2.3).

We investigate the problem of choosing K and v so that (2.3) has a solution
satisfying the boundary conditions

(2.4) x(to) x, x(t) x

DEFINITION 2.2. For A, B and f fixed the differential control equation, (2.1), is
called feedback controllable on [to, t] if for any states x, x in R" there exists an
admissible feedback controller for which the corresponding boundary-value problem
(2.3)-(2.4) has a solution x(.) on [to,

Obviously if (2.1) is feedback controllable on to, tl], then it is open loop control-
lable on [to, t] in the sense of Kalman. The main problem addressed in this paper is
the question: Is an open loop controllable system feedback controllable? We are able
to prove the following results.

THEOREM 2.1. If the coefficients satisfy (1.2) and either n is equal to 1, n is even
orf is of bounded variation on to, tl] then (2.1) is feedback controllable on to, tl].

COROLLARY 2.1. The homogeneous equation, (1.1), is closed loop controllable ifand
only if it is open loop controllable (on any and hence on all intervals).

The results obtained in the article are stronger than what is stated in Theorem
2.1. For example, the restriction that f be of bounded variation can be relaxed to an
attenuation rate condition on the spectral density function of f (see Theorem 4.3).
More importantly, it is shown that if feedback controllability can fail at all, with f but
integrable, then failure must occur for rather special f and for boundary states in a
well isolated set in the complement of an open and dense subset of R R for n > 1
odd. In particular, still assuming that A, B satisfy (1.2), the boundary control problem
has a solution K, v for generic (x, xl,f) R R" L(to, tl). Whether the exceptional
cases that appear in the proof are indicating a limit to the extent to which a controllable
system can remain feedback controllable under severe external forcing or whether they
are only artifacts of the author’s method of proof remains an open question. We should
add that the method of proof, ultimately based on the implicit function theorem,
provides information that would be useful for computing the admissible controls which
accomplish the steering.
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The results are adequate to cover most applications. To support this claim we
point out that from the change of variable y-x-fdcr it becomes apparent that if
(1.2) holds then, for integrable f, system (2.1) can be steered from any point (to, x)
to any other point (tl, x 1) by a controller of the type

(2.5) u K x- fdcr + v,
to

(K, v constant). The same remark applies for controllers of the type

(2.6) u=K[x-(t)]+v

in which (t) is as described in the Introduction. These conclusions follow from
Theorem 2.1. (See Corollary 4.1 as well.)

Corollary 2.1 establishes the equivalence of the notions of open loop and feedback
controllability.

3. Mathematical preliminaries. This section gathers together various preliminary
results which contribute to the main proof and on occasion are of interest in their own
right.

Let F be any field of characteristic zero and for n a positive integer denote an
element of F" by k (kl, k2, , k,). Theorem 3.1 deals with a matrix equation having
a coefficient of the form

(3.1)

0 1 0

0 0 1

0 0 0

A,(k)

0 0

k, k,,_

0 0 0

0 0 0

1

1 0

0 1

k k

THEOREM 3.1. Select arbitrary k F" and let J be any n x n matrix over F. Then
the matrix solutions N over F to the equation

(3.2) JN NA,,( k) 0

are precisely those of the type

(3.3) N [p,_(J)a, p,_2(J)a,’’ ", p,(J)a, a],

a , in which is the null space ofp,(J) and Pr is the characteristic polynomial of the
respective r r submatrix At(k), (r 1, 2, , n). Moreover,

(3.4) det (N)=det [J"-a, j"-2a, Ja, a].

Remark 3.1. One can easily verify that

(3.5) p(x) x- kx-1- k2x-2 kr_lx k,.

Remark 3.2. An important special case of Theorem 2.1 is the one where the
minimal polynomial of J divides p,. This is precisely the case for which Ac F".
Theorem 3.1 reduces the question of whether (3.2) has a nonsingular solution N over
F to the question of whether J has a cyclic vector in Ac.
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Proofof Theorem 3.1. By writing out the n n identity matrix I, as [el, e2, e,]
in terms of its columns it is apparent that

(3.6) A,(k)el

(3.7) A,(k)er=er_l+k,_r/le,

(r= 2, 3, , n). Since J and N can be written, respectively, as [Je, Je2, , Je,] and
[ Ne, Ne2," , Nell, by employing (3.6)-(3.7), the matrix equation (3.2) can be written
out in terms of columns as the system of n-vector equations

(3.8) JNG NG_ k,_+1Ne, O,

(r =.1, 2,..-, n), in which eo is defined to be 0. The matrix form of system (3.8) is

J 0 0 0 -k,I Ne 0

I J 0 0 k._ I Ne 0

(3.9)
0 -I J

0 0 J k21 Ne,_ 0

.0 0 0 I (J- klI) Ne 0

in which I is the n n identity matrix. By adding J times each row to the one above
it, starting at the bottom and working upward to the top, the coefficient matrix in (3.9)
is transformed by elementary row operations into a row equivalent matrix. From this
procedure it is evident that (3.9) is equivalent to the equation

-0 0 0 0 p.(J) Ne 0

-I 0 0 0 p,-l(J) Ne2 0
o -i o

(3.0)

0 0 "’. 0 P2(J) Ne._ 0

0 0 0 I pl(g)

Obviously a solution to (3.10) must have Ne,, where is the null space of p,(J).
Hence for each a e X equation (3.10) has the solution

(3.11) Ner=P._r(J)a,

(r= 1, 2,..., n), with Po defined to be the identity, and there cannot be any other
solutions. The reader can easily check the validity of (3.4) by keeping in mind the
form of the Pr pointed out by Remark 3.1 and performing the appropriate column
operations of the solution N given by (3.3). This concludes the proof of Theorem 3.1.

COROLLARY 3.1. Assume that the matrices J and A,( k) have the same characteristic
polynomial p,. Then d F". Ifp, splits into a product of linear factors over F,

(3.12) p,,(x) (x- z,)(x- z2) (x- z.),

then there exists a nonsingular solution N to (3.2) if and only iffor each eigenvalue Z

the associated eigenspace of J in F" has dimension one. In particular this occurs if the
eigenvalues {Zl, z2, , z,} are distinct. IfJ isfurthermore assumed to be in Jordanform,
then each solution (3.3) to (3.2) has

(3.13) det (N)=I ar H (zj-Zs).
j<s
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Proof." If the characteristic polynomial p, of A,(k) is also the characteristic
polynomial of J, then p,,(J)=0 by the Cayley-Hamilton theorem. This says :V" F".
For the remainder of the proof, since p, is assumed to split over F, there is no loss in
taking J to be in Jordan form. The standard theory of that form says that the
one-dimensionality of the eigenspaces of J associated with its distinct eigenvalues is
equivalent to J having but one elementary Jordan block for each distinct eigenvalue
and that in turn is equivalent to J having a cyclic vector in F". Combined with the
conclusion of Theorem 3.1, which says that formula (3.3) produces all solutions N to
(3.2) and that their determinant is the value described in (3.4), the proof of Corollary
3.1 is complete except for verification of (3.13).

If the eigenvalues {Z1, Z2,""" Zn} are distinct, then the Jordan J is diagonal and

n-1
Z1 [1 Z1-2(11 ZI[1
n-1 n-2

(3.14) [J"-a, J"-2a, Ja, a]= z2 a2 z2 a2 z2a2 a2. "..
zn--1 n--2n Zn n Znn

From (3.14) it follows readily that

(3.15) det [J"-a, J"-Ea, ., Ja, a] I a I-I (z- z).
j<s

Application of (3.4) of Theorem 3.1 to (3.15) finishes the proof.
Remark 3.3. All the assumptions of Corollary 3.1 are met for F C, the complex

field, if J diag (zl, z2," , z,) when we take the coordinates of k to be the symmetric
functions of the variables zr C

kl(Z1, g2," Zn) Z1 + Z2"" + Zn,

kZ(Zl, Z2, Zn) --(Z1Z2-" Z1Z "+’" + Z1Zn + ZZZ3 " Z2Z4"- + Zn-lZn),
(3.16)

kn(z1, z2," ", Zn) (--1)"+lzlz2 Z,.

Recall the definition of the pr given in Theorem 3.1. A simple inductive proof shows that

(3.17) pr(gj)

(j 1, 2,..., n), (r 1, 2,..., n). With the exception of possible multiplication by a
minus sign, p(zs) can be computed by striking out zs from the set of variables
{z, z2,’’ ", z,} and adding all terms obtained by taking products of the remaining
variables r at a time. It will be helpful to think of it in this manner later in the paper
where it plays a prominent role. The reader is hereby forewarned not to assign a simple
functional interpretation to the convenient if unusual notation p(zs). (3.17) shows that
p(zs) is independent of zs.

The matrix A,(k) defined by (3.1) appears as a coefficient in the boundary-value
problem on [0, 1]

(3.18) 2= A,(k)x + ye, +f(t),

(3.19) x(0) x, x(1) x

with the integrable function f:[0, 1]- R" arbitrarily prescribed. (e, denotes the last
column of the n x n identity matrix.) Lemmas 3.1, 3.2 and 3.3 are related to the question

we compute
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of whether ke R" and y e R can be chosen so that the boundary-value problem
(3.18)-(3.19) has a solution.

Transform notation. For f:[0, 1]--> R" integrable it Will be convenient to work
with the transformed functions of the variable z e C,

(3.20) F() e (o-) do’,

(r 1, 2,-.., n). Since f is integrable, it follows from Fubini’s theorem that F is an
entire function of z. F can be viewed as the Laplace transform of the function f
extended as zero on [1, oo). Throughout the paper Fo denotes the transform of the
function identically equal to 1 on [0, 1].

We alert the reader to the fact that the system of nonlinear equations (3.21) that
follow are highly coupled as are (3.27). (See Remark 3.3 and Equation (3.17).)

LEMMA 3.1. Let n 2q be even. If there exist distinct zj C-R satisfying the
equations

(3.21) yFo(zj) [e-x o-x-g(z)]p._(z),
r=l

(j= 1, 2,..., n ), with zq+, (j= 1, 2,..., q), then the boundary-value problem
(3.18)-(3.19) has a solution for k determined by (3.16).

Proof Let z, (j 1, 2, , n), and y e R satisfy the hypothesis of Lemma 3.1. Then
equations (3.16) define a k e R". The coordinates of k appear in the coefficients of the
polynomials p according to (3.5). If we define the matrix J =diag (z, z, , z,) and
let a e R" be the vector whose coordinates are all ones, then (3.21) can be rewritten
as the n-vector equation,

Fr(J)p,,_ (J)a.(3.22) yFo(J)a e-J E Xrp,,--r(J)a E x,.p,,_,.O (J)a-
r=l r=l r=l

Corollary 3.1 applies to J and A,,(k) when the field is taken to be C and since the

z’s are distinct and H at-- 1, it ensures that the matrix N defined by (3.3) is invertible
and satisfies (3.2). Hence (3.22) can be rewritten in terms of N as

(3.23) yFo(J)Ne,, e-J x,.Ner xNe,. e-J f,.(o’)Nerdo’,
which says that

(3.24) y e-JNe do" e-JNx- Nx- e-JNf(o") do’.

Multiplication of (3.24) by N- and application of (3.2) gives

(3.25) y e-(e, do-=e-a(x-x- e-a(f(o") do"

which is equivalent to saying that

(3.26) x= e(x+

By the variation of parameters formula [4, p. 74] this equation simply says that x(1) x
where x(. ):[0, 1]- R" is the unique solution of (3.18) satisfying the initial condition
x(0) x. This ends the proof of Lemma 3.1.
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LEMMA 3.2. Let n 2q + 1 be odd. If there exist distinct zj C- R and z, c R
satisfying the equations

o Fr(c)]p,_r(C) Fo(c) E e-xl o(3.27) Fo(Zs) [e- x-x- -xr-F(zS)]p,-r(zs),
r=l r=l

(j 1, 2,. ., 2q), with Zq+s, (j 1, 2,..., q), then the boundary-value problem
(3.18)-(3.19) has a solution where k is determined by (3.16) and y e R is computed by
the formula

(3.28) Y Fo(c)-i , 0e Xr-Xr-Fr(c)]pn_r(C).
r=l

Proof. Let zs, (j 1, 2,..., n), satisfy the hypothesis of Lemma 3.2. Then (3.16)
defines a k R". The coordinates of k appear in the coefficients of the polynomials Pr
according to (3.5). Since these polynomials have real coefficients, it is clear that (3.28)
defines a 3’ R. By rewriting (3.27) in terms of 3’ using (3.28), it is easily shown that
(3.27)-(3.28) can be transformed into the equivalent system,

(3.29) yFo(zs) [e-x XOr Fr(Zs)]p,_(zs),
r=l

(3.30) yFo(c) [e-Cx or-Xr-Fr(C)]Pn_r(C),
r=l

(j 1, 2,..., 2q), or more concisely, just

0(3.31) yFo(zs) [e- JXr-Xr- Fr(zj)]Pn_r(Zj),
r=l

(j=1,2,’..,n). By defining aR" and J=diag(z,z2,...,z,) as in the proof of
Lemma 3.1, the proof of Lemma 3.2 can be completed by applying the same sequence
of operations on (3.31) as was done in the proof of the preceding lemma. The details
are not repeated here but are easily supplied. This proves Lemma 3.2.

In the next lemma,/x denotes Lebesgue measure and E’ is the complement of E
in [0, 1].

LEMMA 3.3. Consider any Xl and x2 in R and assume thatfl" [0, 1 R is integrable.
For some c R there is a solution w C to the equation

Xl + F,(c)
(3.32) e

e-Cx, + x2Fo(c)+ F,(c)

if one of the following conditions holds:
(1) x # 0.
(2) x =0, x2 0 andfor some E [0, 1] with (E) > 0,fl(r) + x2 0 andf(r) 0

for all r E.
(3) Xl=0, x2#0 and for some E[0, 1] with O<l.(E)<l, f(cr)+x2=O for all

r E and fl(o’)-0 for a.e. r E’.
Proof Let Xl and x in R and integrable f "[0, 1]-> R satisfy one of conditions

(1)-(3) of Lemma 3.3. The problem is to prove that for some c R the numerator and
denominator of the right-hand side of (3.32) are not zero. To reach a contradiction
suppose that there were no such c.

We first argue the impossibility of either of the equations

(3.33) x,+F,(c)=O,
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(3.34) e-Cx1 + x2Fo(c) + FI(c) 0

holding for all c R. Suppose that (3.33) held for all c R. By letting c- c it would
follow from application of the Lebesgue dominated convergence theorem that xl 0
and hence that

(3.35) Fl(C) e-f(o-) dr=0

for all c R. By writing the exponential function as a power series and applying Fubini’s
theorem we see (3.35) implies that

(3.36) - (--c)r IoY o’rf,(o) do" O,
r!

for all c R, (r=0, 1,2,...). This in turn supplies the equations

(3.37) rrf(r) dr O,

(r 0, 1, 2,...). An integration by parts shows that

(3.38) tr f( t) dt dtr O,

(r=0, 1, 2,. "). With f integrable it is an easy matter to show that

(3.39) g(tr) fl(t) dt

defines an element of the Hilbert space L2(0, 1) and since the functions {1, tr, trY, .}
constitute a basis for that Hilbert space it is concluded from (3.38) that g(tr)=0 for
a.e. tr [0, 1]. But this contradicts the assumption that one of the conditions (1)-(3)
holds since it is inconsistent with each of them. A similar argument that starts by
multiplying (3.34) by e and letting c - shows that the possibility for (3.34) holding
for all c R is likewise ruled out.

Could there be a c* R at which one of (3.33) or (3.34) holds while the other
fails? If there were such a c*, then by continuity the equation that fails at c* would
fail for all c in some open interval containing c* and thus the equality holding at c*
must continue to hold on the mentioned open interval. (Otherwise we violate our
assumption that for no c R do both (3.33) and (3.34) fail.) Since the left-hand sides
of (3.33) and (3.34) are entire functions, by the identity theorem of complex function
theory we end up with one of (3.33)-(3.34) holding for all c Rma possibility already
eliminated. Thus we are forced to conclude that for some c R the right-hand side of
(3.32) is defined and not zero. We can now take w to be any of its logarithms and the
proof of Lemma 3.3 is finished.

The Riemann-Lebesgue theorem has the following consequences. (In Theorems
3.2 and--3.3 s denotes a real parameter.)

THEOREM 3.2. For f: [0, 1]--> R integrable and F its transform,

(3.40) F(w+ s27ri) --> 0

as Is]- , uniformly on compact subsets of C.



960 DAHLARD L. LUKES

THEOREM 3.3. Suppose that g, LI(0 1) satisfies the inequality

h(t)
(3.41) e

for a.e. t[0, 1] and all to>-l for some fl R and he L(O, 1). Then its finite Laplace
transform G( z) has

(3.42) lim eSG(w + s + seSi) 0

for all w C. If (3.41) holds moreover at 1 with h(1) finite then g L2(0, 1). In
particular if g is of bounded variation on [0, 1] then (3.41) is satisfied for all [0, 1]
with h(t)=lg(t)l+lg(O)l+ V where V is the total variation of g on [0, 1].

Proof. Assume the hypothesis. By an integration by parts we see that

(3.43) [e’a(w+ s+ sei)l<=le-Wa(se’i)l+ls+ wleS+lwl e-t e-’seSig(o") do" dt.

Application of (3.41) to (3.43) and invocation of the Riemann-Lebesgue theorem and
the Lebesgue dominated convergence theorem give (3.42).

Now further assume that (3.41) holds at 1. By continuity there exists a bound
b on the integral appearing in (3.41) for 1 and to _-< . By extending g to be zero
outside [0, 1], applying the Plancherel theorem, (6, p. 187), as well as (3.41) with 1,
we see that

do" Ig(o)12 dcr

(3.44) -2zr

I -oo e-’’g( o.) do"

__<+
h2(1)

2

dto

h2(1)
2

This proves that g L2(0 1). The conclusion concerning g ofbounded variation follows
readily by an integration by parts.

Remark 3.4. In dealing with the boundary-value problem based on Equations
(4.1)-(4.2) in the next section of this paper there will be no loss of generality in

assuming that to-0 and tl- 1. This normalization can be accomplished by means of
the changes of variables and parameters

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

t=(1-’)to+rh, O<-r-<l,

x*(’) Dx(t),

f*(’) (tl to) Df(t),

k* t to)Dk,

/* (t- to)n%

D diag [ 1, t to),’", (tl to)"-].
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Remark 3.5. Equations (3.18)-(3.19), the normalized form described in Remark
3.4, can be simplified further by taking x1= 0 in the application forthcoming. To see
this, introduce a new variable x*-x-x1, a new function f*-f+ An(0)x and a new
parameter y* knXll + k,_ix +" + k2x n--1 d- klX 4- T. This transforms equations
(3.18)-(3.19) into

(3.51) 2*= An(k)x* + y*en +f*(t),

(3.52) x*(0) x*, x*( 1 0

in which x* x- x. If for f* and each x* e R the k and y* can be chosen so that
(3.51)-(3.52) has a solution, then (3.18)-(3.19) will have a solution relative to k and
the parameter y y* knxl + kn-lX +’’ d- k2xln_l -t- klXn],,

4. Feedback controllability in finite time. In its elemental form the main problem
dealt with in this section concerns the existence of a solution to the boundary-value
control problem on [to, tl] x R",

(4.1) 2= An(k)x + yen +f(t),

(4.2) x(to) x0, x(tl) x

THEOREM 4.1. If n is even andf is integrable on [to, q], then there exist k e R and
y R such that (4.1)-(4.2) have a solution x(. ).

Proof Let n 2q. In view of Lemma 3.1 and Remarks 3.4 and 3.5 it is sufficient
to prove the existence of a 3’ e R and distinct zj e C- R satisfying

(4.3) yFo(zj) [xr+ Fr(zj)]pn_(z),
r=l

0(j 1, 2,. , n), with Zq+, (j= 1, 2,. , q). (We drop the superscript from x to
keep the notation simple.)

With this goal in mind consider the related equations

(4.4) Fo(z) -e [xr + Fr(zj)]p,_(z),
r=l

(j 1, 2, , n), that would result from dividing both sides of (4.3) by 3’ and renaming
1/3’ as e. Select any q integers s for which 1 <_- Sl < s2 <" < Sq and define

o 27rsfi,(4.5) zj

(in which i2__--1), and
o(4.6) Zq+j -27rsfi,

(j 1, 2," , q). For this choice,

(4.7) Fo(z) =0,

(4.8) F(z) # 0,

(j= 1,2,..., n). Therefore the implicit function theorem in C" applies to (4.4),
ensuring the existence of a unique solution z(e) defined on some open interval in R
about e= 0 and having z(0)= z. The solution is in fact real analytic relative to e. It
will now be argued that

(4.9) (e)=Zq+j(e),

(j 1, 2,. ., q), for all e in the aforementioned interval.
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The permutation of the variables {z, z2,’", z,} which is defined by the inter-
changes zj- Zq+j, (j 1, 2,..., q), induces the interchanges p,_r(Zj)"-)p,_r(Zq+j), (j
1,2,’’’, q), (r= 1,2,..’, n). (See Remark 3.3.) Thus the permutation leaves the
collection of equations (4.4) invariant. Moreover it is apparent that for e fixed the
solution set of (4.4) is invariant relative to complex conjugation. Hence
(’q+l(e), ’q+2(/),’’’, 2q(e), l(e), ’2(e),’’’, rq(E)) also is a solution to (4.4) equal-
ing z at e due to (4.5) and (4.6). Consequently (4.9) follows from the uniqueness
aspect of the implicit function theorem. We have established the existence of the
required solution (in fact a family of such solutions), ), (1/e), z z(e) for all e 0
appropriately near zero. This completes the proof of Theorem 4.1.

Remark 4.1. For n 2q even, the proofofTheorem 4.1 actually shows the existence
of a q-parameter family of functions k(. (with integer parameters s < s: <. < Sq),
analytic about the origin, for which (4.1)-(4.2) have a solution x(.) when one sets
k k(1/y) in those equations and keeps lYl large. The limit of k(1/y) as y- +/- can
be computed readily in terms of the sg’s using the formulas

o 27rsi(4.10) zg
tl_ to’

(4.11) o -27rsi
Zq+j

tl to,
(j 1, 2,. ., q), along with (3.16).

Remark 4.2. Certainly if the bias parameter y were restricted to be zero, then for
some x, x and f the boundary-value problem (4.1)-(4.2) would fail to have a solution
no matter how k were chosen. On the other hand, for n 2q even, if there are integers
S < S2 < < So for which

(4.12) X1 0 tr2x to) e- f to + tr to)) dtr 0,

(r 1, 2, , n), then the boundary-value problem will have a solution for some k R"
independent of how y R is chosen. This conclusion follows from Lemma 3.1.

COROLLARY 4.1. Let n be odd with the real n-vector valued function f and scalar
function fo integrable on to, tl]. Then for each x and x in R" there exist k R", y R
and ko R such that the boundary-value problem

(4.13) 2=A,(k)x+ y+ko [x(o-)+fo(o’)] do" e+f(t),
o

(4.14) x(to) x, x(t) x

has a solution x(. ).
Proof. Observe that the given boundary-value problem embeds in the even

(n / 1)-dimensional problem on to, t] R R n,
(4.15) :* A,,+,(k*)x* + ye,+l +f*(t),

(4.16) x*(to) x*, x*(tl) x*1,
where f* =fof k* k x ko, x* 0 x and x* 0 x. The existence of a k*
k Xko R" R and a y R such that Equations (4.15)-(4.16) have a solution x*(.
Xo(’) x(.) follows from direct application of Theorem 4.1. This provides k R",
ko R and y R for which Equations (4.13)-(4.14) have the solution x(. and Corollary
4.1 is proved.
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Remark 4.3. As pointed out in Remark 4.1 the k* k(. x ko(-) arising from the
proof of Corollary 4.1 is an integral parameter family of functions analytic about the
origin. Solutions to (4.13)-(4.14) are assured when one sets k= k(1/3’) and ko ko(1/3‘)
in those equations and keeps 13’1 large. It is worth noting that although k(1/3’) and
ko(1/3’) have limits as 13’1 oe, the limit of the latter is not zero.

The steering that Corollary 4.1 says is possible relies on the sum of an admissible
feedback controller together with an integral feedback term. The next theorem examines
the question" Can the integral feedback be eliminated?

THEOREM 4.2. Let n 2q + 1 be odd and f: to, t] - R be integrable. Then there
exist k R" and 3" Rfor which (4.1)-(4.2) have a solution x( with thepossible exception
of the two special cases defined for n >= 3 by the conditions

(1) Xl-X=0, x-xO and fl(t)+x=O for a.e. t[to, t].
(2) xl-xl=O, x-xO and fl(t)+x=O for a.e. te[to, t].

A solution is assured to exist in the special case as well iff L(to, t) and respectively

e F2(w+s+se 0(1’)-(2’) lim

for all w C in which F(z) are defined to be the respective transforms off2( to + tr( to))
and f( t r( t to)).

Proof. The argument is based on application of Lemma 3.2. Let n 2q + 1 be odd
and f be integrable. In view of Remarks 3.4 and 3.5 we can take to, tl] [0, 1 and it
is sufficient to show the existence of distinct zj e C R and c e R satisfying the equations

(4.17) Fo(zj) [xr+Fr(c)]p,_r(c)=Fo(c) [xr+F(z)]p,_r(z),
r=l r=l

(j= 1,2,’’’ ,2q), with = Zq+, (j= 1,2,’’-, q). Such a z=(z, z,..., zq) and c
determine the appropriate

(4.18) 3’=-Fo(c) -1 [x+Fr(c)]p,_(c).
r=l

For the lowest dimension, n 1, the c e R can be selected arbitrarily, Equations
(4.17) are inactive, and 3’ is determined from (4.18). (Recall that we defined po 1.)
Now consider any fixed n 2q + 1 > 1.

In the simplified form to which the problem has been reduced the conditions (1)
and (2) in the hypothesis of Theorem 4.2 appear as:

(1) Xl--0, X20 and fl(O’)q-X2-0, a.e. o’ [0, 1].
(2) x=0, x20 and fl(r)=0, a.e. o- [0, 1].
The proof partitions the problem into cases.
Case 1. This is the case where one of conditions (1)-(3) of Lemma 3.3 is satisfied

by x, x and f.
A good deal of the analysis is based on the more convenient form of (4.17),

(4.19) e-= l-Gj(z, c),

(j 1, 2,..., 2q), where by definition

Fo(c) E7=1 [x+ F(z)]zjp,_(z)
(4.20) 6(z, c)=

-7:, [x + F(c)]p._(c)

Equations (4.19) are obtained from (4.17) by multiplying by z, evaluating the integral
defining Fo(Zj) and solving for the free term e-Z. The constraint that z e C-R,
(j= 1,2,... ,2q), ensures the equivalence of (4.17) with (4.19) as long as the
denominator term in G(z, c) is not zero.
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In working with (4.20) it will be necessary to sort out those homogeneous terms
in the Zr’S of highest degree. This leads to rewriting

(4.21)

where

2q

[xr+F’.(c)]p,,_r(c)=[Xl+Fl(c)]l-I zr+6,(z, c)
r=l

(4.22) 6,,(z, c)= [x+ F’.(c)]p,_(c)

and similarly

(4.23)

where

(4.24)

go(C) [x,+V,(z)]zp._,(z)
r=l

{ 2q }=go(C) [(cx-x)+ cF,(z)- F(z)] II z,+ (z, c)

+ [x+ (z)]zp._(z),

(j= 1, 2,.’., 2q). Substitution of (4.21) and (4.23) into (4.20) gives

[cx-x:+ cF(z)- F2(z.)] [Iq z+ 6(z, c)
(4.25) G2(z, c) Fo(c)

Ix -- El(c) 1-I2q z’.+ 8n(g, c)

(j= 1, 2,. ., 2q).
Temporarily deferring further direct analysis of (4.19), we switch our attention to

the system

(4.26) e-W 1 aj(w + s2via, c),

(j 1, 2, , 2q), having dependent variables w (w, w2, , Wq) C2q and c e R.
The vector a Rq has its first q coordinates ones and the remaining q coordinates
are minus ones. The s R is treated as a parameter. Existence of a family of solutions
w, c to (4.26) for all s with Is[ large will now be argued.

According to Lemma 3.3 there exists a Co R a’nd a Woe C satisfying the equation

(4.27) e_wo=Xl e-C+ xzFo(co)+ Fl(co)
X + FI(Co)

Choose any integers s. (r 1, 2, , q), satisfying 0_-< sl < s2 <. < Sq and define

o(4.28) Wj Wo + 2"rrsii,

(4.29) owq+i o 2 7rsfi,

(j 1, 2, , q). To insure that the coordinates of w= (w, w,..., Wq) are distinct,
Wo is taken to be the solution of (4.27) with the smallest possible imaginary part. We
shall show that the implicit function theorem applies to (4.26), producing a solution
about (w, Co)e C2q x R for Is large.

2qBy recalling Remark 3.3 we carefully note that zip,,_:,(zi) + rI Zr and the zip,,_,.(zi),
(r=3,4,..., n) of (4.24) as well as the p,,_’.(c), (r=2,3,..., n), of (4.22) are sums
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of homogeneous terms in the zr’s of degree 2q- 1 or less. This observation combined
with application of Theorem 3.2 to Equations (4.22) and (4.24) shows that

(4.30) s-2q6j(w + s27ria, c)- O

as Isl-, o for all (w, c) C2q R, (j= 1,2,..., n). It follows that

cx, x2) Fo( c)
lim Gj(w+ s27rio c)(4.31)
Isl-, xl+Fl(c)

(j= 1,2,..-,2q). Therefore it is possible to define a function /-/(w, c, e) which is
continuous on a neighborhood of (w, Co, 0) 6 C2q R R for which

(4.32) tl(w,c,e) 1 G(w+ 27rti )
(j 1, 2, , 2q), when e 0. Since the limit functions are continuous and are limits
of functions analytic relative to (w, c) the convergence is uniform on compact sets and
the limits are therefore analytic relative to those variables. In particular the are
once continuously difterentiable relative to w about (w, Co, 0) with

(4.33) H(w, c, 0) 1-
(CXl-X2)Fo(c) e-CXl +X2Fo(c)+ Fl(C)

X + Fl(c Xl + Fl(C

and

0
(4.34) (gwrni(w, C, e) 0

at (w, Co, 0) for (j 1, 2, , 2q), (r 1, 2,. , 2q). Together, (4.27)-(4.29) imply that

(4.35) e J=/-/(w, Co, 0),

(j 1, 2,..., 2q). The implicit function theorem can now be applied to conclude that
there exists a unique solution if(e) to the system

(4.36) e-w =/-/( w, Co, e),

(j 1, 2, , 2q), defined and continuous for all e in an open interval about the origin
in R and satisfying if(0)= w. Due to the relationship (4.32) between and G2 the
conclusion translates into the statement saying that there exists a unique solution
w(s)--if(I/s) to (4.26) defined and continuous for all s with Isl large and satisfying
the condition that w(s) - w as Is]- o.

Since the collection of equations (4.26) is invariant relative to the interchanges w- wq/2, (j 1, 2, , q), and its solution set is invariant relative to complex conjuga-
tion it is apparent that (ffq+, q+2,’", 2q, , 2,"’, q)(s) is another solution to
(4.26). However (4.28)-(4.29) imply that both solutions have the limiting value w as
Is[ c and the uniqueness leads to the conclusion that

(4.37) #j(s)= wq/(s),

(j 1, 2,..., q), for Isl large.
Returning our attention to (4.19), we now define

(4.38) z(s) w(s) + s27ria

with s restricted to integer values having Is] large. For each such s we claim that
(z(s), Co) provides the required solution to (4.19). Since (w(s), Co) satisfies (4.26), it
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follows from (4.38) that

(4.39) e-Z(S) e-W(s)= 1-Gj(w(s)+s2ria, Co) 1-Gj(z(s), Co),

(j 1, 2,..., 2q), as desired. Moreover (4.37) and (4.38) imply that

(4.40) (s)=Zq+j(s),

(j 1, 2,..., q). The requirement of Lemma 3.2 that the coordinates of (z(s), Co) be
distinct is met since for [sl large w(s) is near w whose coordinates, by their definition,
are distinct. Moreover, it is clear from (4.38) that for Isl large the condition that
z(s) C- R, (j 1, 2,..., 2q) is satisfied. Thus an appropriate solution to (4.17) has
been shown to exist and the conclusion of Theorem 4.2 holds for Case 1.

Case 2. This is the case in which xl =0, x20 and fl(cr) -x2 for a.e. r [0, 1].
Again the approach taken is based on proving the existence of an appropriate

solution to (4.17). To obtain a more convenient form of the equations, we split off a
term from the second sum in (4.17) and insert the assumed values of x and fi to get

Fo(zj) [Xr+Fr(C)]p,,_r(C)
r=l

(4.41)

=-x2Fo(c)Fo(zj)p,_(zj)+ Fo(c) [x+ Fr(z2)]p,,_r(Zj),
r=2

(j= 1,2,... ,2q). Multiplication of (4.41) by zj, evaluation of Fo(z.i) and solution of
the resultant equation for the free term e-Z leads to the equivalent equations

Fo(c) Zr"=2 [Xr+ Fr(zj)]zjpn_r(Zj)
(4.42) e- 1-

Z"= [x+ Fr(c)]p,,_r(C)+x2Fo(c)p,,_(zj)’

(j 1, 2, , 2q). By writing the right-hand side of (4.42) over a common denominator,
splitting off the terms containing x2 in the resultant numerator and applying the relation

2q 2q

(4.43) p._l(Z2) ZjPn 2 Zj C Z 1--I Zm -t- I-[ Zr,
r=l mar

which can easily be derived, a long but elementary calculation leads to the equivalent
form of (4.42),

(4.44) e-z G(z, c),

(j 1, 2,..., 2q), where this time

h z, c + x2 ,2q H s Zrn -l- tj Z, C
(4.45) Gj(z, c)=

h(z, c)/ x2 Hr#j Zr

in which is defined

(4.46)

(4.47)

h(z, c)-- Fo(c)-’ [Xr-Jl Fr(c)]c-lpn_r(C),

2q

(z, c)=[x2+ F2(z2)]c-’ H Zr+ F2(zj) ., H gm
rj mr-- [Xr-’" F(zj)]c-’zjp,,_r(Zj).
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As in Case 1 the main argument centers about an auxiliary system, here

(4.48) e- eSG.(w+ s + seSia, c(s)),

(j 1, 2, , 2q). The symbols w, wj and a denote the same kinds of objects as in the
analysis of Case 1 and /3 is the 2q-vector all of whose coordinates are ones. The
parameter c is made dependent on s according to the equation

(4.49) c(s) -s2e2,

for s > 0. Existence of an appropriate family of solutions to (4.48) for all large s will
now be argued.

Let Wo be a solution to the equation

(4.50) e-wo -qi.

Choose any integers st, (r 1, 2, , q), satisfying 0 =< s < s2 <" < Sq and define

o(4.51) wj Wo+ 2"n’sfi,

(4.52) ow q+.i o- 2"rrs.ii
(j= 1,2,’’ ",q).

To insure that the coordinates of w= (w, w,. , Wzq) are distinct, Wo is taken
to be the solution of (4.50) with the smallest positive imaginary part. We shall show
that the dominant terms in (4.48) as s- contributed by Gj arise from the two terms
in (4.45) containing the products.

Keep in mind that p,,_r(c) is a finite sum of homogeneous terms of degree n-r
in the coordinates of w +s + sepia. Then it is evident that for r 1 the term

(4.53)
eSF(c)-l[xr + F"(c)]c-lpn-r(C)

(se)2q-’

is convergent to zero along c(s) as s oo since x =0 and F(c) -xFo(c). Moreover,
with f. L2, an application of Schwarz’s inequality shows that for r- 2 the term given
by (4.53) is also convergent to zero as s oo. The computation

(4.54) Fo(c)-[x+F(c)]c-=[e-l]- ex+ e(-fr(o") do"

shows that this factor is bounded along c(s) on 0 <_-s < oe due to the assumption that
f e L and thus (4.53) is convergent to zero as s - oe for r 3, 4, , n as well. This
analysis of (4.53) proves that

eSh(w+ sol + sepia, c(s))
(4.55) -olim (seS)2q_ -0

for all w C:zq.
Next we want to show that

(4.56) lim
eS6(w+ s + sepia, c(s))=0,

-oo se):zq-’

(j 1, 2, , 2q), for all w e C:q.
First note that by the dominated convergence theorem,

(4.57) F(w + sfl + sepia) 0
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as s - oe for all w C2q, (r 1, 2, , n). The dominant term as s - oe for the sum

(4.58) E 1-I [w+s+seia],
rj mar

clearly is

(4.59) H [seSia],, (seSi)2q-lx(j)
rj mar

in which

(4.60) x(J)
rj mar

has the value (-1)q- for j(1,2,...,q} and the value (-1)
(q/ 1, q/2,... ,2q). It should now be evident from (4.47), (4.57) and condition (1’)
that (4.56) is valid.

To evaluate the contribution of the dominant terms from G in (4.48) we first
compute

2q 2q

(4.61) I-I [seiot]m=(sei):zq-l I-I am =0
r=l mr r=l mr

which shows that the dominant term as s- for the sum

2q

(4.62) E I-I [w+s+seia],
r=l mr

2q

E l-I
r=l k#r tn#k,r

[seio],, s(sei)2q-2 E E H re,,
r=l kar mOk,

(4.63) s-e2q-2s(-1)q-l[2C(-1)q + q(-1)q-]

s2q-l.e(2q-2)S(_l)q-lq(_l)a-1-- qs2q-le(2q-2) s.
One can easily check that the dominant term of the product 1-[a [w+ sfl + seia] is

(4.64). 1-I [seia] (sei)2q-’x(J).

From (4.45), (4.55), (4.56), (4.63) and (4.64) we see that

eSqs2q-le(2q-2)
(4.65) !im eG(w+ sfl + seSia, c(s))= !irn (sei)q_,x(j)

x(j)(-1)qqi,

(j 1, 2,..., 2q) at w and that the first limit in (4.65) defines an analytic function
of w on a neighborhood of w. Applying this result, we obtain functions /-/(w, e)
continuous on a neighborhood of (w, 0) Cq R for which

(4.66) Hi(w, e)= eGj(w+ sfl + sepia, c(s)) -27

(j 1, 2, , 2q), e 0. Moreover the //s are analytic relative to w and in particular
are once continuously ditierentiable relative to that variable about (w, 0). The evalu-
ation of the limit that occurred in (4.65) gives

(4.67) Hj(w, 0) -qi,

(4.68) Hq+(w, O)= qi,

(j 1, 2,..., q). By a careful examination of (4.45), (4.46) and (4.47), using the fact
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that differentiation lowers the degrees of a homogeneous term in the zr’s, the condition
(1’) as well as previously encountered arguments, one can check that

(w,)=0(4.69)
Owr

at (w,0) for (j= 1,2,... ,2q) and (r= 1,2,... ,2q). As a consequence of (4.50),
(4.51), (4.67) and (4.68) we see that

(4.70) e =/-/(w, 0),

(j 1, 2,..., 2q). In light of (4.69) and (4.70) the implicit function theorem can now
be applied to conclude that the system

(4.71) e-’= H(w, e),

(j 1, 2,..., 2q), has a unique complex 2q-vector solution if(e) defined and con-
tinuous on an open interval about the origin in R and satisfying if(0)= w. Due to
the relation (4.66) this conclusion translates into the statement that there exists a unique
solution w(s)-if(l/s) to (4.48) defined and continuous for all large s and having
w(s) - w as s oe. An argument similar to the one appearing in the treatment of Case
1 shows that

(4.72) (s)= Wq+(s),

(j= 1, 2,’’’, q), for all s large.
Returning our attention to (4.44) in which we set c= c(s), we can now define

(4.73) z(s) w(s) + s + seic

with se/27r restricted to large integer values. For each such s we claim that (z(s), c(s))
provides the required solution to (4.44). Since (w(s), c(s)) satisfies (4.48), it follows
with the aid of (4.73) that

(4.74) e-z) e-eW)= G(w(s)+s + sei, c(s))= G(z(s), c(s)),

(j 1, 2,..., 2q), as desired. Moreover (4.72) and (4.73) give us

(4.75) (s)=zo+(s),
(j-- 1, 2,. ., q). It is clear that the coordinates of (z(s), c(s)) are distinct for s large
and that z(s) C-R, (j 1,2,... ,2q). Thus an appropriate solution to (4.17) has
been shown to exist and the conclusion of Theorem 4.2 holds for Case 2.

Case 3. This is the case in which xl=0, x20 and fl(o’) =0 for a.e. cr [0, 1].
Rather than apply Lemma 3.2 directly we transform the problem into one already

covered in Case 2. The boundary-value problem under consideration is (3.18)-(3.19)
in which x =0, x 0, x 0 andf(t) =0 for a.e. e [0, 1]. Let A be the n x n diagonal
matrix with Ajj (-1)j+l, (j= 1,2,..., n). Consider the change of variable x*(t)
A[x(1 t)- x]. By utilizing the relations -AAn(k)A-l= An(Ak) and Aen e, one can
check that the proposed change of variable transforms the boundary-value problem
under discussion into

(4.76) :*= A,,(k*)x* + y*e, +f*( t),

(4.77) x*(0) -ax, x*( 1 0

in which k*= Ak, f*(t) -A[A,(O)x+f(1- t)] and y*=
/- k,x+ k,_x+... + kx,]. Observe that (-Ax) -x -x, 0, (-ax)2 x
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x2#0 and fl*(t)=-x-fl(t)=-x2=-x2 for a.e. te[0,1]. Furthermore, f2*(t)=
x -f2(1 t). Since f2(t) is assumed to satisfy the condition (2’), it follows that f2(1 t)
satisfies the condition imposed by (1’) and because of Theorem 3.3 applied to the
constant function x3 it is evident thatf*(t) satisfies the condition (1’). Thus the problem
(4.76)-(4.77) has a solution k*, y* since it has been verified to be of the type falling
under Case 2 and obviously this in turn implies that each problem of the kind defined
by Case 3 likewise is solvable. This concludes the proof for Case 3.

Case 4. This is the case where x 0, x2 0 and fi(tr)= 0 for a.e. (r [0, 1 ].
Consider the problem with perturbed data x, e, and x2 e, with the parameter

e restricted to an open interval containing the origin. Choose any Co R such that

(4.78) e-C+ Fo(co) O.

(There are many such numbers c.) For e, # 0 fixed the perturbed problem falls under
the purview of Case 1 and moreover has the same limit equation (4.35),

(4.79)

-wq
e J=/-/(w, Co, 0)=

e-Cx, + x2Fo(co)+ F,(Co)
x + g,( Co)

e-coel + elFo(co)
E1

e-C+ Fo(co),

(j 1, 2,..., 2q), independent of el # 0. Therefore the Wo and consequently w that
appears in the proof of Case 1 is independent of e,. In fact the function defined
by (4.32), now viewed as a function of (w, c, e, e,), can be extended by continuity so
that it is defined and continuous about the point (w, Co, 0, 0) and again once con-
tinuously differentiable relative to w. The solution w(s, e,) obtained from application
of the implicit function theorem then has a limit, lim,_o w(s, el)= w(s, 0), which when
substituted into (4.38) provides the required solution (z(s), Co), with Is[ large, to the
unperturbed system, i.e., to the system (4.17) with x, x= el =0. This concludes the
proof of Theorem 4.2 for Case 4.

Case 5. In this final case xl x= 0 and for some measurable set E c [0, 1] with
/x(E)>0, fl(tr) # 0 for all treE.

For this case it is easy to check that by working with an appropriate subset of E
there is no loss in assuming that fl(o’)+ e 0 for all tre E and all e with le[ small.
Hence there exists a Co e R for which

(4.80) Fl(Co) # 0.

Now consider the problem with perturbed data x =0 and x2 E 1. For fixed e with
le,I small the perturbed problem is of the type considered under Case 1 as long as
e, r 0 since fi(tr) # 0 and fi(tr) + x2 # 0 on E and x2 # 0. The limit system (4.35) for
the perturbed problem is

(4.81) e- J=/-/(w, Co, 0)=
e-Cox1-.1., x=Fo( co) + Fl(Co) f" Fo( Co) -it" F1 (CO)

Xl -- F1 (Co) F1 (Co)

(j--1, 2,..., 2q), and as a consequence of inequality (4.80), it follows that for le,[
small the solution w(s, el) arising out of the analysis of Case 1 has a limit,
lim,_o to(s, el)= w(s, 0), which as in the argument for Case 4 provides the required
solution (z(s), Co), with [sl large, to the unperturbed system. The details are omitted
since they are very much a repetition of those for Case 4. This ends the analysis of
Case 5.

Cases 1-5 are mutually exclusive and exhaustive. Theorem 4.2 is now established.
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Remark 4.4. Theorem 3.3, when applied to the functions g(tr)=f2(to+ r(t-to))
and g(tr) =f2(t tr(tl to)), provides sufficient conditions ensuring (1’) and (2’),
respectively, of Theorem 4.2.

COROLLARY 4.2. For integrable f, if n 1, n is even or the functions g(tr)=
f2(to+tr(tl-to)) and g(tr)=f)_(t-tr(tl-to)) are in L(O, 1) and each satisfy (3.41) or
(3.42) then there exist k R and y R such that Equations (4.1)-(4.2) have a solution
x(.).

Proof. The conclusions are direct consequences of Theorems 4.1, 4.2 and 3.3.
The stage is now set for dealing with the general linear equation.
THEOREM 4.3. Equation (2.1) is feedback controllable on to, t] if its coefficients

satisfy (1.2) and one of the following conditions is met:
(1) f L?(to, t) and n 1 or n is even.
(2) f L(to, t) andfor each ofits oordinatefunctionsf the correspondingfunctions

g(cr)=f(to+cr(t- to)) and g(cr)-f(t-cr(t- to)) each satisfy (3.41) or (3.42).
(3) f BV[to, tl].
Proof. A theorem due to Heymann [1] (or see [4, p. 279]) states that if the

controllability matrix has full rank, then for b any nonzero column of B there exists
a real matrix K such that the closed loop scalar control system

(4.82) Yc (A + BK)x + ob, +f( t)

corresponding to the controller

(4.83) u Kix + oei

has its controllability matrix of full rank. Hence it is sufficient to prove Theorem 4.3
for the equation

(4.84) 2 Ax + ub +f( t)

in which u is a scalar control variable and b is an n-vector. For a controllable scalar
control equation, (4.84), there exists a real nonsingular linear change of state variables
x Pz which transforms the system into the canonical form

(4.85) : An(ko)z + uen + p-if(t)

for an appropriate ko R", [4, p. 276]. Therefore, since anf of any ofthe types occurring
in conditions (1)-(3) of Theorem 4.3 remains of the same type under multiplication
by P-, it follows that it is sufficient to prove Theorem 4.3 for the equation

(4.86) 2 A,(O)x + ue,, +f( t).

Since Corollary 4.2 applies to (4.86), the proof of Theorem 4.3 is finished.
Remark 4.5. The approach taken in this paper relied heavily on overpowering

the complexity in (3.21) and (3.27) contributed by the forcing function f by exploiting
the absence of any bounds on K and v. Perhaps nothing more than the limitation to
this approach is showing through conditions (1’)-(2’) of Theorem 4.2. One can show
that (1’)-(2’) fails for Weierstrass’s continuous but nowhere ditterentiable function.
(See [5, p. 148] for its definition.) The feedback controllability question is left open
in odd dimension n ->_ 3 for such forcing functions for the special end states discussed
by Theorem 4.2.
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METRIC PROJECTIONS AND THE GRADIENT PROJECTION METHOD IN
BANACH SPACES*

R. R. PHELPS,-

Abstract. Let Pc denote the metric projecti6n onto a closed convex subset C of a smooth, rotund and
reflexive Banach space E. With an additional hypothesis on E, it is shown that Pc has directional derivatives
in every direction at every point of C (a result which is well known for Hilbert space). This is used to prove
that in such a reflexive space any cluster point for the gradient projection methol (using Cauchy’s steplength)
is a constrained stationary point.

The gradient projection method is a well-known technique for constrained optimi-
zation of a real-valued C function on Hilbert space. In this note it is shown that a
useful tool for this method (the existence of directional derivatives for the metric
projection) can be extended to a class of Banach spaces containing, for instance, the
Lp spaces, 1 < p <. As an application, it is easy to extend to such spaces a Hilbert
space result of McCormick and Tapia [7], which shows that any cluster point for the
gradient projection sequence is a constrained stationary point. We first establish some
notation and recall several definitions and relevant facts. Details may be found in Day
[2] or Diestel [3].

Throughout, C will denote a nonempty closed convex subset of a reflexive real
Banach space E. The metric projection Pc (or simply P) ofE onto C is defined for
xE by

IIx- Pxll- inf {ll x yll" y e c};

this will be single-valued if E is rotund (strictly convex). A duality mapping is any
mapping J’E E* which satisfies, for each x E,

IIJ(x)ll-Ilxll and <J(x), x>--ilxll =.
By the Hahn-Banach theorem such a mapping always exists, and it will be uniquely
determined if and ordy if E is smooth. Smoothness and the reflexivity of E imply that
J is onto; it will be one-one if E if rotund. Thus, if E is smooth and rotund, then J
is homogeneous and J-1 exists; the latter is characterized by

In Hilbert space, of course, J is just the canonical mapping which identifies E with E*.
The space E is said to satisfy property (H) provided

(H) IIx-xll-0 whenever Ilx ll- Ilxll and x, - x weakly.

This well-known property of Hilbert space is satisfied by any uniformly rotund (or
locally uniformly rotund) Banach space; hence it is satisfied by any Lp space with
1 <p<c. There are two useful consequences of property (H), both of which are
straightforward to prove by exploiting the relative weak compactness of bounded
subsets of a reflexive space and the weak lower semicontinuity of the norm.

LEMMA. 1. If E is a reflexive, smooth and rotund Banach space which satisfies
property (H), then both Pc and j-1 are continuous maps.

* Received by the editors October 11, 1983, and in revised form August 9, 1984. This research was
supported in part by a grant from the National Science Foundation.

" Department of Mathematics, University of Washington, Seattle, Washington, 98195.
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The duality map J makes it possible to extend a well-known Hilbert space
characterization of Pc to the present context. We refer to (*) below as the defining
inequality.

LEMMA 2. Suppose that E is a smooth, reflexive and rotund Banach space and that
C is a nonempty closed and convex subset of E. Then for any x E the point z Pcx is
the unique element z Z which satisfies
(*) (J(x z), u z) <-_ 0 for all u C.

Proof. Clearly, z-Pz satisfies (.) if x-Px C, so suppose xE\C. By the
separation theorem, applied to C and the ball B of radius x-Pxll centered at x,
there exists u* E*, Ilu*ll- 1, such that

sup {(u*, u): u

Thus, (u*, x-Px)= [Ix-Px[[ (so that IIx-Pxllu*= J(x-Px)) and (u*, u- Px)_<-O for
all u C, as required. Suppose, now, that z is in C and satisfies (.). If z =x, then
z- Px; otherwise, we have for u C,

o>- ((x- z), u z)= (J(x- ), x- + u x): Ilx- zll +((x- z), u x
so

IIx- zll <--<(x- z), x- u><__ Ilx- zil. lix- ull.
and hno IIx- z ll-<-IIx- for all u C, that is, z Px.

We need one further definition: If x C, the support cone Sc(x) to C at x is the
closure of the convex cone I.J{A(C-x): A >0}. The set Sc(x) (or simply S(x)) is
clearly a closed convex cone with vertex 0 and is the smallest such cone S whose
translate x + S has vertex x and contains C. Its utility in the present situation appears
in our main lemma, which shows that Ps) is the directional derivative of Pc at points
x of C. This is well-known in Hilbert space (see, for instance, McCormick-Tapia [7]
and Zarantonello [10, p. 300]) and it is easily extended below to more general spaces.
Mignot [8, Thm. 2.1] (see also Haraux [5]) has proved a result for Hilbert space (using
a nonsymmetric inner product) which yields this lemma as a special case, but we do
not see how to extend his result to the present context.

LEMMA 3. Suppose that the reflexive Banach space E is smooth, rotund and has
property (H). If C is a nonempty closed convex subset of E, then for each x C and any
y E we have

Pc(x + ty) x + tPsy + o(t), > O,

where Ps is the metric projection of E onto the cone Sc(x). (Thus, PsY is the directional
derivative of Pc at x in the direction y.)

Proof There is no loss in generality in assuming that x 0, so we want to prove
that t-lPc(ty)- Psy as t-0+. If we apply the defining inequality for Pc to ty, t>0,
and use the positive homogeneity of the duality mapping J, we can divide through by
and conclude that

(J(y- t-lpc(ty)), v- t-IPc(ty))<-_O

whenever v - C. By the defining inequality again, this implies that Pt-cy -Pc(ty).
Since O t-C we have

[[Y-t-lpc(ty)]l
so that [[t-lpc(ty)]]<-2][y]] for all t>O.
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Now to prove convergence as 0+ it suffices to prove that w, Pc’cY converges
to PsY for each positive sequence {t,} decreasing to 0. By boundedness of such a
sequence and reflexivity of E there exists a subsequence t, - 0 and z E such that the
corresponding w,’s converge weakly to z. Clearly, z is in the (weakly closed) cone
Sc(O) S. Since PsY S and since S is the closure of t C, for each n we can choose
z, t-IC such that IIPsy-zll-o. Now, w. S and is the nearest point in t-lC to y, so

y- Psy --< Ily- w, y- z,, <- y- Psy + Psy- z,

and hence IlY- w, - IlY- PsYlI. Since IlY- zll <=lim inf IlY- w, IlY- PsYll and z S,
we must have z PsY. Thus, y- w, - y- PsY weakly and therefore--by property (H)--
in norm, which implies that w, PsY. By standard reasoning with subsequences, this
argument shows that the original sequence {w} converges to PsY.

The Hilbert space version of Lemma 3 was applied by McCormick and Tapia [7]
to prove a theorem about the gradient projection method for constrained optimization.
The present version can easily be applied to obtain the same conclusion in somewhat
more general spaces. We first describe the gradient projection method.

Suppose thatf is a real valued continuously ditterentiable function on the Banach
space E. Assume that both the inverse duality map J- and the metric projection Pc
exist and are continuous. Following Golomb and Tapia [4] we define the gradient
Vf(x) Eoff at x E by the composition

vf(x)=-(f’(x)), xeV.

where f’(x) E* is the Fr6chet derivative of f at x. The gradient projection method
seeks to produce a minimizing sequence {x,} for f in C by the following inductive
procedure:

Choose xl C. Having chosen x, C, let

(1) x.+ Pc[x,, t,Vf(x,)]

where the steplength t, >-0 is chosen so as to minimize the function g,,. defined by

(2) g,,.(t)=f(Pc[x,,-tVf(x,)]), t>-_O.

(We assume that such a minimum point exists.) Note that if we evaluate g,. at t,
and 0, then

f(Xn+l) g,,.(t.) <-- gx.(O) f(Pc[x.]) =f(x,,)

so that the sequence {f(x,)} is nonincreasing. One cannot expect {x,} always to
converge, but we would like to ascertain that any cluster point x* of {x,} is, in some
sense, a stationary point in C for f. It is too much to ask that 7f(x*)= 0, but it is
certainly appropriate to require that an application of the iteration (1) starting at x*
does not move to a different point, that is, x*= Pc[x*-tVf(x*)], t>=O. This is
equivalent to the third assertion in the following proposition. The first assertion says
that x* is a solution to a variational inequality.

PROPOSITION 4. For a point x* C each of the following four conditions implies the
other three:

(i) (f’(x*), x*- y) <-O for all y in C,
(ii) Ps(,.)[-Vf(x*)] O,
(iii) x* Pc(x* Vf(x*)),
(iv) (f’(x*), Pst,,.)[-Vf(x*)]) >= O.
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Proof To see that (i) and (ii) are equivalent, we note that, bythe defining inequality
for Ps(x.), assertion (ii) is equivalent to

(J(-Vf(x*)), u) <= 0 for all u S(x*).

From the definitions of Vf(x*) and S(x*), this is equivalent to

(-f’(x*), y x*) <- 0 for all y C,

which is the same as (i).
Similarly, if we restate (iii) in terms of the defining inequality for Pc, we obtain

(-f’(x*), y-x*)=(J[x*-Vf(x*)-x*], y-x*)<-_O for all y C,

which is again the same as (i).
Obviously, (ii) implies (iv). Suppose, then, that (iv) holds; we will deduce property

(ii). Let z= Ps(x.)[-Vf(x*)]; knowing that (f’(x*), z)>-O, we want to show that z=0.
For simplicity, let w -Vf(x*). Since 0 S(x*) and z Ps.)w, we have IIw-zll-< wll.
By the definition of Vf(x*), -f’(x*)= Jw and hence IIf’(x*)ll- IIwI[. Thus,

Ilwll" IIw-zll>--<f’(x*), w-z>>-<f’(x*), w>-<Jw, w>-Ilwll =.
It fOllows that either w=0 (hence z=0) or IIw-zll- Ilwll. This latter equality says
that 0 is a nearest point in S(x*) to w; by uniqueness of nearest points in rotund
spaces, z 0.

DEFINrrIOY. We say that x* C is a constrained stationary point for f provided
it satisfies any one of the prbperties (i)-(iv) above. In the fourth property we could
have used equality in place of inequality, but the apparently weaker condition is useful
in what follows. Note that if there are no constraints on f (that is, if C E), then Pc
is the identity map and the above conditions are equivalent to the usual definition:
Vf(x*) =0.

Byrd and Tapia [1] have shown, in the unconstrained case, that cluster points of
{x,} are stationary points for f, in arbitrary Banach spaces. (Actually, they utilize a
more general steplength, which is discussed below.) The introduction of Pc forces
adoption of the additional hypotheses in our final proposition.

PROPOSITION 5. Suppose that E is a smooth, rotund and reflexive Banach space
which satisfies property (H). If x* is a cluster point of the sequence {x,} defined above,
then x* is a constrained stationary point forf

Proof By using Lemma 3 and the chain rule, we can compute the right-hand
derivative at 0 of

g,,( t) f(Pc[x* tVf(x*)]).

Indeed, using the.fact that Pcx*= x*, it is given by

<f’(x*), Ps(,*)[-Vf(x* ]).

Thus, if x* were not a constrained stationary point, this derivative would be negative
and we could find " > 0 such that

f(Pc[x* ’V/(x*)]’) <f(Pc[x*]) =/(x*).

By continuity of Vf and Pc and the fact that x is a cluster point of {x,}, there would
exist infinitely many n such that

f(Pc[x, ’Vf(x,)]) <f(x*).

The minimum property used to define t, would then imply that f(x,+)<f(x*) for
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infinitely many n, contradicting the continuity of f and the fact that {f(x,)} is non-
increasing.

The choice of steplength which was made in (1) is called Cauchy’s steplength. It
requires that the composition function gx. have a global minimum in [0, c). A less
stringent requirement is that t, be the smallest stationary point of gx. in [0, o); this
is called Curry’s steplength. For unconstained minimization, the result of Byrd and
Tapia [1] referred to earlier is actually proved using this steplength. (See their paper
for a thorough historical review of both methods.) In order to use Curry’s steplength
in the constrained case, one needs some sort of differentiability hypothesis on Pc at
points outside of C. In general, this is a difficult question, even in Hilbert space. (See
[6].) Some results in this direction are contained in [9].
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ERRATA: ON STABILIZABILITY OF LINEAR SPECTRAL SYSTEMS
VIA STATE BOUNDARY FEEDBACK*

RUTH F. CURTAIN

The following corrections should be made to this article (with thanks to B. M. N.
Clarke).

1. pp. 148ff. The state space should be C (R) Z instead of R Z.

2. p. 149. The first paragraph should read:

The biorthogonal system for 4k is given by

to (10)k=( xk) where /k -(q, h)
k

and so

(3.12) bk gk- bk,

where the inner product is in C )Z. We remark that if q O, then h- O,/o-- and
bk =-bk. We now state our main result.

*This Journal, 23 (1985), pp. 144-152.
Rijksuniversiteit Groningen Mathematisch Instituut, Postbus 800, 9700 AV Groningen, the Nether-

lands.
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